
CHAPTER 2

Elements of Hyperbolic geometry

1. Upper Half-plane Model

Consider the upper half plane H2 = {(x, y) 2 R2 : y > 0}. We endow H2 with
the following (Riemannian) metric:

ds =

p
dx2 + dy2

y
.

To be precise, a piecewise di↵erential path � : [0, 1] ! H has the length defined as
follows:

`(�) =

Z 1

0

p
x0(t)2 + y0(t)2

y(t)
dt

where � = (x(t), y(t)).
For two points z, w 2 H, their hyperbolic distance is as follows

dH(z, w) = inf{`(�) : �(0) = z, �(1) = w}
where the infimum is taken over all piecewise di↵erential paths between z and w.

Denote by Isom(H2) the group of all isometries of H2.

1.1. Orientation-preserving isometries. Consider the general linear groups
GL(2,C) of invertible 2⇥ 2-matrices

✓
a b
c d

◆

where a, b, c, d 2 C such that ad � bc 6= 0. The group M2(C) of (complex) linear
fractional transformation (LFT) is a nonconstant function on C of the form

T (z) =
az + b

cz + d

for a, b, c, d 2 C with ad� bc 6= 0. Such LFT is also called Mobius transformation.
There is a natural map � : GL(2,C) ! M2(C) as follows:✓

a b
c d

◆
! az + b

cz + d
.

Exercise 1.1. Prove that � is homomorphism and the kernel is {k · I2⇥2 : k 2
C \ 0} where I2⇥2 is the identity matrix.

For simplicity, we consider the special linear group SL(2, C) consists of the
matrices with determinant ±1 in GL(2,C). The projective linear group PSL(2,C)
is then the quotient group SL(2, C)/{±I2⇥2}. By the above exercise, PSL(2,C) is
isomorphic to M2(C).

Lemma 1.2. Every LFT can be written as a product of the following three
elementary transformations:
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26 2. ELEMENTS OF HYPERBOLIC GEOMETRY

(1) z ! z + c, where c 2 C,
(2) z ! kz, where k 2 C,
(3) z ! �1

z

.

In other words, M2(C) is generated by the set of elementary transformations.

Every LFT is actually defined on the set C \ {�d

c

}. It will be useful to define

LFT over the extended complex plane Ĉ = C [1. Correspondingly, we define

T (
�d

c
) = 1

and
T (1) =

a

c
,

so a LFT T becomes a bijective map on Ĉ. We equip the topology of Ĉ with one-
point compactification as follows. The open sets in Ĉ are either open sets in C or
the union of 1 with the complement of a compact set in C.

Exercise 1.3. Put a metric on Ĉ such that it induces the one-point com-
pactification Ĉ. (Tips: consider the stereographic projection from the closed upper

semi-sphere to Ĉ.)

Exercise 1.4. With one-point compactification Ĉ, every LFT is a homeomor-
phism.

The above discussion still applies with C replaced by R. In particular, M2(R)
denotes the set of LFTs with real coe�cients. Then PSL(2,R) is isomorphic to
M2(R). We now come to the connection of M2(R) with Isom(H2).

Lemma 1.5. M2(R) ⇢ Isom(H2).

Proof. Note that each type of a real elementary LFT is an isometry so any
real LFT belongs to Isom(H2) by Lemma 1.2. ⇤

1.2. Geodesics and reflexions. We now consider the paths � : I ! H2

where I is an interval in R.

Definition 1.6. A path � : I ! H2 is called a geodesic if it preserves the
distance: |s� t| = dH2(�(s), �(t)) for any s, t 2 I.

Remark. Sometimes, when I is a finite interval [a, b], the path � is called a
geodesic segment. If I = [0,1), it is a geodesic ray ; if I = R, we call it a geodesic
line.

Theorem 1.7. The set of geodesic lines in H2 is the set of Euclidean half-lines
and half-circles orthogonal to the real axis.

One may first verify by computations that the positive y-axis is a geodesic line.
Then the proof is completed by the following.

Exercise 1.8. M2(R) acts transitively on the set of Euclidean half-lines and
half-circles orthogonal to the real axis.

To obtain the full isometry group of H2, we need take care of an orientation-
reversing isometry. Note that z ! �z̄ is such an isometry of H2, which fixes
pointwise the y-axis and exchanges left and right half-planes. So we have the
following defintion.
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Definition 1.9. A (hyperbolic) reflexion in H2 is a conjugate of z ! �z̄ by
M2 so it fixes pointwise a unique geodesic line.

Proposition 1.10. If an isometry in H2 fixes pointwise a geodesic line L, then
it is either identity or a reflexion about L.

Before giving a proof, we need make use of the following useful fact about
bisectors. Given two points x, y 2 H2, the bisector L

x,y

is the set of points z 2 H2

such that dH2(x, z) = dH2(y, z).

Lemma 1.11. Bisectors L
x,y

are geodesic lines and the geodesic [x, y] is orthog-
onal to L

x,y

.

Proof. Up to applying LFT (cf. Ex 1.8), we can assume without loss of
generality that x, y are symmetric relative to the y-axis. Observe then that the
positive y-axis is contained in L

x,y

. Hence, it su�ces to prove that any point
z 2 L

x,y

has to lie on the y-axis. This can be proved by contradiction; see detailed
proof in the Lemma in Stillwell, pp.87. ⇤

Define the distance of a point z to a subset L in H2:

dH2(z, L) := inf{dH2(z, w) : w 2 L}.
Lemma 1.12. Given a point z outside a geodesic line L, then there exists a

unique point w 2 L such that dH2(z, w) = dH2(z, L) and the geodesic through z, w
is orthogonal to L.

Proof. Note that there exists a geodesic line L0 passing through z and orthog-
onal to L. Place L0 to be the y-axis by a LFT. Then it is clear that the intersection
of L0 \ L is the shortest point on L to z. ⇤

Proof of Propsoition 1.10. Suppose the isometry � is not identity so there
exists z 2 H2 \ L such that �(z) 6= z. Consider the bisector L

z,�(z) which is a
geodesic line by Lemma 1.11. Since the geodesic line L is fixed pointwise by �, we
have d(w, z) = d(w,�(z)) for any w 2 L so L ⇢ L

z,�(z). They are both geodesic
lines so they are equal: L = L

z,�(z).
Up to a translation of LFT, we assume that L is the y-axis. We claim that �

coincides the reflexion ⇢ about the y-axis. That is to say, we need prove that for any
w 2 H2, we have ⇢(w) = �(w). By the same argument for z, we see that the bisector
L
w,�(w) coincides with y-axis. So the geodesic between w,�(w) is orthogonal to L,

and
dH2(w,L) = dH2(�(w), L).

By Lemma 1.12, �(w) and w is symmetric relative to L. So ⇢(w) = �(w). ⇤
Let L be a geodesic line. If it is given by half-circles, then the two endpoints

of L are the intersection points with the real axis. If L is a half line, then the
intersection point with the real axis and the infinity point 1 are the two endpoints
of L.

Exercise 1.13. Let L1, L2 be two geodesic lines such that they have disjoint
endpoints. Then there exists a unique geodesic line L orthogonal to both L1 and L2.

We are able to characterize the full isometry group of Isom(H2).

Theorem 1.14. The isometry group Isom(H2) is generated by PSL(2,R) and
the reflexion z ! �z̄.
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Proof. Up to apply LFTs from PSL(2,R),we can assume that an isometry is
fixes pointwise the y-axis. Then the proof is completed by Lemma 1.10. ⇤

We now give another description of hyperbolic reflexion without using hyper-
bolic geometry.

Definition 1.15 (Inversions). Consider the Euclidean plane E2. If L is a line,
an inversion about L is the same as the Euclidean reflexion about L.

If L is a circle of radius R > 0 with centers o, an inversion about L sends a
point z 2 E2 to w 2 E2 such that

|z � o| · |w � o| = R2,

where | · | is the Euclidean distance.

Lemma 1.16. Any reflexion in Isom(H2) is exactly the restriction on H2 of an
inversion about lines and circles orthogonal to the x-axis.

Proof. Observe that the reflexion ⇢ about y-axis is conjugated to � : z ! 1
z̄

so � is a reflexion. Indeed, there exists a real LFT f such that f maps the y-axis
to the unit circle. It su�ces to prove that f⇢f�1 = �. Note, f⇢f�1 and � keeps
y-axis pointwise so by Lemma 1.10 they are either equal or di↵er by a reflexion.
Because f is orientation-preserving, f⇢f�1 and � cannot di↵er by reflexion. Thus,
f⇢f�1 = �.

Note also that the hyperbolic isometry z ! 1
z̄

is an inversion about the unite
circle orthogonal to the x-axis. So an reflexion is an inversion.

We prove now that every inversion is a hyperbolic reflexion. If the line L is
orthogonal to the x-axis, an inversion about L restricting on H2 is the same as a
hyperbolic reflexion. On ther other hand, any inversion about circles are hyperbolic
reflexions, because we can apply LFTs z ! kz and z ! z + c which are isometries
to conjugate the inversion to z ! 1

z̄

. The proof is complete. ⇤
1.3. Isometries as products of reflexions.

Lemma 1.17. An isometry in Isom(H2) is determined by three non-linear points:
if f, g 2 Isom(H2) have same values at a, b, c 2 H2 where a, b, c are not on the same
geodesic line, then f = g.

Proof. Suppose to the contrary that there exists z 2 H2 such that f(z) 6=
g(z). Consider the bisector L

f(z),g(z) which contains a, b, c. By Lemma 1.11,
L
f(z),g(z) is a geodesic line. This contradicts to the hypothesis so we are done. ⇤

Lemma 1.18. An isometry in Isom(H2) can be written as a product of at most
three reflexions.

Proof. Fix three points a, b, c 2 H2. If the isometry � does not fix a for
instance, we compose a reflexion ⇢ about the bisector L

a,�(a) such that ⇢(�(a)) = a.
In this manner, we can compose at most three reflexions such that the resulted
isometry fixes a, b, c simultaneously. The proof is thus completed by Lemma 1.17.

⇤
Another way to study the isometry group of H2 is to first introduce inversions

about Euclidean lines or circles. The group of Mobius transformations is then
defined to be the group generated by inversions. By showing that the hyperbolic
metric is preserved, ones establishes that the group of Mobius transformations is
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the full isometry group of some hyperbolic space. This approach applies to higher
dimensional hyperbolic spaces, and via Poincare extensions, the group of Mobius
transformations in lower dimension naturally embeds into that of higher dimension.
We refer the reader to Beardon [1] or Ratcli↵e [3] for this approach.

2. Classification of orientation-reserving isometries

2.1. Ball Model of hyperbolic plane. Consider the unit ball D2 = {(x, y) 2
R2 : x2 + y2 < 1}. Note that the following complex LFT

�(z) =
z � i

z + i

sends H2 to D2. Define the metric on D2 as follows

dD2(z, w) = dH2(��1(z),��1(w))

for any z, w 2 D2 so that � : H2 ! D2 is an isometry. Denote by Isom+(D2) the
orientation-preserving isometry group. As a result,

Theorem 2.1.

Isom+(D2) = � · Isom+(H2) · ��1 =

⇢✓
a c̄
c ā

◆
: a, c 2 C, |a|2 � |c|2 = 1.

�

The full isometry group Isom(D2) is generated by the above matrices and z ! z̄.

Equivalently, we can consider the following Riemanian metric on D2:

ds =
2
p
dx2 + dy2

1� (x2 + y2)
.

To be precise, a piecewise di↵erential path � : [0, 1] ! H has the length defined as
follows:

`(�) =

Z 1

0

2
p

x0(t)2 + y0(t)2

1� (x(t)2 + y(t)2)
dt

where � = (x(t), y(t)). The distance dD2 is defined similarly as dH2 .
It is clear that z ! ei✓z is an isometry of D2.

Exercise 2.2. In D2, let z be a point such that |z � o| = r < 1, where o is the
origin of D2 and | · | is the Euclidean distance. Prove that the distance

dD2(o, z) = ln
1 + r

1� r
.

Conclude that a hyperbolic disk is the same as a Euclidean disk as a set!

Exercise 2.3. Let � 2 M2(C) be a complex LFT. Then it maps Euclidean
circle or lines to Euclidean circle or lines.

The isometry � : H2 ! D2 transfers geodesic lines from H2 to D2 so by the
exercise 2.3, we have the following.

Theorem 2.4. The set of geodesic lines in D2 is the set of (the intersection
with D2 of) Euclidean lines and circles orthogonal to the unit circle S1.

By Exercise 2.3, we also have:

Lemma 2.5. The topology on D2 induced by hyperbolic metric dD2 is the same
as the Euclidean topology. The same conclusion for H2 with induced topology by
dH2 .
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Consider the closed disk D̄2 := D2 [ S1 with induced Euclidean topology. By
Lemma 2.5, the topology on the interior of D̄2 coincides with the one induced by
dD2 . By Theorem 2.1, Isom(D2) acts by homeomorphisms on D̄2 as they can be seen
as LFTs which are homeomorphisms on D̄2. In this sense, we say that isometries
of D2 extends by homeomorphisms to S1.

Note that the metric topology of D2 is the same as the Euclidean one. So in
view of the hyperbolic geometry, we shall call S1 the boundary at infinity @1D2 of
the hyperbolic space D2. (This boundary is not subset of D2)

For the upper half space H2, the boundary at infinity @1H2 is the union of
R[{1}. Endowing the topology from extended complex numbers, H̄2 = H2[@1H2

is a compact space with the interior H2 the Euclidean topology.

Exercise 2.6. In D2, let x
n

, y
n

be two sequences such that dD2(x
n

, y
n

) are equal
and dD2(x

n

, o) ! 1 for some fixed point o 2 D2. Then their Euclidean distance
|x

n

� y
n

| between x
n

and y
n

tends to 0 as n ! 1.

With respect to the compact topology on H̄2 or D̄2, the above exercise implies
that if one sequence x

n

converges to a point z 2 @1H2 (resp. @1D2), then any
sequence y

n

with a uniformly bounded dH2(x
n

, y
n

) (resp. dD2(x
n

, y
n

)) tends to the
same point z.

2.2. Classification of orientation-preserving isometries. We are inter-
ested in classifying the elements in Isom+(D2) which consists of orientation-preserving
isometries (i.e. written as an even products of reflexions). By Theorem 1.14,

Isom+(D2) ⇠= PSL(2,C) ⇠= M2(R).
Recall that

Theorem 2.7 (Brouwer). Any continuous map of D̄2 has a fixed point.

So any � 2 Isom(D2) has a fixed point in D̄2. We classify the elements in
Isom(D2) according to their action on D̄2.

Definition 2.8. Let � 2 Isom+(D2) be a non-trivial isometry.

(1) It is called elliptic element if it has a fixed point in D2;
(2) It is called parabolic element if it has only one fixed point in S1;
(3) It is called hyperbolic element if it has exactly two fixed points in S1.

Remark. Since every LFT is determined by three points, every (non-trivial)
element in Isom+(D2) belongs one of these three categories.

The following facts are straightforward:

(1) Every elliptic element is conjugated to z ! ei✓z in Isom(D2).
(2) Every parabolic element is conjugated to z ! z+c for c 2 R in Isom(H2).
(3) Every hyperbolic element is conjugated to z ! kz for k > 0 in Isom(H2).

Since every isometry �(z) = az+b

cz+d

in Isom(H2) is identified with the collection
of matrices

A 2 {k ·
✓
a b
c d

◆
: k 6= 0 2 R, a, b, c, d 2 R; ad� bc 6= 0}

we can define the following function

tr2(�) =
trace2(A)

det(A)
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where trace(A) is the trace of a matrix A.

Theorem 2.9 (Algebraic chacterization). Given a non-trivial isometry � 2
Isom+(D2), we have

(1) � is elliptic i↵ tr2(�) 2 [0, 4).
(2) � is parabolic i↵ tr2(�) = 4.
(3) � is hyperbolic i↵ tr2(�) 2 (4,1).

Proof. We first prove that every LFT � in PSL(2,R) with one fixed point in
R [ {1} is conjugated to either z ! z + 1 or z ! kz for k 6= 1 2 R. Without loss
of generality, we assume that � fixes 1 so it must be of the form �(z) = az + b. If
a = 1, then f�1�f is equal to z ! z + 1 for the conjugator f(z) = bz. If a 6= 1,
then � has the other fixed point b

1�a

. Hence, the parabolic element z ! z + b

1�a

conjugates � to az.
Since trace(A) is invariant under conjugation, we have tr2(�) = tr2(h�h�1) for

any h 2 M2(C). So the theorem follows by the above discussion. ⇤
Two geodesic lines L1, L2 are called parallel if they are disjoint in D̄2. They

are called asymptotic if they intersect in only one point in the boundary S1 of
D̄2. Equivalently, L1, L2 are parallel i↵ their hyperbolic distance is positive; ultra-
parallel i↵ their hyperbolic distance is zero but not realized by any point in D2.

Theorem 2.10 (Geometric chacterization). A non-trivial isometry � 2 Isom+(D2)
is a product of two reflexions about lines L1, L2. Moreover,

(1) � is elliptic i↵ L1, L2 intersect.
(2) � is parabolic i↵ L1, L2 are asymtotic.
(3) � is hyperbolic i↵ L1, L2 are parallel.

It is worth noting that the there are infinitely many choices of L
i

in the above
statement. An appropriate choice will be helpful, for instance in the following
exercise.

Exercise 2.11. Assume that g is a parabolic element and h is a hyperbolic
element such that they do not have a common fixed point. Give a geometric proof
that the commutator ghg�1h�1 is a hyperbolic element.

Exercise 2.12. Assume that g, h are two elliptic elements without a common
fixed point. Give a geometric proof that the commutator ghg�1h�1 is a hyperbolic
element.

Consider a hyperbolic element � 2 Isom+(H2) which can be conjugated to be
of the form z ! kz. For convenience assume that k > 1. It has two fixed points
0,1 in H̄2. It is clear that given a point z 2 H2, the iterates �n(z) tend to 1 for
n > 0; for n < 0 they tend to 0. We call 1 as the attractive fixed point and 0 the
repelling fixed point.

In general, one may define a fixed point z of a hyperbolic element to be attractive
if for some o 2 H2 the iterates �n(o) tend to w for n > 0; repelling if �n(o) tend to
w for n < 0. The definition does not depends on the choice of o by Exercise 2.6.

Theorem 2.13 (North-Sourth Dynamics on D̄2). Let � 2 Isom+(D2) be a
non-trivial isometry. Then

(1) If � is parabolic with the fixed point z 2 S1, then for any open neighborhood
U of z in S1, there exists n0 > 0 such that �n(S1\U) ⇢ U for any n > n0.
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(2) If � is hyperbolic with the attractive and repelling points �+ 6= �� 2 S1,
then for any open neighborhoods U, V of z, w respectively in S1, there
exists n0 2 Z such that �n(S1 \ V ) ⇢ U for any n > n0.

The following lemma is well-known and will be used below.

Lemma 2.14. If a continuous � : S1 ! S1 sends a closed arc I of S1 to be
inside the interior I̊ of I, then � contains a fixed point in I̊.

Lemma 2.15. Let g, h be two hyperbolic elements without common fixed points.
Then for all su�ciently large n,m � 0, the element gnhm is hyperbolic.

Proof. Denote g�, g+ the repelling and attractive fixed points respectively of
g. Correspondingly, h�, h+ for h. By assumption {g�, g+}\{h�, h+} = ;. In order
to apply Lemma 2.14, we take a closed arc U of the atractive fixed point g+ such
that h�, h+ /2 U . By Theorem 2.13 some power hm for m > 0 sends properly U
to a small neighborhood V of h+ which does not contain g�, g+ as well. Finally,
Theorem 2.13 allows to apply a high power gn for sending V to the interior Ů of
U . In a word, we have gnhm(U) ( Ů . So Lemma 2.14 implies the exitence of a
fixed point in U . A similar argument shows that there exists another fixed point
in a closed neighborhood of h�. There, gnhm is a hyperbolic element. ⇤

Exercise 2.16. Under the assumption of Lemma 2.15, prove that the fixed
points of gnhm are disjoint with those of g, h.

Exercise 2.17. Let g be parabolic and h be hyperbolic such that they have no
common fixed points. Then for all su�ciently large n,m � 0, the elements gnhm

and hmgn are hyperbolic.

Exercise 2.18. Let g,h be two parabolic elements without the same fixed point.
Then for all su�ciently large n,m � 0, the element gnhm is hyperbolic.

3. (non-)Elementary Fuchsian groups

We first endow the topology on SL(2,C) from C4 by understanding each matrix

A =

✓
a b
c d

◆
as a 4-tuple of complex numbers (a, b, c, d). Precisely, the topology is

generated by the distance d(A,B) =k A�B k where

k A k=
p
|a|2 + |b|2 + |c|2 + |d|2.

Exercise 3.1. For any 2⇥ 2 matrix A, we have k A k2� 2 det(A).

Note that the map (a, b, c, d) ! (�a,�b,�c,�d) is a homeomorphism on
SL(2,C). In fact, the group Z2 acts freely on SL(2,C), where the non-trival el-
ement in Z2 sends (a, b, c, d) ! (�a,�b,�c,�d). Thus we know that the orbital
map

SL(2,C) ! PSL(2,C)
is a 2-sheet covering map, where PSL(2,C) is given by the quotient topology.

We understand elements g = az+b

cz+d

, ad � bc = 1 in PSL(2,C) as normalized
matrices

A =

✓
a b
c d

◆
, ad� bc = 1.
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Then min{k A�B k, k A+B k} gives a metric on PSL(2,C). Since k A�(�A) k=k
2A k> 2

p
2, so the map SL(2,C) ! PSL(2,C) restricting on ball of radius

p
2 is

an isometry. This also implies that the quotient topology on PSL(2,C) is the same
as the topology induced by the above metric

The norm of an element g in PSL(2,C) is defined to be k g k= k A k.

Exercise 3.2. Prove that 2 cosh dH2(i, gi) =k g k2, where i 2 H2 is the imagi-
nary number.

Exercise 3.3. With respect to the topology on PSL(2,R), construct a sequence
of hyperbolic elements g

n

converging to a parabolic element. Prove that a sequence
of elliptic elements cannot converge a hyperbolic element.

Let G be a subgroup of PSL(2,R). It is called Fuchsian if it is discrete in the
above-mentioned topology of PSL(2,C).

Exercise 3.4. The group G = PSL(2,R) is a topological group endowed with
quotient topology: the group multiplication (f, g) 2 G⇥G ! fg 2 G is continuous,
and the inverse g 2 G ! g�1 2 G is homeomorphism.

An indirect way to see it is to observe that SL(2,R) covers G so the prod-
uct SL(2,R) ⇥ SL(2,R) covers G ⇥ G as well. The covering map being a local
homeomorphism implies that the convergence in G ⇥ G is locally the same as the
convergence in SL(2,R)⇥ SL(2,R).

Exercise 3.5. A group G is Fuchsian i↵ any sequence of elements g
n

! 1
becomes eventually constant: g

n

= 1 for all but finitely many n.

A Fuchsian group admits a properly discontinuous action on H2.

Theorem 3.6. A subgroup of PSL(2,R) is Fuchsian if and only if it acts
properly discontinuously on H2.

Proof. ): Given any compact set K in H2, let g 2 G such that gK \K 6= ;.
Without loss of generality, assume that i 2 K. Thus, dH2(i, gi)  2R where R is
the diameter of K. By Exercise 3.2, we have k g k=k A k is uniformly bounded.
This implies that only finitely many g satsifies gK \K 6= ;. If not, there will be
a subsequence of g

n

such that A
n

! A, where A
n

are their matrix represenatives.
By local homeomorphism of SL(2,C) ! PSL(2,C), this subsequence converges in
G so giving a contradiction to the discreteness of G.

(: If G is not discrete, then there exists a seuqence of elements g
n

2 G such
that g

n

! 1 in G. Recall that SL(2,C) ! PSL(2,C) is a local isometry, so
their matrix represenatives A

n

converges to the identity in the norm k · k. This
gives a non-dsicrete orbit g

n

x for any x 2 H2. This contradicts to the properly
discontinuous action. ⇤

A Fuchsian group is called elementary if it admits a finite orbit in H̄2; otherwise
it is non-elementary : any orbit is infinite.

Theorem 3.7. Let G be a subgroup of PSL(2,R) acting properly discontinu-
ously on H2. Then

(1) a parabolic element cannot have a common fixed point with a hyperbolic
element.
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(2) any two hyperbolic element have either disjoint fixed points or the same
fixed points.

Proof. For (1), we can assume that they have a common fixed point at 1 so
we can write g(z) = z+a and h(z) = kz for a 2 R, k 6= 1. Up to taking the inverse,
we can assume that k > 1. By computation we have h�nghn(z) = z + k�na. This
contradicts the properly discontinuous action of G.

The statement (2) is similar and left to the reader. ⇤

Theorem 3.8. If all non-trivial element in a subgroup G of PSL(2,R) is el-
liptic, then G has a global fixed point in H2.

Proof. By Exercise 2.12, all elliptic elements fix the same point. ⇤

Theorem 3.9. Let G be an elementary Fuchsian group of PSL(2,R). Then G
belongs to one of the following cases:

(1) G is a finite cyclic group generated by an elliptic element,
(2) G is an infinite cyclic group generated by either a parabolic element or a

hyperbolic element,
(3) G is conjugated to a subgroup hz ! kz, z ! �1/zi for some 1 6= k > 0.

Proof. If G admits a finite orbit in H2, then G contains no parabolic and
hyperbolic elements; otherwise some power of them would fix pointwise the finite
orbit, giving a contradiction. By Theorem 3.8, all elliptic elements fix the same
point. Conjugate the fixed point to the orgin so G is conjugated to a subgroup in
S1. Since the group is discrete, we see that G must be a finite cyclic subgroup.

So assume now that G has a finite orbit in H̄2 and G is infinite. Since G is
infinite, it must contain a hyperbolic or parabolic element (by the first paragraph).
And the orbit is finite, some power of an infinite order element must fix pointwise
this orbit. Thus the orbit consists of at most two points, since every orientation-
preserving isometry fixes at most 2 points in the boundary. If it is just one point,
then by Theorem 3.7.1, G consists of only parabolic elements. By conjugating the
fixed point to 1, we see that G must be generated by a parabolic element.

If the orbit conatins exactly two points, by Theorem 3.7, G cannot contain a
parabolic element so every nontrivial element in G is either hyperbolic or elliptic.
We may conjugate these two points to 0,1 in H̄2. Note that G must contain
hyperbolic elements. If it consists of only hyperbolic elements, then we see that G
is cyclic generated by a hyperbolic element.

If G does contain an elliptic element e, then e must switch the two fixed points
0,1 so e can be conjugated to z ! �1/z.

Let H be the subgroup of G fixing 0 and 1. As above, we have that H is
generated by a hyperbolic element z ! kz for some k > 0. We claim now that
G = hz ! kz, ei. Indeed, it su�ces to consider g 2 G \H so it switchs 0 and 1.
Then e · g fixes 0 and 1 and thus belongs to H. Therefore, G is conjugated to
hz ! kz, z ! �1/zi. ⇤

Exercise 3.10. Prove that if an element in PSL(2,R) switches two points
z, w 2 @1H2 then it is conjugated to z ! �1/z.

Theorem 3.11. A non-elementary Fuchsian group contains infinitely many
hyperbolic elements, none two of which has the same fixed points.
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Proof. By Theorem 3.9, there exist at least two hyperbolic elements g, h such
that Fix(g) \ Fix(h) = ;. By Lemma 2.15, gnhm is hyperbolic for any su�ciently
large n,m > 0. By Exercise 2.16, the fixed points of gnhm are disjoint with those
of g, h, but it could arbitrarily close to those of g! Consequently, we could produce
infinitely many hyperbolic elements without sharing the same fixed points. ⇤

3.1. Limit sets of Fuchsian groups. Since a Fuchsian groupG acts properly
discontinuously so any orbit is discrete in D2, it will be useful to look at their
asymptotics at the infinity, @1D2, of D2. In what follows, we usually consider the
ball model, since its compactification by @1D2 = S1 is obvious and easy to visualize
then in upper half space model.

Definition 3.12. Let G be a Fuchsian group. The limit set denoted by ⇤(G) is
the set of accumulation points of an orbit Go where o 2 D2 is a preferred basepoint.
Each point in ⇤(G) will be called a limit point

By Exercise 2.6, the limit set does not depend on the choice of basepoints.

Exercise 3.13. The limit set of G is a G-invariant, closed subset in the topol-
ogy of H̄2.

The following result is a consequence of Theorem 3.8.

Lemma 3.14. A Fuchsian group is elementary i↵ its limit set consists of at
most two points (it may be 0, 1, 2). A non-elementay Fuchsian group must have
infinitely many limit points.

The limit set can be characterized by the following property.

Theorem 3.15. Let G be a non-elementary Fuchsian group. Then the limit
set ⇤(G) is the minimal G-invariant closed set in @1D2. And there is no isolated
point in ⇤(G).

By definition, a perfect set is a subset of a topological space that is closed
and has no isolated points. It is known that a perfect set has uncountablely many
points. So the limit set of a non-elementay Fuchsian group is a prefect set so
contains uncountably many points.

Proof. Let L be aG-invariant closed set in @1D2. We shall prove that ⇤(G) ⇢
L. Recall thatG contains infinitely many hyperbolic elements g

n

without same fixed
points. Since L is closed and G-invaraint so g

n

L = L, by dynamics of hyperbolic
elements in Theorem 2.13, the set L contains at least three points.

By definition, ⇤(G) is the set of accumulation points of Gz. So for any x 2
⇤(G), there exists a sequence of elements h

n

2 G such that h
n

o ! x for some
o 2 D̄2. Let z 6= w 2 L \ {x} be two points, which exist by the first paragraph. We
connect z and w by a geodesic �. We claim that up to passage of subsequences,
one of the two sequences {h

n

z} and {h
n

w} converges to x.
Indeed, we choose the basepoint o on the geodesic � for convenience. Passing

to a subsequence, we assume that the endpoints h
n

z and h
n

w of geodesics h
n

�
converge to a, b respectively. It is possible that a = b.

Since L is closed and z, w 2 L, we thus obtain a, b 2 L. Note that h
n

o belongs
to the geodesics h

n

� so it must converge to a point in {a, b} (cf. Exercise 3.16).
Hence, the claim follows. As a consequence, x belongs to {a, b} so ⇤(G) ⇢ L is
proved.
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Now it remains to show that x is not isolated in ⇤(G). Indeed, since ⇤(G)
contains infinitely many points, we then choose three distinct points z1, w1, w2 2
⇤(G) \ {x}. We apply the claim above to there pairs (z1, w1), (z1, w2) and (w1, w2)
separately: there must be a pair of points, denoted by (z, w), from z1, w1, w2 such
that g

n

z ! x and g
n

w ! x. Since g
n

z 6= g
n

w, we thus obtain a sequence of distinct
points tending to x, thereby completing the proof that x is not isolated. ⇤

Exercise 3.16. Give a proof of the above fact that if a sequence of points
z
n

on geodesics �
n

converges to a point z 2 @1D2, then z must lie in the set of
accumulation points of endpoints of �

n

.

One way to prove this exercise is to use the following fact:
Let � be a geodesic in D2 outside the ball B(0, r) of Euclidean radius r < 1

centered at the origin. Then the Euclidean diameter of � tends to 0 as r ! 1.

Exercise 3.17. Consider a Fuchsian group G with a subgroup H.

(1) If H is of finite index in G, then ⇤(H) = ⇤(G).
(2) If H is an infinite normal subgroup in G, then ⇤(H) = ⇤(G). In partic-

ular, if G is non-elementary, then H is also non-elementary. (Tips: use
Theorem 3.15.)

Corollary 3.18. Let G be a non-elementay Fuchsian group. Then the follow-
ing holds:

(1) Any orbit is dense in the limit set ⇤(G).
(2) The closure of fixed points of parabolic elements coincides with ⇤(G), pro-

vided that parabolic elements exist.
(3) The closure of fixed points of hyperbolic elements coincides with ⇤(G).



CHAPTER 3

Geometry of Fuchsian groups

In this chapter, we will always consider a Fuchsian group G acting on H2 or
D2 if no explicit mention. We shall begin with some examples of non-elementary
Fuchisan groups.

1. Schottky groups

Fix a basepoint o 2 H2. If g is a non-elliptic element of D2, then the set X
g

represents the open half-plane in D2 bounded by the bisector L
o,go

, containing g(o).
The sets X

g

and X
g

�1 are disjoint (resp. tangent) if and only if g is hyperbolic
(resp. parabolic).

Exercise 1.1. Prove that the sets X
g

and X
g

�1 are disjoint (resp. tangent) in

H̄2 if and only if g is hyperbolic (resp. parabolic).

We have
gX

g

�1 = H2 \X
g

.

Definition 1.2. Let g1, g2, · · · , gn be a set of non-elliptic elements such that
�
X

gi [X
g

�1
i

�
\
�
X

gj [X
g

�1
j

�
= ;

for any i 6= j. The group generated by {g1, g2, · · · , gn} is called Schottky group.

Lets repeat the Ping-Pong Lemma 2.20 here.

Lemma 1.3 (Ping-Pong Lemma). Suppose that G is generated by a set S, and

G acts on a set X. Assume, in addition, that for each s 2 S̃ = S t S�1, there
exists a set X

s

⇢ X with the following properties.

(1) 8s 2 S̃, s ·X
t

⇢ X
s

, where t 2 S̃ \ {s�1}.
(2) 9o 2 X \ [

s2S̃

X
s

, such that s · o 2 X
S

for any s 2 S̃.

Then G ⇠= F (S).

Corollary 1.4. A Schottky group is free.

1.1. Fundamental domain. We give a general introduction to the notion of
a fundamental domain. More details can be found in [3, Ch. 6.6] or [1, Ch. 9].

Definition 1.5. A closed subset F is called a fundamental domain for the
action of G on H2 if the following two conditions hold:

(1) [
g2G

gF = H2,

(2) gF̊ \ F̊ = ; for any g 6= 1 2 G.

Exercise 1.6. If there exists a point o 2 H2 such that Go is discrete and the
point-stabilizer G

o

is finite, then G acts properly and discontinuously on H2.

37
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Lemma 1.7. If a group action of G on H2 admits a fundamental domain then
G is a Fuchsian group.

Proof. Let F be a fundamental domain for the action of G on H2. For any
interior point o 2 F̊ , we see that Go is discrete, and G

o

is trivial. Hence, G acts
properly discontinuously on H2 so it is a Fuchsian group. ⇤

A fundamental domain F is called locally finite if any compact set intersects
only finitely many translates gF for g 2 G. The importance of a locally finite
fundamental domain lies in the following fact.

Theorem 1.8. [3, Theorem 6.6.7][1, Theorem 9.2.4] Let F be a locally finite
fundamental domain for the action of G on H2. Then H2/G is homeomorphic to
the quotient space of F by the restriction of the map H2 ! H2/G.

Assume that G acts properly discontinuously on H2. We define a metric on
H2/G as follows:

d̄(Gx,Gy) = inf{d(x,Gy)}
for x, y 2 H2.

Exercise 1.9. (1) Prove that d̄ is indeed a metric on the set H2/G of
orbits.

(2) The map ⇡ : H2 ! H2/G sends B(x, r) onto B(⇡(x), r) for each r > 0.
In particular, ⇡ is an open map.

(3) The quotient topology on H2/G coincides with the metric topology by d̄.

Theorem 1.10 (Covering is local isometry). Assume that G acts freely and
properly discontinuously on H2. Then the covering map ⇡ : H2 ! H2/G is a local
isometry: for each point x 2 H2, there exists r > 0 (depending on x) such that
⇡ : B(x, r) ! B(⇡(x), r) is an isometry.

Proof. First note that for each x 2 H2 there exists r > 0 such that B(x, r) \
B(gx, r) = ; for all 1 6= g 2 G. The constant r is thus the desired one. ⇤

Exercise 1.11. Prove that the quotient spaces H2/hhi and H2/hpi endowed
with the above metrics are not isometric, where h is a hyperbolic element and p is a
parabolic element. (Tips: find metric-invariants to distinguish them: for instance,
whether they contain closed loops which are locally shortest (i.e.: closed geodesics),
or the maximal radius of embeded disks in spaces (i.e. injective radius)...)

1.2. Dirichlet domain. In this subsection, we are going to construct a funda-
mental domain for any Fuchsian group. This in particular implies that the converse
of Lemma 1.7 is also true.

Lemma 1.12. Suppose that G acts properly discontinuously on H2. Then there
exists a point o such that it is not fixed by any non-trivial element g 2 G.

Proof. Fix arbitrary point z 2 H2, and consider the discrete orbit Gz. Then
there exists r > 0 such that B(z, r) \ gB(z, r) = ; if go 6= o. Thus, any point o
in B(z, r) satisfies the conclusion, since the point z is the only fixed point of the
stabilizer of G

z

. ⇤
A special kind of fundamental domain called Dirichlet domain can be con-

structed as follows. Let o be a point not fixed by any nontrivial element in G.



1. SCHOTTKY GROUPS 39

Denote by H
o

(g) be the closed half-plane containing o bounded by the bisector
L
o,go

. The Dirichlet domain is defined as follows:

D
o

(G) := \
g2G

H
o

(g).

Equivalently, it contains exactly the shortest points from each orbit Gz. This is
formulated in the following.

Lemma 1.13. D
o

(G) = {z 2 H2 : d(o, z) = d(Go, z) = d(o,Gz)}.

Proof. Let z 2 D
o

(G) so d(o, z)  d(go, z) for any g 2 G. Hence, d(z, o) =
d(z,Go). For the other direction, take z 2 H2 such that d(o, z) = d(Go, z). Since
Go is discrete, for any g 2 G, we have d(o, z)  d(go, z) so z 2 H

o

(g). This implies
that z 2 D

o

(G) completing the proof. ⇤

Lemma 1.14. For any point o 2 H2 fixed only by the trivial element in G, the
Dirichlet domain D

o

(G) is a connected convex fundamental domain.

Proof. The set D
o

(G) is path connected, and convex as the intersection of
convex half-planes. Since it consists of points z 2 H2 such that d(o, z) = d(o,Gz),
the condition (1) for a fundamental domain holds. So it remains to prove (2).

Suppose not, there exist z, w 2 D̊
o

(G) such that they are in the same G-orbit:
there exists 1 6= g 2 G such that w = gz. Hence, we have d(o, z) = d(o,Gz) =
d(o, w) thus d(o, z) = d(g�1o, z): z 2 L

o,g

�1
o

lies in the boundary of D
o

(G). This
is a contradiction. ⇤

Corollary 1.15. For any z 2 H2, the intersection Gz \ D
o

(G) is a finite
nonempty set.

Proof. By the proof of Lemma 1.14, any two points w1, w2 has the same
distance to o. By the properly discontinuous action, there are only finitely many
such points in Gz \D

o

(G). ⇤

In what follows, the set Gz \D
o

(G) shall be referred to as a cycle.

Lemma 1.16 (Local finiteness). The Dirichlet domain is locally finite: any
compact set K intersects only finitely many tranlsates of D

o

(G).

Proof. Without loss of generality, assume that K is a closed ball of radius R
centered at o. Given gD

o

(G) \K 6= ;, we are going to prove that d(o, go)  2R so
the conclusion follows by proper actions.

Let z 2 gD
o

(G) \ K. Then d(o, z)  R and g�1z 2 D
o

(G). Since D
o

(G)
contains closet points in each orbit, we see that d(g�1z, o)  d(z, o)  R. Hence,
d(o, go)  2R. ⇤

Let F be a convex set in D2. The sides of F correspond to the collection of
maximal non-empty convex subsets of the boundary of F in D2, and two sides
intersect at a vertex.

Lemma 1.17 (Sides paired). For each side S of D
o

(G), there exists a unique
element g 2 G such that the following holds:

(1) S is contained in a bisector L
o,go

.
(2) S = D

o

(G) \ gD
o

(G).
(3) g�1S is also a side of D

o

(G).
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Proof. Observe that the collection of bisectors {L
o,go

: g 2 G} is locally finite:
any compact set K intersects finitely many of them. Indeed, we can assume that
K is a closed ball of radius R centered at o. If K \ L

o,go

6= ;, then d(o, go)  2R.
The properly discontinuously action thus implies the local finitenes of bisectors.

As a consequence of local finiteness, each side S contains at least two points so
has positive length. Moreover, S must belong to a bisector L

o,go

for some g 2 G.
We first prove that D

o

(G) \ gD
o

(G) = S. If not, then D
o

(G) \ gD
o

(G) is a
proper subset of S, and there exists g 6= h 2 G such that S \ hD

o

(G) contains at
least two points so has positive length. Let z 2 D

o

(G)\gD
o

(G) so z, g�1z 2 D
o

(G).
Thus, d(z, o) = d(go, z) by Lemma 1.13. This implies that o, go are symmetric with
respect to L

o,go

. By the same reasoning, we see that o, ho are symmetric about the
same line L

o,go

. Thus, we must have go = ho. By the choice of the basepoint o, we
have g = h. This is a contradiciton, so T = D

o

(G) \ gD
o

(G).
By the maximality of sides by definition, we see that g�1S is also an edge of

D
o

(G).
Let us prove the uniqueness of the above g. If there exists g 6= h such that

S = D
o

(G) \ hD
o

(G), then S lies on L
o,ho

so L
o,go

= L
o,ho

. Hence, we would
obtain go = ho and then g = h, a contradiction. ⇤

Remark. When a side of a convex fundamental domain is preserved by an
elliptic element, the middle point is fixed by the elliptic element. In this case, we
shall divide this side into two sides with a new vertex at the middle point. It is
clear that the above statements still hold for these new sides.

Note that the pair (g, g�1) corresponds to the pair of sides (S, g�1S). It is
possible that S = gS. If this happens, then g must have fixed point inside S and
g2 = 1.

The set � of elements g determined by sides S shall be called side pairings of
the Dirichlet domain.

Corollary 1.18 (Generating sets). The set of side pairings � generates the
group G.

Sketch of proof. By the same argument of Theorem 3.5, the set of elements
{g 2 G : gF \F} generates G. Thus it remains to show that the elements in vertex
stabilizers can be written as products over �. ⇤

Exercise 1.19. Give a proof of the above corollary.

1.3. Schottky groups are Fuchsian.

Lemma 1.20 (Fundamental domain). The set F = D2 \ [1in

(X
gi [ X

g

�1
i

)

coincides with the Dirichlet domain D
o

(G) based at o.

Proof. By definition of D
o

(G), we know that D
o

(G) is a subset of F . For
the other direction, suppose that there exists x 2 F \ D

o

(G). Then there exists
1 6= g 2 G such that gx 2 D

o

(G). Since G is a free group on the generators
S = {g1, g2, · · · , gn}, we write g = s1s2 · · · sm as a reduced word where s

i

2 S. It
thus follows that gx 2 X

s1 . However, X
s1 \ F = ; so this gives a contradiction

that x 2 F . Hence, it is proved that F = D
o

(G). ⇤

Theorem 1.21. A Schottky group is a free Fuchsian group.
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1.4. Modular groups. The modular group PSL(2,Z) is clearly a Fuchsian
group, since the entries in matrices are integers so the group is discrete in PSL(2,R).

Lemma 1.22. The Dirichlet fundamental domain at o = ki for k > 1 is

D
o

(G) = {z 2 H2 : |z| > 1, |Re(z)|  1/2}.

Proof. It is clear that D
o

(G) = H
o

(g) \H
o

(h) for g(z) = z + 1 and h(z) =
�1/z. So it remains to show that for any � = az+b

cz+d

, �F̊ \ F̊ = ;.
For any z 2 F̊ , we see that |cz + d|2 > 1 so Im(�(z)) = Im(z)

|cz+d|2 < Im(z). The
conclusion thus follows. ⇤

2. Geometry of Dirichlet domains

2.1. Ford domains. The reference to this subsection is [1, Section 9.5], where
the notion of a generalized Dirichlet domain is introduced.

We first give an alternative way to interprete the Dirichlet domain. This is best
illustrated in the upper plane model H2. Consider a LFT

�(z) =
az + b

cz + d

where a, b, c, d 2 R and ad� bc = 1. By computation, we see that

�0(z) =
1

(cz + d)2
.

Hence, the Euclidean length |dz| is sent under � to the Euclidean length |d�(z)| by
a ratio 1

|cz+d|2 . If c 6= 0, then � is a Euclidean isomtery restricting on the points

satsifying |cz + d| = 1 . Since c, d 2 R, the set |cz + d| = 1 is a circle centered at
z = �d/c 2 R with radius |1/c|, which is orthgonal to the x-axis.

Equivalently, c 6= 0 is amount to saying that � does not fix 1.

Definition 2.1. If c 6= 0, then |z + d/c| = |1/c| is called the isometric circle
of �(z) = az+b

cz+d

.

Recall that an orientation-preserving isometry is a product of two reflexions
about two geodesics whose configuration determines the isometry type (cf. Theorem
2.10). An isometric circle is clearly a geodesic, so giving rise to the following
decompostion of an element as a product of an inversion about isometric circle and
a Euclidean reflexion.

Lemma 2.2. If g 2 PSL(2,R) does not fix 1 in H2, then g = ⇢
L1⇢L2 , where

L2 is its isometric circle and L1 is orthogonal to the real axis so ⇢
L1 is a Euclidean

reflexion. Moreover, ⇢
L1(L2) is the isometric circle of g�1.

By Theorem 2.10, we see that the isometric circles of g and g�1 are parallel
(resp. asymptotic / intersecting) i↵ g is hyperbolic (resp. parabolic / elliptic).

The following theorem is proved in [1, Theorem 9.5.2].

Theorem 2.3. The intersection of exteriors of the isometric circles of all ele-
ments in G is a fundamental domain. In particular, when o is the origin in D2, it
coincides with the Dirichlet domain based at o.
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2.2. Classification of limit points. We shall introduce a class of limit points
called conical points which generalize the fixed points of hyperbolic elements. They
constitute the most frequently occurring points in limit sets.

Definition 2.4 (Conical points). Let G be a Fuchsian group. A limit point
z 2 ⇤(G) is called a conical point if there exists a sequence of elements g

n

2 G such
that g

n

o ! z, and for some basepoint o and some geodesic ray � ending at z, the
points g

n

o stay within a finite neighborhood of �.

The definition is independent of the choice of the basepoints and geodesic rays:

Exercise 2.5. If z is a conical point given by the above definition, then the
last statement holds for any basepoint o and any geodesic ray � ending at z.

Exercise 2.6. In a Fuchsian group, the fixed points of a hyperbolic element
are conical points.

Via the above exercise, the following result generalizes the first statement of
Theorem 3.7.

Lemma 2.7. In a Fuchsian group, a conical point cannot be fixed by a parabolic
element.

Proof. Assume that the conical point is at 1 and is fixed by a parabolic
element p which has the form p(z) = z + c for c 2 R. By Exercise 2.5, we fix
the basepoint at i, and the geodesic ray � is put on the y-axis, for instance. By
definition, there exists a sequence of elements g

n

2 G such that g
n

i 2 N
M

(�)
converges to 1 for a uniform constant M > 0. The idea of the proof is similar
to that of Theorem 3.7: we shall examine the values of a sequence of parabolic
elements g�1

n

pg
n

at i.
First, after passage to subsequence, we see that p(g

n

(i)) = g
n

(i) + c has a
uniform bounded hyperbolic distance to g

n

(i). Indeed, since g
n

i 2 N
M

(�) ! 1,

the y-cooridnate of g
n

i tends to 1. By definition of hyperbolic distance |dz|
y

, there

exists a constant K depending on c such that d(p(g
n

(i)), g
n

(i))  K. Hence, we
see that d(g�1

n

pg
n

(i), i)  K for all n. Since G acts properly on H2, we obtain that
the set of elements g�1

n

pg
n

is finite.
As a consequence, there exist infinitely many distinct n

i

such that g�1
ni

pg
ni equal

to the same element so g
n0g

�1
ni

p = pg
n0g

�1
ni

. Thus, g
n0g

�1
ni

is a parabolic element
fixing 1 as well, sending g

n0g
�1
ni

to g
nii to g0i. However, the y-coordinate of g

nii
di↵ers from that of g0i as g

n

i ! 1. This is a contradiction, because a parabolic
element fixing 1 preserves the y-coordinate. Therefore, the proof is complete. ⇤

In D2, a horocycle based at q 2 S1 is a Euclidean circle in D2 tangent at q with
S1. The Euclidean disk bounded by a horocycle is called horodisk.

Exercise 2.8. In a Fuchsian group G, let q 2 @1H2 be a point fixed by a
parabolic element p. Denote by G

q

the stabilizer of q in G. Prove that there exists
a horodisk H based at q such that gH \H = ; for any g 2 G \G

q

.
[Tips: use Lemma 2.7 prove that for any point o 2 H2, there exists a finite

number M > 0 such that y-coordinates of go 2 Go are bounded by M . ]

Let H be a subgroup of a Fuchsian group G. A subset K in H2 is called strictly
H-invariant if hK = K for any h 2 H, and gK \ K = ; for any g 2 G \ H.
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Then Exercise 2.8 implies that every maximal parabolic subgroup P has a strictly
invariant horodisk H. By the following exercise, we see that the corresponding
quotient space H/P is embedded into H2/G, which shall be referred to as a cusp
of H2/G.

Exercise 2.9. Let K be a strictly H-invariant open subset in H2. Prove that
the quotient space K/H is homeomorphic to ⇡(K) in H2/G where ⇡ : H2 ! H2/G.

Let F be a convex set in D2. It will be useful to consider the infinity boundary
of F , denoted by F1, which is the intersection with S1 the closure of F in the
compactification D̄2. A free side is a connected component of F1 of positive length
in S1.

Lemma 2.10. The interior of a free side of the Dirichlet domain is not a limit
point.

Proof. This is straightforward by definition of a limit point. ⇤
2.3. Parabolic fixed points and proper vertex. Recall that a vertex of

a convex set F is the intersection of two sides. When considering the infinity
boundary of F , it is useful to define vertices there as follows. A proper vertex of
F is a point on S1 which is the intersection of two sides; otherwise it is called an
improper vertex if one of the two sides is a free side.

Lemma 2.11. Every parabolic fixed point is sent by an element g 2 G into the
infinity boundary D1

o

(G) of D
o

(G). Moreover, it is sent to a proper vertex.

Proof. Let q be a point fixed by a parabolic element p. We fix a geodesic ray
� ending at q. For convenience, we consider the upper plane model H2 and assume
q = 1, so � belongs to the y-axis. Write F = D

o

(G) in the proof.
Since interior points of the infinity boundary of F are not limit points, it su�ces

to prove that � will eventually stay in a translate gF for some g 2 G. Equivalently,
we need to show there are only finitely many gF intersecting �.

We argue by contradiction. Assume that there exists infinitely many g
n

F such
that g

n

F \ � 6= ;. Choose z
n

2 g
n

F \ �. Since the Dirichlet domain is locally
finite, we conclude that z

n

! 1. We claim now that d(g
n

o, �) < M for a uniform
constant M .

Indeed, since F is exacty the set of shortest points to the basepoint o in each
orbit Gz, it follows that the set g

n

F consists of shortest points in orbits to g
n

o.
Since z

n

2 g
n

F , we see that d(z
n

, g
n

o)  d(hpiz
n

, g
n

o) for each fixed n. Since p is of
the form z ! z+ c, it preseves the horocycle H through z

n

. Note that the shortest
path from g

n

o to H is orthogonal to H, so we see that the x-coordinate of g
n

(o)
di↵ers that of z

n

at most c/2. This implies that there exists a uniform constant M
such that d(g

n

o, �) < M where M depends on c. The claim thus follows.
A consequence of the claim shows that g

n

o ! 1 and g
n

2 N
M

(�). This
contradicts to Lemma 2.7. The proof is thus complete. ⇤

The claim of the above proof proves the following fact. See [1, Thm 9.2.8] for
a general statement with ANY LOCALLY FINITE fundamental domain.

Corollary 2.12. Let p be a parabolic element with the fixed point at q. Then
any geodesic ray ending at q intersects in only finitely many translates of Dirichlet
domains.
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Lemma 2.13. [1, Thm 9.3.8] Let q 2 S1 be any point of D1
o

(G) fixed by a
nontrivial element p. Then p must be a parabolic element. Moreover, the cycle of
q consists of a finite number of proper vertices.

Proof. Assume to the contrary that p is hyperbolic. Let � be the axis of p
with one endpoint at q. Let z

n

2 [o, q] tending to q where [o, q] ⇢ D
o

(G) by the
convexity. Clearly, there exists w

n

2 � such that d(z
n

, w
n

) ! 0 as n ! 1. Since
hpi acts cocompactly on �, there exists a sequence of distinct elements h

n

2 hpi
sending z

n

to a compact set K of �: h
n

z
n

2 K. Noting that d(z
n

, w
n

) ! 0, there
exists a compact set K ⇢ K 0 such that h

n

D
o

(G) intersects K 0 for infinitely many
h
n

. This is a contradiciton to the local finiteness of D
o

(G). Thus, p must be
parabolic.

It remains to show that the cycle of q is finite. If not, there exist infinitely
many q

n

2 D1
o

(G) and g
n

q
n

= q for g
n

2 G. As a consequence, each g
n

D
o

(G)
intersects a fixed geodesic ray ending at q so it is impossible by the proof of Lemma
2.11. Thus g

n

must be a finite set, contradicting that q
n

2 D1
o

(G) are distinct. So
the proof is finished. ⇤

Recall that an improper vertex is the intersection of a side with a free side.

Exercise 2.14. Every improper vertex in a Dirichlet domain is not a limit
point.

2.4. Conjugacy classes of elliptic and parabolic elements. A cycle is a
maximal subset of vertices in F if they belong to the same G-orbit. If one of point
in a cycle is fixed by an elliptic element, then the cycle is called an elliptic cycle. A
cycle of proper vertices is called a parabolic cycle.

Lemma 2.15 (Elliptic cycle). Let C be a cycle of vertices in a Dirichlet domain
F , and ⇥ be the sum of the angles at vertices in C. Then there exists some integer
m � 1 such that ⇥ = 2⇡/m. If m > 1, then every vertex in C is fixed by an elliptic
element order m, otherwise its stabilizer is trivial.

Proof. By Corollary 1.15, C is a finite set. We list C = {x0, x1, · · · , xn

} such
that h

i

x
i

= x
i�1 for some h

i

where 1  i mod (n+1). Note that h0x0 = x
n

. Thus
the product h1h2 · · ·hn

h0 fixes x0.
Since the sides of F is paired by Lemma 1.17, the point x

i

is the common
endpoint of two sides e

i

and e0
i

such that h
i

e
i

= e0
i�1 is the intersection F \ h

i

F
and the other side of h

i

F is h
i

e0
i

. Note that h0e0 = e0
n

and F \ h0F = e0
n

. Let ✓
i

be the angle between e
i

and e0
i

.
Note that h1F \ F = e00, then h1h2F \ h1F = h1e

0
1, continuously we get

h1h2 · · ·hi

F \ h1h2 · · ·hi�1F = h1h2 · · ·hi�1e
0
i�1 = h1h2 · · ·hi

e
i

for i  n. The other side of h1h2 · · ·hn

F is h1h2 · · ·hn

e0
n

. Noting that e0
n

= h0e0,
the sides h1h2 · · ·hn

h0e0 and e0 extends a total angle ✓0 + ✓1 + · · ·+ ✓
n

.
Since h1h2 · · ·hn

h0 fixes x0 and sends e0 to h1h2 · · ·hn

h0e0 with angle ⇥, it
must be an elliptic element of order 2⇡/⇥. ⇤

Lemma 2.16. If a Dirichlet domain has finitely many sides, then each proper
vertex is fixed by a parabolic element.

Proof. Let v be a proper vertex so it is the intersection of two sides. Then
there exists infinitely many translates of Dirichlet domains g

n

D
o

(G) in which v is a
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proper vertex. Hence, g�1
n

v are proper vertices in D
o

(G). By hypothesis, the cycle
of proper vertices is finite. As a result, there are infinitely many distinct elements
g�1
ni

such that g�1
ni

v are the same. Thus, the proper vertex v is fixed by a non-trivial
element which must be parabolic by Lemma 2.13. ⇤

By defintion, a subgroup is called a parabolic (resp. elliptic) subgroup if every
nontrivial element is parabolic (resp. elliptic). It is called maximal if it is maximal
with respect to the inclusion.

By Lemma 2.18, a parabolic (resp. elliptic) subgroup fixes a unique point v so
it is included in a unique maximal parabolic (resp. elliptic) subgroup which is the
stabilizer of the point v.

Theorem 2.17. In a Dirichlet domain, there exists a one-one correspondence
between elliptic cycles and conjugacy classes of maximal elliptic subgroups. If the
Dirichlet domain has finitely many sides, then parabolic cycles correspond to con-
jugacy classes of maximal parabolic subgroups.

Proof. The correspondence for elliptic cycles and conjugacy classes of max-
imal elliptic subgroups is straightforward. We prove the correspondence for para-
bolic cycles.

Let C be a parabolic cycle which consists of proper vertices in the same G-orbit.
Then each v 2 is fixed by a parabolic element by Lemma 2.16 so the stabilizer G

v

of v is a maximal parabolic subgroup. Hence, C corresponds to the conjugacy class
of G

v

.
Conversely, a maximal parabolic subgroup fixes a unqiue point v 2 S1 so its

conjugacy class corresponds to the orbit Gv. By Lemma 2.11, v is sent by an
element g to a proper vertex. This clearly establishes the correspondence between
parabolic cycles and conjugacy classes of maximal parabolic subgroups. ⇤

3. Geometrically finite Fuchsian groups

3.1. Convex hull and Nieslen kernel. Let K be a closed subset in S1. The
convex hull C(K) of K is the minimal convex subset of D2 such that the infinity
boundary of C(K) contains K. Equivalently, C(K) is the intersection of half planes
H whose infinity boundary contains K.

Exercise 3.1. The infinity boundary of C(K) coincides with K.

Let G be a non-elementary Fuchsian group with limit set ⇤(G). The Nieslen
kernel N(⇤(G)) is defined to be the convex hull of ⇤(G). Thus, N(⇤(G)) is G-
invariant.

Lemma 3.2. There exists a G-equivariant retraction map r : D̄2 \ ⇤(G) !
N(⇤(G)).

Corollary 3.3. A Fuchsian group G acts properly discontinuously on D̄2 \
⇤(G).

The set S1 \ ⇤(G) is called the discontinuity domain of the action. It is the
maximal open set in S1 on which G acts properly discontinuously.

Theorem 3.4. If G is torsion-free, then the quotient space N(⇤(G))/G is the
minimal convex submanifold which is homotopic to D2/G.
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3.2. Geometrically finite groups.

Definition 3.5. A non-elementary Fuchsian group is called geometrically finite
if N(⇤(G))/G has finite area.

By convention, any elementary Fuchsian group is geometrically finite.

Lemma 3.6. If G admits a Dirichlet domain with finitely many sides, then G
is geometrically finite.

If a Dirichlet domain has finitely many sides, then it has finitely many parabolic
cycles. For each parabolic cycle C, we choose a horodisk H

v

at each v such that
H

gv

= gH
v

for gv 2 C.

Lemma 3.7 (Cusp decomposition). If G admits a Dirichlet domain with finitely
many sides, then there exists finitely many horodisk H

i

centered at proper vertices
for each parabolic cycle and a compact subset K ⇢ D

o

(G) such that

C(⇤(G)) \GH
i

= GK.

Theorem 3.8. A group is geometrically finite i↵ one of the following statements
holds:

(1) G is finitely generated;
(2) G has a Dirichlet domain with finitely many sides;
(3) The limit set consists of conical points and parabolic fixed points.

4. Hyperbolic surfaces

Definition 4.1. A metric space ⌃ is called a hyperbolic surface if every point
p 2 ⌃ has an open neighborhood which is isometric to an open disk in H2.

4.1. Glueing polygons.

Theorem 4.2. Every closed orientable surfaces of genus � 2 admits a hyper-
bolic structure.

4.2. Developping hyperbolic surfaces.
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