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Let F be a surface and let a be an element of n^ (F). We will say that a is geometric
if it can be represented by an embedded loop in F. One knows that, in general,
not every element of itx (F) is geometric. For example, if F is S1 xl so that n^F) is
infinite cyclic, there are only three geometric elements of n^F)— the identity and the
two generating elements. In this example, it is obvious that if we consider a non-
geometric element a of nx{F), then a is geometric in a suitable finite covering space
of F. We will prove that this is the case for any surface F.

A compact subsurface X of F is said to be incompressible if no component of
the closure of F — X is a 2-disc whose boundary is contained in dX. If X is incom-
pressible, then the natural map n^X) -> n^F) is injective, so that we can think of
n^X) as a subgroup of n^F). Subgroups which arise in this way we call geometric.
This generalizes the idea of geometric elements of n^F), because an infinite cyclic
subgroup of n^F) is geometric if and only if one of its generators is geometric. We
will prove that any finitely generated (f.g.) subgroup of it^F) is geometric in some
finite covering space of F. The main result of this paper is the following stronger result.

THEOREM3.3. Let F be a surface, let S be a f.g. subgroup of n^F) and let
gen1(F) — S. Then there is a finite covering Fi of F such that n^F^) contains S
but not g and S is geometric in Ft.

Our proof uses the geometry of the hyperbolic plane and simple facts about
groups generated by reflections. This result also yields new group theoretic results.
A group G is called locally extended residually finite (LERF) if given a f.g. subgroup
S of G and geG — S, then G has a subgroup Gt of finite index which contains S but
not g. It follows at once from Theorem 3.3 that surface groups are LERF. In fact
these two results are equivalent, which we prove in §1. In particular, we have a new
proof that surface groups are residually finite. One can go further and deduce that
all Fuchsian groups are LERF, because any Fuchsian group is a finite extension of a
surface group ([2], [4], [11]), and finite extensions of LERF groups are also LERF.

Not all of these residual finiteness results are new. The fundamental group of a
non-closed surface is free, and the result that free groups are LERF was first proved
by Hall [5]. See also [3], [8] and Lemma 15.22 of [6]. Hall proves a stronger result
than this and we also obtain this stronger result. (See Theorem 2.2) In the case of
closed surfaces it was not previously known that their fundamental groups were
LERF. It was, of course, known that surface groups were residually finite ([1], [7]),
and it follows from results of Stebe [12] that surface groups satisfy a residual finite-
ness condition called IIC. This also follows from the fact that they are LERF.

The results in this paper were suggested by the author's work on ends of pairs
of groups [9]. The fact that surface groups are LERF gives a good source of examples.

When I first set out to prove the results in this paper, I had in mind a proof exactly
as presented here, but I lacked one ingredient. Thus the original draft of this paper
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contained a rather crude and complicated proof. I am very grateful to William
Thurston for pointing out to me the crucial missing fact—namely that in the hyperbolic
plane, one can find a regular pentagon with all angles equal to TT/2.

In §1 of this paper, we give the definitions of various residual finiteness conditions
and we give results which connect these conditions with topology. In §2, we prove
Theorem 3.3 for the special case of non-closed surfaces. In §3, we deal with the
closed case. In §4, we discuss the extension of these results to dimension three.

1. Preliminaries

We start by defining the residual finiteness conditions in which we are interested.
A group G is said to be residually finite (RF) if for any non-trivial element g of G,

there is a subgroup Gt of finite index in G which does not contain g. A group G
with a subgroup S is S-residually finite (S-RF) if for any element g of G — S, there is
a subgroup Gi of finite index in G which contains S but not g. A group G is called
extended residually finite (ERF) if G is S — RF for every subgroup S of G, and G
is called locally extended residually finite (LERF) if G is S — RF for every finitely
generated subgroup S of G.

Each of these conditions on G can also be defined by considering finite quotient
groups of G. A group G is RF if for any non-trivial element g of G, there is a homo-
morphism $ of G to a finite group with (f)(g) non-trivial, and G is S — RF if for any
element g of G — S, there is a homomorphism <j> of G to a finite group with 0(g) £ 0(5).

We observe that if a group G is ERF, then every quotient of G is RF. Hence the
existence of non-residually finite groups shows that free groups cannot be ERF.
We will need the following results about these conditions.

LEMMA 1.1. If G is RF or ERF or LERF, then any subgroup of G has the same
property and so does any group K which contains G as a subgroup of finite index.

Proof The results for subgroups of G are obvious.
Let K be a group in which G has finite index. If G is not normal in K, we consider

Go, the intersection of the conjugates of G in K, Then Go is a subgroup of G, and Go

is a normal subgroup of K of finite index. Hence, by replacing G by Go, we can suppose
that G is normal in K. Let F denote the finite quotient group and let p : K -> F be
the projection map. We now consider the three cases separately.

Suppose that G is RF and that we are given a non-trivial element k of K. If k
lies in G, then G has a subgroup Gt of finite index which does not contain k. Now
Gt is also of finite index in K, so that K has the required subgroup of finite index
which does not contain k. If A: does not lie in G, then G itself is the required subgroup
oiK. Hence K is RF.

Now suppose that G is ERF and that we are given a subgroup S of K and an
element k of K—S. Then S n G is a normal subgroup of S with quotient some
subgroup Ft of F. Let Kt denote p~1(F1). If k does not lie in Ku then Kx is the
required subgroup of finite index in K, as K^ contains S. If k does lie in Klt we
proceed as follows.

We can write k = gs, where geG and se S. As k does not lie in S, we know that g
does not lie i n S n G . We use the fact that G is ERF to obtain a subgroup G2 of
finite index in G which contains SnG but not g. Let G3 denote the intersection
of the conjugates of G2 by the elements of S. Then G3 is also a subgroup of G of
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finite index which contains Sr\G but not g and G3 is normalized by S. Let K3 be the
subgroup of Kt generated by G3 and S. Then G3 is a normal subgroup of K3 with
quotient Fv Clearly K3 is of finite index in K and contains S. Also k cannot lie in
K3 as K3 contains S but not g. Thus K3 is the required subgroup of K and it follows
that K is ERF.

If G is LERF, then the above proof shows that K must also be LERF. One needs
only to observe that if S is a f.g. subgroup of K, then S n G is also f.g. as it is of
finite index in S. This completes the proof of Lemma 1.1.

In order to make the connection between residual finiteness conditions and
topology, we use the following result.

LEMMA 1.2. If X is a Hausdorff topological space with a regular covering X and
covering group G and if C is a compact set of X, then {g e G : gC n C ^ 0 } is finite.

We will only apply this result and its corollaries to the case when X is a PL mani-
fold and hence a simplicial complex. The result in this case is very easy to prove,
so we do not give a proof of Lemma 1.2. We give this general statement in order to
emphasize that X need not be a manifold.

We can now prove the following result.

LEMMA 1.3. Let X be a Hausdorff topological space with a regular covering %
and covering group G. Then the following conditions are equivalent:

(i) G is RF,

(ii) / / C is a compact set in X then,G has a subgroup Gt of finite index such that
gCnC is empty for every non-trivial element g of Gu

(iii) / / C is a compact set in X, then the projection map X -*• X factors through a
finite covering Xt ofX such that C projects by a homeomorphism into Xx.

Proof. The equivalence of (ii) and (iii) is obvious by taking Xt =
Now suppose that condition (i) holds, and let C be a compact set in X. Lemma 1.2

tells us that the set T = {g e G : g C n C ^ 0 } is finite. For each non-trivial element
t of T, we know that G has a subgroup Gt of finite index which does not contain t.
The intersection of the groups Gt is a subgroup Gx of G, which satisfies the conditions
in (ii). Hence condition (ii) holds.

Conversely suppose condition (ii) holds and let g be a non-trivial element of G.
Let x be a point in X and apply conditions (ii) with C = xKjgx. The subgroup
G, of G obtained this way cannot contain g. Hence G is RF. We can connect the
LERF condition with a topological condition in a similar way. We prove the fol-
lowing result.

LEMMA 1.4. Let X be a Hausdorff topological space with a regular covering X
and covering group G. Then G is LERF if and only if given a f.g. subgroup SofG and a
compact subset C of X/S, there is a finite covering X± of X such that the projection
X/S -*• X factors through Xt and C projects homeomorphically into Xt.

Proof. Suppose that the geometric condition holds and that S is a f.g. subgroup
of G and g is an element of G — S. Pick xeX and let C in X/S be the image of x u gx.
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The geometric condition provides us with a finite covering Xt of X. Hence Xi =
X/Gly where Gx is of finite index in G. Clearly g does not lie in Gy as x u gx projects
homeomorphically into Xt. Hence G is LERF.

Now suppose that G is LERF and that we are given a f.g. subgroup S of G and a
compact subset C of X/S. Let p denote the projection map X -* X/S, and let Y
denote p~1(C) in X. It is easy to show that Y has a compact subset D such that
p(D) = C. Recall that {geG : gDn D ? 0} is finite, by Lemma 1.2. As G is
LERF we can find a subgroup Gx of finite index in G such that Gx contains S and,
in addition, if g is an element of Gi such that gD meets D then g lies in S. Then
Xi = X/Gx is the required finite covering of X. This completes the proof of Lemma
1.4.

Finally, we need the following standard result about surfaces.

LEMMA 1.5. Let F be a surface such that nl (F) is finitely generated and let C be a
compact subset of F. Then there is a compact, connected, incompressible subsurface
Y of F which contains C such that the natural map nx{Y) ->• 7rx(F) is an isomorphism.

Proof Choose a basepoint* in F and a finite generating set for n^F, *). For
each generator of n^F), choose a based map S1 -> F. Let AT be a regular neigh-
bourhood of C and of the union of the images of these cycles. Then N is a compact
subsurface of F. By adding 1-handles to N, we can arrange that N is connected.
Now the natural map n^N) -> n^F) is surjective by our construction of N. If
F—N has any component whose closure is a 2-disc, we enlarge N by adding all such
components and let Y be the resulting subsurface of F. As Y contains N, we still
have that the natural map 7^(7) -> n^F) is surjective and now van Kampen's
Theorem implies that this map is injective. This completes the proof of Lemma 1.5.

If we put together the results contained in the preceding two lemmas, we immedi-
ately obtain the following result.

LEMMA 1.6. Let F be a surface. Then n^F) is LERF if and only if given a f.g.
subgroup S of ^(i7) and genl(F) — S, there is a finite covering Ft of F such that
TT1(F1) contains S but not g and S is geometric in Fy.

Remark. An analogue of Lemma 1.5 also holds in three dimensions [10]. Hence
so does an analogue of Lemma 1.6.

Proof of Lemma 1.6. If F satisfies the stated geometric condition it is immediate
that TTj (F) is LERF.

Now suppose that nt(F) is LERF, and that we are given a f.g. subgroup S of
Tti(F) and geni(F) — S. Let Fs denote the covering of F with n](Fs) = S. Pick a
point x in the universal covering space F of F and let C denote the image of x u gx
in Fs. Apply Lemma 1.5 to obtain a compact connected incompressible subsurface
7 of Fs which contains C in its interior and such that 71! (7) = n^Fs). Now Lemma
1.4 tells us that F has a finite covering Fx such that the projection Fs-> F factors
through Ft and Y projects homeomorphically into Fx. This completes the proof
of Lemma 1.6.
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2. Non-closed surfaces

In this section, we prove the following result.

THEOREM 2.1 . Let F be a non-closed surface, let S be a f.g. subgroup of n^F)
and let gen1(F) — S. Then there is a finite covering F1 of F such that nx {Fx) contains
S but not g and S is geometric in Fx. Further S is a free factor of n^F^.

The proof of Lemma 1.6 shows that the following group theoretic result is equi-
valent.

THEOREM 2.2. Let G be a free group, let S be a f.g. subgroup of G and let geG — S.
Then G has a subgroup Gx of finite index which contains S but not g. Further S is a

free factor of Gx.

Remark. This result for arbitrary free groups follows from the result for f.g.
free groups, as S and g must lie in some f.g. free factor of G.

This result was first proved by Hall [5]. See also [3], [8] and Lemma 15.22
of [6]. My excuse for giving yet another proof is that this proof motivated me to
find the proof of the general result in §3. Hempel [6] also gives a geometric proof of
Theorem 2.2. His proof which uses graphs is essentially the same as ours which uses
surfaces. The connection is that a non-closed surface is a regular neighbourhood
of some graph.

Finally, we observe that Theorem 2.2 is equivalent to Hall's Theorem 5.1 in [5].
Hall's result looks stronger for he asserts that one can choose Gx to miss a given
finite subset T of G — S, whereas Theorem 2.2 is the special case when T has a
single element. However, Hall's result follows from ours by taking the intersection
of the subgroups Gx of G obtained for each element of T.

Proof of Theorem 2 .1 . We start by observing that it suffices to prove Theorem
2.1 in the case when F is compact. For then Theorem 2.2 will follow for the case
of f.g. free groups, and hence will hold for all free groups. But now Theorem 2.1
must hold in the non-compact case also as Theorems 2.1 and 2.2 are equivalent.

Let F be a compact surface with boundary. We know that F can be constructed
from a 2-disc D by attaching 1-handles. However, it will be more convenient to
think of F as obtained from D by identifying in pairs certain arcs in the boundary
of D. Thus D can be thought of as a fundamental region in the universal covering
space of F. If n^F) is free of rank n, we can divide dD into An arcs which, after
identification, will lie alternately in dF and in the interior of F. We orient those arcs
of 3D which are to be identified so that the identifications are all orientation pre-
serving. We also label these arcs with a non-zero integer between — n and n so that
arcs to be identified carry equal but opposite numbers. Now any covering space of F
can be expressed as a countable collection of copies of D with all the labelled edges
identified in pairs, so that the arcs in a pair carry equal but opposite numbers and are
identified preserving their orientations. Conversely, any space constructed in this
way out of countably many copies of D has a natural projection to F which is the
standard projection on each copy of D, and this projection is a covering map.

Let S be a f.g. subgroup of n^F) and let gen1(F) — S. Let Fs denote the based
covering space of F with fundamental group S. This means that the covering map
p : Fs -> F is a based map and that p^n^Fs)) = S <= 7Cj(F). Let / be a path in Fs
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starting at the basepoint whose projection in F is a loop representing g. As g$S,
we know that / is not a loop. Now Lemma 1.5 tells us that there is a compact in-
compressible sub-surface Y of Fs such that Y contains / and the natural map
71! (7) -» n^Fs) is an isomorphism. Let X be the union of all the copies of D in Fs

which meet Y. Thus Y lies in the interior of X. As Y is compact, X consists of
finitely many copies of D. We have by restriction a projection map X -> F, but this
is not a covering map as there are some labelled edges in dX which have not been
glued together. We cure this by choosing some pairing and glueing all these edges
allowably. This gives us a finite covering space Fi of F which contains Y. Hence
n^FJ contains S and S is geometric in J^. As / is not a loop we see that g$ TT1(F1).

The only point left to prove is that n^Y) = S is a free factor of n^FJ. Recall
that 7 c I c Fs. As X must be incompressible in Fs, we see that n^Y) = n^X) =
ni(Fs)- Now F1 is obtained from X by glueing certain pairs of edges in dX. Hence
n^Fy) is the free product of n^X) with a free group of rank equal to the number
of pairs of edges glued together. The result follows.

3. The Main Theorem

We start this section by discussing one particular Fuchsian group. LetH denote
the hyperbolic plane, and consider a regular pentagon in H. If the pentagon is
very small it will be approximately Euclidean and so will have vertex angles greater
than 7r/2. If we let the vertices of the pentagon tend to infinity in H, then the angles
will tend to zero. Hence, by the Intermediate Value Theorem, there is a regular
pentagon P in H with all its vertex angles equal to n/2. We let F denote the group
of isometries of H generated by reflections in the sides of P. The fact that every
vertex angle of P is n/2 means that the translates of P by F tesselate H and that P
is a fundamental region for the action of F. Each edge of P determines a line in
H and we let L denote the family of lines in H consisting of the translates of these
five lines.

It is not hard to see that F has a subgroup G of index four which is isomorphic
to the fundamental group of the non-orientable closed surface F with Euler number
— 1. Again I am grateful to Thurston for pointing this out to me. Figure 1 shows a
disc with two holes divided into four pentagons. If we double this surface along its
boundary, we obtain the closed orientable surface of genus two divided into eight
pentagons. This surface double covers F and the covering involution preserves
pentagons. Hence we see how to divide F into four pentagons. This picture tells

Fig. 1 A disc with 2 holes divided into four pentagons
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Four pentagons = an octagon
Fig. 2a. Glue edges of octagon as shown to obtain F

X(F)= 1

5
Fig. 2b

us how to find G = n^F) as a subgroup of T of index four. We can obtain F from
four pentagons by glueing edges as shown in Fig. 2a. If we number the edges of P
from 1 to 5 as shown in Fig. 2b, then G can be generated by xt x2 x5, xt xA> x3 xs

and Xi x3 xt x5 and the four pentagons shown in Fig. 2a will be a fundamental
region for G. This is why G has index four in I\

We will shortly prove the following result about G by using the Fuchsian group T.

THEOREM 3.1. This group G is LERF.

We will then have

THEOREM 3.2. Every surface group and every Fuchsian group is LERF.

Proof. The result is trivial for the sphere and projective plane. It is also easy to
see that Z x Z is LERF. Hence the fundamental groups of the torus and klein bottle
are LERF. Any other closed surface covers F, and so its fundamental group is a
subgroup of G and is automatically LERF. Also G contains a free group of rank
two, so that we have yet another proof that free groups are LERF. Now any Fuchsian
group has a subgroup of finite index which is a surface group [2], [4], [11]. Hence
all Fuchsian groups are LERF, by Lemma 1.1.

We also have the following geometrical result, which is equivalent to Theorem
3.2, by Lemma 1.6.

THEOREM 3.3. Let F be a surface, let S be a f.g. subgroup of n^F) and let
genl(F) — S. Then there is a finite covering Ft of F such that 7t1(F1) contains S
but not g and S is geometric in Fv

Before proving Theorem 3.1 we give a geometrical proof that T is RF.
explains the key idea of the proof that G is LERF.

This

M
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LEMMA3.4. Fisresiduallyfinite.

Proof. Let C be a compact set in H2. Lemma 1.3 tells us that we must show that F
has a subgroup F t of finite index such that if g is a non-trivial element of F1} then
gC does not meet C. We do this by exhibiting a subgroup Fx of F with a fundamental
region X which contains C in its interior and consists of a finite number of pentagons
from our tesselation of if. The index of Tt in F is equal to the number of pentagons
in X and so must be finite.

As C is compact, C can meet only finitely many of the pentagons in our tesse-
lation of//. Hence we can replace C by the union of a finite number of pentagons.
Further by enlarging this union if necessary, we may suppose that C is the union of a
finite number of pentagons and that C is connected. As C is compact, only finitely
many lines in L meet C. Each line / in H separates H into two half planes /+,/_. If
/ is a line in L which does not meet C, then C lies in the interior of one of these half
planes, say /+, because C is connected. We let X be the intersection of all such
half planes /+, for all lines / in L which do not meet C. Clearly X is convex, is a union
of pentagons and contains C in its interior. If a line / in L meets the interior of X, then
/ must meet C by our construction of X. Hence only finitely many lines in L can
meet the interior of X, and X must be compact. We now define Fj to be the group
of isometries of// generated by reflections in the sides of X. The sides of AT are lines
in L and a reflection in a line of L is an element of F. Hence Tl is a subgroup of F.
Also, as X is a convex union of pentagons every vertex angle of X must be n/2.
For we can disregard angles equal to n, and an angle of 3n/2 is excluded by con-
vexity. Hence X is a fundamental region for F, , for the same reason that P is a
fundamental region for F. The result follows.

Comments on the proof. The fact that our original fundamental region P has
all angles equal to n/2 is crucial for this proof. If, for example, P has an angle of n/3,
then X might have an angle 2TT/3 and would not be a fundamental region for F ^
We remark that this proof can also be used to show Z x Z is RF by considering the
usual action of Z x Z on the Euclidean plane U2, which has a square fundamental
region. For any compact set in K2 lies in the interior of a rectangular union X of
squares, and there is an obvious subgroup of Z x Z with X as its fundamental region.
This is how the idea for the proof of Lemma 3.4 arose.

We now use essentially the same idea to show that F is LERF. However, it seems
simpler to work with G rather than F.

THEOREM 3.1. The group G is LERF.

Proof. Suppose we are given a f.g. subgroup S of G and a compact subset C of
H/S. Let p: H -> H/S denote the projection, which is a covering map. Let D be a
compact set in H such that p(D) = C. We must produce a subgroup Gx of finite
index in G such that Gx contains S and, in addition, if an element g of Gt has gD
meeting D then g lies in S. This will prove that G is LERF from Lemma 1.4, for C
will project homeomorphically into H\GX.

As C is a compact subset of H/S and as n^H/S) = S is f.g., Lemma 1.5 tells
us that there is a compact connected subsurface Cx of H/S, such that Cx contains C
and the natural map n^C^) -» n^H/S) is an isomorphism. Let Y denote p~x(Cy)>
a connected surface in H. As before, we define Y to be the intersection of all the
closed half spaces in H which contain Fin their interior and are bounded by a line in
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L. Thus F is a convex union of pentagons in H. Now Y is invariant under the action
of S on H, and so it follows that Y is S-invariant. Hence F covers its image p(Y)
in H/S, so that p( F) is a union of pentagons in H/S. If a line / of p{L) in H/S meets the
interior of p(Y), it follows from the definitions of Y and F that / meets Cx. Hence
only finitely many lines in p(L) can meet p(Y), and p(Y) must be compact. Let X
be a (compact) fundamental region in F for the action of S.

We define F2 to be the group of isometries of H generated by reflections in the
sides of F. As usual, F is a (non-compact) fundamental region for F2, because all
the vertex angles of F are equal to n/2. We define I \ to be the group of isometrics
of H generated by F2 and S. Observe that F2 is a normal subgroup of Fl5 because F
is S-invariant, and the quotient of Tt by F2 is isomorphic to S. It follows that X
is a fundamental region in H for the action of Fl5 for H/T^ = (H/r2)/S = Y/S.
Hence Fj is of finite index in F. Let D be a compact set in the interior of F such that
p(D) = Cv If we have ge Fj such that gD meets D, then g(int F) meets int F and
so g must lie in S. Hence if we define Gy = Fx n G, then Gt will have all the required
properties. This completes the proof of Theorem 3.1.

The proof of Theorem 2.1 can be thought of in much the same way as that of
Theorem 3.1. The difference is that the universal covering space of a surface with
boundary is not the hyperbolic plane. We can remove the boundary of the surface
to cure this and then a fundamental region in H will have vertices at infinity. This
means that any connected union of fundamental regions is automatically convex
and that one does not need to worry about the angles at the vertices. This is why the
proof of Theorem 2.1 is so much simpler than that of Theorem 3.1.

4. The 3-dimensional case

As we have just shown that surface groups are LERF, it seems reasonable to
ask whether 3-manifold groups are LERF. One must restrict this question to compact
3-manifolds because, for example, the additive group of the rationals is the funda-
mental group of a 3-manifold and is not RF. Our previous results allow us to prove
the following.

THEOREM 4.1. The fundamental group of a compact Seiferl fibre space is LERF.

Proof. Let G be the fundamental group of a compact Seifert fibre space M. If G
is finite, the result is trivial. Otherwise G has a normal infinite cyclic subgroup J with
quotient a group F which contains a surface group Fx as a subgroup of finite index [6].
The inverse image of Tx in G is a subgroup Gt of finite index in G. As J admits only
two automorphisms, Gt has a subgroup G2 of finite index such that J is central in G2

and has quotient a surface group F2. The covering space M2 of M with fundamental
group G2 is a Seifert fibre space with no singular fibres and so is a S^bundle over a
surface F. If F is non-orientable, let F3 denote the orientable double covering of F
and let M3 be the corresponding double covering of M2. Thus M3 is a S^bundle
over the orientable surface F3.

Now fti (M) is LERF if and only if 7r1(M3) is LERF. Hence it suffices to prove
Theorem 4.1 in the special case when M is a S^bundle over an orientable surface F
and the fundamental group J of the fibre is central in nx (M). Let G denote the funda-
mental group of such a 3-manifold M, let F denote TT^F) and letp : G -> F denote the
projection map. Let S be a f.g. subgroup of G and let g e G — S. Ifp(g) $ p(S), then F
must have a subgroup Tt of finite index which contains p(S) but not p{g). This is
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because F is LERF. In this case, p'^Fj) is a subgroup of G of finite index which
contains S but not g. lfp{g) ep(S), we can write g = hs for some elements heJ,s eS.
As g£S, we must have h$Sn J. Let Jx be a subgroup of J of finite index which
contains Sn J but not h. (Take Jx equal t o 5 n J unless Sn J is trivial.) Then
Lemma 4.2 below tells us that G has a subgroup Gx of finite index such that Gi

contains S and G1nJ=Jv Thus h$ Gt and so g£ Gv It follows that G is LERF,
so that Lemma 4.2 will complete the proof of Theorem 4.1.

LEMMA 4.2. Let F denote the fundamental group of a compact orientable
surface F and let G be a central extension of an infinite cyclic group J by F, with
projection p : G -> F. Let S be a f.g. subgroup of G and let Jt be a subgroup of finite
index k in J such that Jt contains S n J. Then G has a subgroup Gt of finite index
such that Gj contains S and Gt c\ J = Ji.

Remark. Any such extension G is the fundamental group of a Sl-bundle over F.

Proof. If F has boundary, then F is free. Hence the extension splits and
G = J x F. The required result is now obvious for one can take Gt = Jt x F.

If F is closed, then F has presentation {alt..., ag, /?ls..., pg: ntai> Pi\ = !}• Let
ali...,asibl,...ibg be elements of G such that p(at) = a,-, p(bf) = /?,-, and let t be a
generator of J. Then G has presentation

{t,alt ...,avbx, ...,bg : a,-1 tat = /, V 1 tbt = t, l l k , M = '"}

for some integer n. Central extensions of J by F correspond to elements of
H2(F, J) s Z, and the integer n in the presentation can be identified with the element
of H2(T, J) which corresponds to G.

If n = 0, we again have G = J x F and the result is obvious. So we suppose that
n # 0. From the presentation above for G, one sees that Ht(G) £ Z,, ©H^F). Let
7r: HX(G) -* ~%-n denote projection onto the first factor. If k divides n, there is an
epimorphism Zn -> lk. Hence by composing with % and the abelianisation homo-
morphism we have an epimorphism G -> lk. The kernel Gt of this map is of index k
in Gj and is generated by tk, au ..., #g, fej,..., bg. Thus Gtn J = Jt and p(Gi) = F.
Hence Gj contains S and Gx n J = Jl as required.

If k does not divide «, we will show that F has a subgroup F2 of finite index /, a
multiple of &, such that F2 contains p(S). Let G2 denote p~1(F2), so that G2 contains
S. Then G2 has a presentation of the same type as G but the genus of F2 will not equal
that of F. (Unless F is a torus.) I claim that the integer n2 which determines the exten-
sion G2 satisfies n2 = In and so is divisible by k. Now we can apply the argument of
the previous paragraph to show that G2 has the required subgroup G r

In order to obtain the subgroup F2 of F, we first recall from Theorem 3.3 that as
S is a f.g. subgroup of F = n^F), there is a finite covering F3 of F in which S is
geometric. Hence Ht(S) has rank less than H^Fa). Hence there is an epimorphism
H^Fj) -> Ik whose kernel contains H^S). The corresponding finite covering F2 of
F3 is a finite covering of F of index /, a multiple of k, and nx (F2) = F2 contains S.
The reason for the equation n2 = In is simply that the map

, J)->H2(T2, J ) s

induced by the inclusion of F2 in F, is multiplication by /. This equation can also be
seen directly and geometrically by considering the covering space determined by
G2 of the S1 -bundle over F with fundamental group G.
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Theorem 4.1 tells us, in particular, that any S^bundle over a surface has LERF
fundamental group. However, I am unable to decide whether the same holds for
bundles over S1 with fibre a surface. It seems quite possible that this is false.

One could try to apply the methods of §3 rather than the results. Thus one
considers hyperbolic 3-manifolds i.e. 3-manifolds which are the quotient of hyperbolic
3-space H3 by a group of isometries which act as a group of covering translations. If
one has a polyhedron P in H3 which is a fundamental region for the group F generated
by reflections in the faces of P, and if all the dihedral angles of P are equal to n/2,
then the methods of §3 will apply to show that F is LERF. However, this is not a
common situation in dimension three. Thurston has pointed out that one can have a
regular octahedron P in H3 all of whose dihedral angles are n/2, by having the vertices
of P at infinity. He has also shown that the group of the Borromean rings is a subgroup
of index two in the reflection group F determined by P. Hence the group of the
Borromean rings is LERF. However, not all hyperbolic 3-manifold groups are
commensurable with groups generated by reflections, so this leaves a large field for
further study.
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