Inyectivity radius. A group G is called residually finite if the trivial group is the intersection of all finite index subgroups. It is known that any finitely generated linear group is residually finite.

Exercise 0.1. Suppose $M = \mathbb{H}^n/G$ is compact. Prove that for any $C > 0$, there exists a finite covering N of M such that the injective radius at any point of N is at least C.

Exercise 0.2. Let G be a non-elementary discrete group in $I(\mathbb{H}^n)$ so that \mathbb{H}^n/G is compact for $n \geq 2$. Prove that G does not contain $\mathbb{Z} \times \mathbb{Z}$ as a subgroup.

Dirichlet domain. A geodesic triangulation of a hyperbolic surface is a decomposition of the surface as the union of finitely many geodesic triangles such that every two triangles are either disjoint, or share a vertex or only one edge.

Exercise 0.3. Prove that every closed orientable hyperbolic surface Σ_g admits a geodesic triangulation, and derive that the area of is $4\pi (g - 1)$. Tips:

1. Let X be a discrete set of points in \mathbb{H}^2. For given $p \in X$, let D_p be the set of points in \mathbb{H}^2 which is closer to p than any point of X. Prove that D_p is a convex geodesic hyperbolic polygon. (Compare with Dirichlet construction)

2. Choose appropriately and then lift finitely many points on the surface to the universal covering and apply the previous construction.

Exercise 0.4. Prove that the Dirichlet domain for $\text{PSL}(2, \mathbb{Z})$ with center at t_i for $t > 1$ is $\{ z \in \mathbb{C} : |z| \geq 1, |\text{Re}(z)| \leq 1/2, \text{Im}(z) > 0 \}$.

Cayley graph. Let G be a group generated by a finite set of elements S. The Cayley graph $G(G,S)$ of G with respect to S is a graph with the vertex set G such that two vertices $g_1, g_2 \in G$ are connected by one edge if and only if $g_1 = g_2s$ for some $s \in S$. By assigning each edge with unit length, the word metric $d_S(g_1, g_2)$ is the minimal length of connected paths from g_1 to g_2.

Exercise 0.5 (Changing generating set). Prove that the identification $(G, d_S) \rightarrow (G, d_T)$ is a quasi-isometry for two finite generating sets S,T: there exists $K > 0$ such that for any $g_1, g_2 \in G$,

$$\frac{1}{K} d_S(g_1, g_2) \leq d_T(g_1, g_2) \leq K d_S(g_1, g_2)$$

Exercise 0.6 (Milnor-Svarc Lemma). Let G be a discrete subgroup of $I(\mathbb{H}^n)$ so that \mathbb{H}^n/G is compact with diameter $R > 0$. Fix a basepoint $o \in \mathbb{H}^n$. Consider the orbital map $\phi : G \rightarrow \mathbb{H}^n$:

$$\phi : g \in G \mapsto go \in \mathbb{H}^n$$

Prove that

1. the set $S := \{ g \in G : \rho(o, go) \leq 2R + 1 \}$ generates the group G.
2. the map $\phi : (G, d_S) \rightarrow \mathbb{H}^n$ is a quasi-isometric embedding: there exist constants $\lambda > 1, c > 0$ such that

$$\frac{1}{\lambda} d_S(g_1, g_2) - c \leq d(\phi(g_1), \phi(g_2)) \leq \lambda d_S(g_1, g_2) + c$$
Tips for (3): connect $g_1 o, g_2 o$ be a geodesic segment and subdivide into segments of length 1, then apply (1).