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A continuous-time viewpoint of acceleration methods: min f(x)

@ Gradient descent method corresponds to gradient flow

i1 = xp —VsVf(xg) & x(t) = -V f(x(t))

@ Nesterov accelerated gradient method corresponds to

3
(2 = yp-1 — sV (Yk-1) B(t) + 22 (t) + VsV f(w(t))a(?)
\ k—1 A
\yk:$k+k+2(ﬂik—ﬂik—1) -+ 1+32—\g§)vf(37(t))_0
@ Dynamical inertial Newton with asymptotic vanishing damping
Z(t) + %a’?(t) + BV fx(t)i(t) +v(t)V f(2(t) =0 (DIN-AVD)
o Let w(t) = ~(t) — B(t) — B(t)/t. Convergence condition for (DIN-AVD)

v(t) > B(t) + @, tw(t) < (a—3)w(t), forallt >t

Convergence rate: f(z(t)) — fo = O (1/(t*w(t)))
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Two important open questions and solutions

@ How to develop acceleration methods using ODE viewpoint?

— p=Y(p)
Sample-and-hold 5 — y (5 . . .
- “mplementation © = ?) Combine error analysis in ODE and
Lyapunov . . . . . .
Level set complexity analysis in optimization

L Trigger-New iteration

Figure: Rate-matching discretization
@ How to select the best coefficients for (DIN-AVD)?
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Our training and testing framework

-

[ 2(t) + %i?(t) + B(t) V2 f(2(t))2(t) + (1) VF(z(t)) =0 (ISHD) ]
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A fundamental result: an enhanced convergent condition for DIN-AVD

Given k € (0,1], A € (0, — 1] and f is twice differentiable convex
6(t) = t*(v(t) — wB() — KB(H) /) + (k(a = 1 = A) = A1 = K))EA(L),
w(t) =A(t) — () — BO)/t, 6(t) >0, and (1) < tult),

a > 3,tg > 0, > 0 are real numbers, 3 and vy are nonnegative continuously differentiable
functions defined on |tg, +00). Then x(t) is bounded and

(Cvg-cdt)

1 1 , 1
) - £. 20 (55 ). I a®)] <0 (5. 101 <0(3).
[ ot - 50) 1) - Lyt <o [ tla— 1= W]E0]de < o

) Bt w(t)[|V f ()] dt < 00, t()(V2f(ﬂf(t))i"(t),fb(t)> dt < o0




Applying forward Euler scheme to (DIN-AVD)

o Let v(ty) = x(to) + B(to)V f(z(to)) and

v(t) = B(t)V f(x(t))
p=(x(t),v(t),t) = | o - (1)

——(v(t) = BV F((t) + (B() = +(1)VF (1))

@ The equation (DIN-AVD) can be reformulated as the first-order system

d

(igg) = 1p=(z(t),v(t),t), notice that V= f(x(t))i(t) = &Vf(a:(t))

o Let h be the step size, ty, = to + kh,k > 0. The forward Euler scheme of (DIN-AVD) is

( £Uk+lh_ Tk _ v — B(tk)V f(xg),
) ] | (F-Euler)
k+1 k _ _? (Uk . 6(tk)vf(xk)) 4 (ﬁ(tk) — ’Y(tk))vf(il'k)




Conditions for stable discretization

Suppose the assumptions in Theorem 1 hold. Given to, so, and h, the sequence {xz}}7°, is
#(t) = xp, + x’““h_ Tkt t), € [thtrrl). (2)
Assume three constants 0 < Cp, 0 < Cy < 1/h — 1/ty, and 0 < Cs fulfill
B < C1B(#),  [3(t) = BE)| < Ca(r(t) — B(1),  B(t) < Cw(t). (3)
Then, it holds f(xzy) — fx < O(1/k) under the following stability condition:
) > [V ()], aB(t)/t <~(t) - B() < B(t)/h, (STB-CDT)
\// (1=7)X(t,E, f)+72(t), f \/fy AE) + \éf();()t) — ) - %B(t).
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Stopping time: a differentiable continuous-time complexity

Ordinary Method Ordinary Method

/

= =
= S e
= Accelerate@ : o / <:I
/ : Accelerated Method #Accelerate
Accelerated Method ;
~N > ~ >
(a) Measure-based (b) Complexity-based

Definition (Stopping Time)

Given the initial time tg, the initial value xg, the initial velocity 2(tg), the trajectory X (=, ¢, f)
of the system (DIN-AVD), and a tolerance ¢, the stopping time of the criterion |V f(z)|| < ¢

® T(E, f) = inf{t | [VF(X(E 2, )| <&t > to}.

e — . Nalela
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Tackle the point-wise contraints using integration

o With w(t),d(t) defined in (Cvg-cdt), we introduce

p(x, { \// 1—frx+’ra:fdfr—\/fy

a(E,t) = [y(6) = B) = BO)/h| -+ [B®) +aB®)/t = ()]
+ [S(t) - )\tw(t)} +[=5(1)]., .

e Setting P, () < 0 ensures (Cvg-cdt) and (STB-CDT) hold for f

_ T(E,f) _ _ _ T(=,f) _
PEN=[ T XEENIOELN® QEN= [ aE D
0 0




A L20 framework for selecting the best coefficients

@ Given a random variable £ ~ P. We say P is the induced probability of f(-;¢)

E/T(E, )] = /g T(E, £(-:€)) dP(E) = E[T(E. £(-: )]

@ Framework: minimize the expectation of stopping time under conditions of convergence
and stable discretization

min  E[T(Z, f),

st. Ef[P(E. /)] <0, EfQ(E. /)] <0,

e Parameterization: 3 — (y,,7 — 7p,. Set 0 = (a, 01, 02).
@ Given the penalty parameter p, the {1 exact penalty problem writes

min Y(0) = E¢[T(0, /)] + p (Bf[P(0, )] +Ef[Q(0, /)])
=E,[T(0, f) + p (PO, f) + Q6. f))]

Zaiwen Wen (PKU) Learning-based Optimization



Conservative gradient

@ When parameterize o, 3,7 using neural networks, they may be nonsmooth

@ The output of auto differentiation in nonsmooth functions may not be Clarke
subdifferentials, but they are certainly conservative gradients

@ Conservative gradient generalizes subdifferentials while preserving chain rule

e U is termed the conservative Jacobian (gradient if m = 1) of 7 if and only if

%ﬂ'(’r‘(b)) = Ar(¢), forall A€ U(r(¢)), for almost all ¢« € [0, 1],

for any absolutely continuous curve r : [0,1] — R
@ Consider the example:

f(s) = (l=sl+ +s) = [s]+ =0 — g(s) =

autograd using TensorFlow

g is not the Clarke subdifferential of f but a conservative gradient
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Evaluate the derivative of stopping time: V=T'(f, =)

o Take limit by continuity: ||[Vf(X(T(f,Z), f,2))||* —e*=0
@ Implicit function theorem (valid in nonsmooth case):

0X
VET(JC, E) + —_) =0

t=T -

0x
ot

where T = T(f,2), X = X(T(f,2), f,E)
@ Invoking the first-order form of (DIN-AVD):

V(X) TV F(X) (

Ot iy

where x(t) = X (¢, f,Z)
@ The derivative:

7(7.%) = (VIO T2 H(X) ((T) = X = BIT)VA(X)) T(X)
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Conservative gradient of the constraints

@ To ease our presentation, we introduce

pleE,t, ) = | By (VAT ] = Yoz, 0) = B, (0 = ) = ey (0) — S8z,
A(5,8) = [1=.(t) Bz, (8) = B, (/B + [3=(t) —tws(t)] + [-6=(0)],

_|_
@ The constraints P, () can be represented as

_|_

_ T(Z,f) _ a _ T(E,f) B
P(E, f) — [ p(XE 4 )54 f)dt, QE, ) = / o(E, 1) dt
t

0

@ Applying the chain‘fule gives

T op oX  Jp
-P(Z, f) = p(X(E,T, ),E, T, f)V=T o + oz dt
VeP (=, f) =p(X(E,T, f), 5T, f)V= +/t0 x|, _y 0= 0~
V=Q(E, f) = q(E T)V=T + f 5= &
to
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SGD converges with (nonsmooth) auto-differentiation: Assumptions

Assumption (Assumptions of the SGD)

Q The step sizes {ny};~, satisfy

© @] oo
2
e > 0, an:oo, and an<oo.
@ Almost surely, the iterates {Z}r>1 are bounded, i.e., supy~; [|[Ek|| < oo.

Q {&:}x>1 is a uniformly bounded difference martingale sequence with respect to the
increasing o-fields

In other words, there exists a constant M¢ >0 such that

E[&x | Fr] =0 and ]E[kaHQ ‘ Fr] < My for all k> 1.

— =

|
|
|
)
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SGD converges with (nonsmooth) auto-differentiation

The complementary of {Y(=) | 0 € Jy(=)} is dense in R.

Theorem (SGD converges using conservative gradient)

Suppose that Assumptions 1 and 2 hold. Then every limit point of {Ej }r>1 is stationary and
the function values {s(Zj)}x>1 converge.

Theorem (Convergence guarantee)

Suppose Assumptions hold, {Zk}r>1 is generated by the Algorithm. Then almost surely, every
limit point E, of {Z}r>1 satisfies =, € Sp, 0 € Jr(E«) and the sequence {Y(Zj) }k>1
converges.
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Setting and datasets

@ Consider the logistic regression problem defined by a finite set &, a subset of a given
dataset or is sampled from a distribution

1

min fo(z) = 7

> log(1 + exp(—bas, x))),

(ai,bi)e@

where the data pairs {a;,b;} € R" x {0,1},i € [|Z|]

Zaiwen Wen (PKU)

Dataset n Nirain Niest Separable
aba 123 6,414 20, 147 No
w3a 300 4,912 44,837 No

mushrooms 112 3,200 4,924 Yes

covtype 54 102,400 478,612 No
phishing 68 8,192 2,863 No
separable 101 20,480 20,480 Yes

Learning-based Optimization



Training results

60 1 —O— logistic_mushrooms 17.5¢ L] —O— logistic_mushrooms
—/\— logistic_w3a —/\— logistic_w3a
50 .l ~>~ logistic_phishing 15.0- ~~ logistic_phishing
-+ logistic_covtype —{F logistic_covtype
12.51
£ 401
= 210.0
g o
& 301 u & 75
(@]
7
201 5.0
2.51
101
0.0
0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration
(c) Stopping time on logistic regression (d) Penalty on logistic regression

Figure: The training process in different tasks.
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Testing results
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€ ODE-based Learning to Optimize
© MCPG for Binary Optimization

© Mathematical formalization
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Binary Optimization

Let f be arbitrary (even non-smooth) cost function:

min  f(z), st. ze€B,={-1,1}".
@ Example: maxcut problem on G = (V, F)

max Z wii (1 —xx5), st xe{-1,1}".

@ Example: MaxSAT problem:

max E max{cixy, c5xa, -+ ,ChTpn, 0},
xe{—1,1}" _
cteCq
s.t. max{cixy,cyTa, - ,CnTy, 0} =1, for ¢ € Coy

@ Binary optimization is NP-hard due to the combinatorial structure.
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Probabilistic Approach

@ Let X'* be the set of optimal solutions and consider the distribution,

. 1 - xr e X,
)= @)= {OX e

@ To approximate ¢*, we introduce Gibbs distributions

1 1
qA(a:)——eXp<—f(x)) >X*’1X*(a:):q*, asA\—0 xe€hB,,

A
where Z) = ) exp (—%ﬂj)) Is the normalizer.
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Parameterized Probabilistic Model

@ KL divergence:

Po()
o (z)

@ In order to reduce the discrepancy between py and ¢y, the KL divergence is supposed to
be minimized:

L(pollay) = > pol r) log =
xeBby,

Lpollar) = 5 Z po(x) f(x) + Y po(x)logps(x) + log Z,
xeB, xeBy,
1
=~ (Epy [f(2)] + AEp, [log pp(z)]) + log Z).

@ Loss Function (Z) is a constant):
ming Ly)(0) = Ep, f(x)] + AE,, log py(x)]
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Gradient for the Loss Function

Lemma

Suppose for any x € B, pg(x) is differentiable with respect to 6. For any constant ¢ € R, we
denote the advantage function

Ax(z;0,¢) := f(z) + Alogpe(z) — c.
Then, the gradient of the loss function is given by
VoLx(8) = Ep, [Ax(x;0,¢)Vglog ps(z)] .

One candidate for c is

¢ = Epylf(2)].

Very similar to the policy gradient in reinforcement learning!
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Pipeline of MCPG

Sampling with Filter Function

Probabilistic Model

Policy Gradient

S1

_{Starting Points

Output Probability

MCMC Sampling with p p = po(x|P)

Generate Raw Samples %‘/

[Raw Samples {S%,“',ST} {Sllc,“‘.szl}

[

Update Parameter
0—0-—ng

=

Policy Gradient

1 , ) Mean Field Policy
9= AlV,10gps(s|iP)
ij

with Parameter 6 to
Generate a Distribution

Po( |P)

Local Search

Apply Filter Function
8 = T(s)
[Samples after §%’ ) {3,11" ,gm

1

Advantage

Selecting Best Samples

A= (&) - 6D

[

4[ Best Samples

Problem Instance P
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Filter Function

Definition (Filter Function)

For each = € B, let N'(x) C B,, be a neighborhood of = such that z € N(x), |N(x)| > 2 and
any point in N (x) can be reached by applying a series of “simple” operations to . A filter

function T'(x) is defined as
T(x) € argmin f(2),
TeN (x)

where T'(x) is arbitrarily chosen if there exists multiple solutions.

@ Projection to the best solution on the neighborhood:

Tife) = axgmin J(0), N(e) = (@] sl < 20
T—x|l1<2

@ Algorithms serves as the filter function: T,g(z) = LocalSearchy(x).

Zaiwen Wen (PKU) Learning-based Optimization



Filter Function

@ The filter function T’ projects x to a better one in the neighborhood.

e Applied with the filter function, f(7'(x)) has fewer local minima and the same global
minimum as the original one.

maxcut, G22:

12500 12500
11120 -
=
S 12000 - - 12000 11100 - ] ',/\
e
=] 1
5 11500 - 11500 _. 11080 - / i :
s e ' flx)
£ 11000 - - 11000 = 110607 —=- f(T1(x))
[
2 11040 - = AT
¢ 10500 - 10500 —=- AT5(x)
= 11020 - —== f(T4(x))
10000 A - 10000 11000 — Tisx)
f(X) ﬂTl(x)) f(Tz(X)) f(TS(X)) f(T4(X))f(TLS(X)) X1 X3 X5 X7 Xg X111 X13 X153 X17 X19
(g) Expectation of the objective function. (h) A selected sequence of solutions.
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Regularity conditions on policy: Let ¢(x;60) = log pg(x|P). There exists some constants
My, My, M3 > 0 such that, for any = € B,

Q supyepn |P(x;0)] < My,
@ supycgn [|[Vod(z;0)|| < Mo,
e valqb(x’ 9) o VQ2¢($, 9)” S M3 Hgl T 92” 7V913927 e R"™.

Spectral gap: Let P be the transition matrix of a finite-state time homogenous Markov
chain. Then, the spectral gap of P is defined as

,_Y(P) - 1 — ma’X{‘)\Z(QP)‘J |/\2”(P)|} c (O, 1}’

where \;(P) is the i-th largest eigenvalue of the matrix P. We assume that there exists a
positive lower bound ~v(Fy) > v > 0 for any 6 € R™.
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Convergence of MCPG

Let the above assumptions hold and {0'} be generated by MCPG. If the stepsize satisfies
n' < 5=, then for any T, we have

. 1 i) 1
E[VL K 2]<O =1 — . 5
i B IR <0 (s + s T+ o )
In particular, if the stepsize is chosen as n' = C"\Z”k with ¢ < 2% then we have
min E [HWLA(QQM <ofleeT L 1)) (6)
1<t<r - Vmkr ~ m?

@ This theorem shows that the probabilistic model of MCPG will finally converge to
stationary points.
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Parameterization of sampling policy

o Mean field (MF) approximation:
po(alP) = H R )02 = 646 P)

@ Parameterization of u;:

1 — 2«

+a, 1<1<n.
1 —|—6Xp(—9i)

Hi = @1(91) —

The probability is scaled to the range (a, 1 — ), where 0 < oo < 0.5 is given.

@ For problems graph structures, combining advanced neural networks such as GNN can
also be a good choice.

Zaiwen Wen (PKU) Learning-based Optimization



@ The maxcut problem aims to divide a given weighted graph G = (V, F) into two parts,
and maximize the total weight of the edges connecting two parts.

@ This problem can be expressed as a binary programming problem:

max Z w;ii (1 —xz5), st xe{-1,1}".

@ We use the results reported by BLS as benchmark. Denoting UB as the results achieved
by BLS and obj as the cut size, the gap reported is defined as follows:

UB — obj

100%.
o < 100%

gap =
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@ On the Gset instance, MCPG finds all the best-known results.

@ For G55 and G70, the results obtained by MCPG is better than all the previous reported

results.
Graph . MCP(.;
BLS |MCPG|DSDP |RUN-CSP|PI-GNN |(limited time)
name|nodes |edges gap | time
G14 |800 4,694 | 3,064 | 3,064 | 2,922 | 2,943 3,026 |0.02%| 28
Gl5 [800 |4,661 | 3,050 | 3,050 | 2,938 | 2,928 2,990 |0.01%| 28
G22 2,000 |{19,990(13,359/13,359(12,960| 13,028 | 13,181 |0.10%| 55
G49 |3,000 {6,000 | 6,000 | 6,000 {6,000 6,000 5,918 |0.00%| 107
G50 (3,000 {6,000 | 5,880 | 5,880 [ 5,880 | 5,880 5,820 [0.03%]| 107
Gb5 |5,000 |12,468|10,294|10,296| 9,960 | 10,116 | 10,138 |0.47%| 145
G70 [10,000|9,999 | 9,541 | 9595 | 9,456 : 0,421 [0.86%| 274

Table: Computational results on selected Gset instances. The result is sourced from references.
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What kind of reasoning are needed?

A typical real scenario: min, f(x)

Symbolic Computation Numerical Computation Formalism
@ Manipulates mathematical @ Approximates solutions to @ Emphasizes rigorous
symbols and expressions mathematical problems mathematical proofs and
directly. using numerical techniques. structures.
@ Software: @ Software: @ Software:
@ Mathematica @ MATLAB Q Cogq
@ Maple © NumPy (Python) © Isabella
QO SymPy e Demo: find a local © Lean
@ Demo: computing the minimizer using the @ Demo: prove the
gradient of f(x). gradient method. convergence rate of the
code: DIf, x] code: x=fminunc(fun,x0) gradient method

theoren gradient_method {alg : Gradient_Descent_fix_stepsize f £ x} (hfun:
ConvexOn R Set.univ f) :
Vk:N flgxk+1)-fm<1/ Q" (k+1) "alga) "llx-ml
" 2:=by
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Exciting Events

(i)

Formalisin erfectoid spaces
&p p Terence Tao

Kevin Buzzard * Johan Commelin ¥ Patrick Massot ¥ nat ]] -
May 29, 2020

2012. We formalised enough definitions and theorems in topology, algebra and geometry to define

Absteace The #Lean4 project to formalize the proof of the Polynomial
Perfectoid spaces are sophisticated objects in arithmetic geometry introduced by Peter Scholze in . . .
i A e e G I el YR Freiman-Ruzsa conjecture has succeeded after three weeks, with the
handle complexity in that direction, which is rather different from formalising a long proof about
simple objects. It also confirms that mathematicians with no computer science training can become dependency gra ph Com plete'y Covered In a Iovely Shade Of green

proficient users of a proof assistant in a relatively short period of time. Finally, we observe that
formalising a picce of mathematics that is a trending topic boosts the visibility of proof assistants

e A el s ' orth.github.io/pfr/blueprint... , and the Lean compiler reporting
1 Introduction that the conjecture follows from standard axioms.

In 2012, Peter Scholze defined the notion of a perfectoid space. and used it to prove new cases of the
weight-monodromy conjecture, an extremely important conjecture in modern arithmetic geometry. This
original application of the theory was based on a key theorem of Scholze called the tilting correspondence, H . a

relating p‘el;fectoid spaces in clzaractcristic zero to those in positive characteristic. Over the i)::xl few More dISCUSSIOn On the prOJect Can be fOU nd at
years, many other applications appeared, culminating in some spectacular applications to the Langlands . :

programme. Scholze was awarded the Fields Medal in 2018 for his work. See [Rap18. Wed19] for far eant wer.zu ch ( 1/ =N

more thorough explanations of how Scholze’s ideas have changed modern mathematics.

With current technology, it would take many person-decades to formalise Scholze’s results. Indeed,
even stating Scholze’s theorems would be an achievement. Before that, one has of course to formalise
the definition of a perfectoid space, and this is what we have done, using the Lean theorem prover.

For a quick preview, here is what the final definitions in our code look like.
structure perfectoid_ring (A : Type) [Huber_ring A] extends Tate_ring A :=
(complete :is_complete_hausdorff A)

(uniform :is_uniform A)
(ramified : 3 ® : pseudo_uniformizer A,@"p | p in A®)
(Frobenius : surjective (Frob A® /p))

def is_perfectoid (X : CLVRS) : Prop := 'PFR_conjecture' depends on axioms: [propext,
V¥x, 3 (U: opens X) (A : Huber_pair) [perfectoid_ring A], .

el niGppa=d) ALT assical.choice, Quot.sound]

def PerfectoidSpace := {X : CLVRS // is_perfectoid X}

“Imperial College London. Supported by EPSRC grant EP/LO25485/1.

T Universitiit Freiburg. Supported by the Deutsche Forschungs Gemeinschaft (DFG) under Graduiertenkolleg 1821 (Cohomaologi-
cal Methods in Geometry).

#Laboratoire de Mathématiques d"Orsay, Univ. Paris-Sud. CNRS, Université Paris-Saclay

Kevin Buzzard and others successfully formalized (j) Terence Tao and others successfully formalized

Peter Scholze's theory of perfectoid spaces the proof of the Polynomial Freiman-Ruzsa conjec-

ture in about three weeks
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Formalizing mathematical optimization: optlib

Goal: a library of formalized theorems of mathematical optimization
Webpage: https://github.com/optsuite/optlib
Current progress:

o definition and properties of Gateaux derivative (gradient)
@ basic properties of convex functions and L-smooth functions
@ the definition of subgradient and proximal operator for nonsmooth convex functions

@ optimality conditions for differentiable optimization problems

@ convergence analysis of optimization algorithms
e subgradient method
o gradient methods
e proximal gradient method

@ Nesterov's acceleration methods
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Formalization of the proximal gradient method

e Consider the composite optimization problem min(x) = f(x) + g(x).
@ the update scheme of proximal gradient descent

Thi1 = ProXy, o(Tr — ax V().

proximal_gradient_method (f h: E - R) (f" : E » E) (Xo : E) :=
(xm : E) (t : R) (x : N -» E) (L : NNReal)
(fconv : ConvexOn R univ f) (hconv : ConvexOn E univ h)
(ha : ¥V xa : E, HasGradientAt ¥ (' xai) xa) (hz : LipschitzWith L ")
(hz : ContinuousOn h univ) (minphi : IsMinOn (f + h) Set.univ xm)
(tpos - @ < t) (step : £t £ 1 / L) (ori : x © = x0) (hL = L > (©® : R))
(update : V k, prox_prop (t « h) (x k - t « F° x k)) (x (k + 1)))

@ Convergence rate

Lo

|27 — 27|

k *
Y(x”) — 1 SZ—M

proximal_gradient_method converge {alg : proximal_gradient_method f h ' Xxo} :
: N+), f (alg.x k) + h (alg.x k) - f alg.xm - h alg.xm

/ (2 * k * alg.t) * |xo - alg.xm| ~ 2 :=
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Formalize the Core disciplines in applied mathematics

General recipe: data, modelling, algorithms, analysis, applications

@ scientific computing: numerical analysis, numerical linear algebra, optimization, numerical
methods for ODE and PDE, ...

@ probability, statistics, stochastic process

@ control theory

@ combinatorics, graph theory

@ operations research, mangagement sciences
@ machine Learning and artificial Intelligence

@ information theory, signal processing, image processing
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Reaslab: smart tool powered by artificial intelligence beyond formalization

Menubar

Functions such as file immport, edit, share, package management, etc

Lean Infoview
Code area

File system

Write Document or Lean code
Al Toolbar

( 1

[ Latex Code Block } Formal-Informal

Translater
W l Lean ATP & Copilot

[ Lean Code Block ]

Project file tree

Interactive
information
& Toolbar

Semantic Search
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Many Thanks For Your Attention!

@ We are hiring: faculty, postdoc, graduate students, engineers
Competitive salary as U.S and Europe

@ Sino-Russian Mathematics Center, Peking University

@ Beijing International Center for Mathematical Research, Peking University
@ http://faculty.bicmr.pku.edu.cn/~wenzw

@ E-mail: wenzw@pku.edu.cn

@ Office phone: 86-10-62744125
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