Limit set. Suppose that G acts properly on \mathbb{H}^n for $n \geq 2$. The limit set ΛG of G is the set of accumulation points in $\partial \mathbb{H}^n := S^{n-1}$ of any G-orbit in \mathbb{H}^n.

Exercise 0.1. (1) If H is a finite index subgroup in G, then $\Lambda H = \Lambda G$.
(2) Let H be an infinite normal subgroup in G. If $|\Lambda G| \geq 3$, then $\Lambda H = \Lambda G$.

Exercise 0.2. Assume that $|\Lambda G| \geq 3$.
(1) Let $x \neq y \in \Lambda G$ be any two points. For any open neighborhoods $x \in U$ and $y \in V$ there exists a loxodromic element $h \in G$ such that $h_- \in U$ and $h_+ \in V$.
(2) Prove that G contains infinitely many conjugacy classes of loxodromic elements with pairwise disjoint fixed points.
(3) Prove that for any $x \neq y \in \Lambda G$ there exists a sequence of elements g_n such that $g_n o \rightarrow x$ and $g_n^{-1} o \rightarrow y$ for some (or any) $o \in \mathbb{H}^n$.

Tips for (1): choose loxodromic h,k such that $h_- \in U$ and $k_+ \in V$. Then consider $k^n h^n$ for large n.

Discontinuity domain. The complement $\Omega G := S^{n-1} \setminus \Lambda G$ of the limit set is called the discontinuity domain. Assume that ΩG is non-empty.

Exercise 0.3. (1) Prove that for any $p \in \Omega G$, the set of accumulation points for the orbit $G \cdot p$ coincides with ΛG.
(2) Prove that ΩG is open and dense in S^{n-1}, and ΛG is nowhere dense (i.e. the interior of Λ is empty).
(3) Prove that ΩG is the maximal discontinuity domain on S^{n-1}: let U be an open subset of S^{n-1} on which G acts properly. Then $U \subset \Omega G$.

The topology of Cantor set. Let T be a tree (i.e. a connected graph without loops) endowed with a metric so that every edge is isometric to the unit interval $[0,1]$. Fix a basepoint $o \in T$. The visual boundary ∂T is the set of all geodesic rays from o.

For any $\alpha \neq \beta \in \partial T$, the function $\delta(\alpha, \beta) := 2^{-n}$ is a metric on ∂T, where n is the length of the intersection $\alpha \cap \beta$.

Exercise 0.4 (Cantor set). Assume that T is an infinite tree of valence 3 (the valence of any vertex is 3).
(1) Construct a bijective map from ∂T to the Cantor set C. (Tips: write the numbers in C in base 3 decimal expansion with only 0 and 2’s)
(2) Prove that this map is a homeomorphism of ∂T to the Cantor set $C \subset [0,1]$ with subspace topology.
(3) Prove that the visual boundary for any tree with valence between 3 and a fixed $M \geq 3$ is homeomorphic to the Cantor set.

Schottky groups. Two elements a, b in $I(\mathbb{H}^2)$ are called ping-pong players if there are disjoint open halfspaces (bounded by bi-infinite geodesics) $H_a, H_b, H_{a^{-1}}, H_{b^{-1}}$ in \mathbb{H}^2 so that...
(1) \(s(\mathbb{H}^2 \setminus H_{s^{-1}}) = \tilde{H}_s \) for any \(s \in S := \{a, b, a^{-1}, b^{-1}\} \).
(2) \(\cup_{s \in S} \tilde{H}_s \neq \mathbb{H}^2 \).

The group generated by \(a, b \) is called (classical) Schottky groups.

Exercise 0.5 (Limit set of Schottky groups). Set \(P := \mathbb{H}^2 \setminus \cup_{s \in S} H_s \). Assume that \(d(H_s, H_t) > 0 \) for any \(s \neq t \in S \). Prove that \(\cup_{g \in G} (g \cdot P) = \mathbb{H}^2 \).

Exercise 0.6 (Examples of Schottky groups). (1) Find examples of Schottky groups \(G \) such that the limit set \(\Lambda G \) is homeomorphic to the circle \(S^1 \).

(2) Find examples of Schottky groups \(G \) such that \(\cup_{g \in G} (g \cdot P) \nsubseteq \mathbb{H}^2 \).

Tips for (1): find \(a, b \) so that the boundaries of \(H_a, H_b, H_{a^{-1}}, H_{b^{-1}} \) form an ideal quadrilateral.

Exercise 0.7 (Convex hull of limit set). Let \(CH(\Lambda G) \) be the minimal convex subset of \(\mathbb{H}^n \) whose boundary in \(S^{n-1} \) is equal to \(\Lambda G \).

(1) Prove that \(CH(\Lambda G) \) is contained in a finite neighborhood of the union of all bi-infinite geodesics with their two endpoints in \(\Lambda G \).

(2) Assume that \(d(H_s, H_t) > 0 \) for any \(s \neq t \in S \). Prove that \(G \) acts co-cocompactly on \(CH(\Lambda G) \).

Tips: build an orbital map from the free group \(G \) into \(\mathbb{H}^n \) and use Morse Lemma.