EXERCISE SHEET #1 Let \mathbb{B}^2 denote the the unit open disk of \mathbb{R}^2 . **Exercise 0.1.** Prove that the subgroup of $M^+(\hat{\mathbb{R}}^2)$ leaving \mathbb{B}^2 invariant is isomorphic to the following subgroup of $PSL(2,\mathbb{C})$: $$\left\{ \frac{az + \overline{c}}{cz + \overline{a}} : a, c \in \mathbb{C}, |a|^2 - |c|^2 = 1 \right\}$$ **Execise 0.2.** Let $\phi = \frac{az+b}{cz+d} \in PSL(2,\mathbb{C})$ where $a,b,c,d \in \mathbb{C}, ad-bc=1$. Prove $$\frac{|\phi(z) - \phi(w)|}{|z - w|} = \sqrt{|\phi'(z)|} \sqrt{|\phi'(w)|}.$$ Let $\mathbb{H}^n = \{x \in \mathbb{R}^n : x_n > 0\}$ be the upper half space equipped with hyperbolic metric ρ (induced from Riemannian metric $\frac{|dx|}{x_n}$). **Exercise 0.3** (Nearest projection). (1) Let x be in \mathbb{H}^n . Show that the nearest point to x on the positive n-th axis is $|x|e_n$ and we have $$\cosh \rho(x, |x|e_n) = \frac{|x|}{x_n}$$ (2) Let π be the nearest point projection of a point $x \in \mathbb{H}^n$ onto the positive n-th axis defined by $\pi(x) = |x|e_n$. Prove that for all $x, y \in \mathbb{H}_n$, we have $$\rho(\pi(x), \pi(y)) \le \rho(x, y)$$ with equality if and only if either x = y or x and y lie on the n-th axis. **Exercise 0.4.** Suppose that $\phi \in M(\hat{\mathbb{R}}^{n+1})$ preserves \mathbb{H}^{n+1} . Then ϕ is the Poincare extension of some $\psi \in \hat{\mathbb{R}}^n$.