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4. Groups acting on trees: a brief introduction to Bass-Serre trees

4.1. Free products. In this section, we first introduce a free product G of two
given groups H,K. The group G is the biggest one among the groups generated
by H,K with the property that any group are the quotient of G.

Precisely, a group G is called a free product of H and K if there exist a pair of
homomorphisms ◆H : H ! G and ◆K : K ! G such that they are universal in the
following diagram:

H G K

�

◆H

�H
�

◆K

�K

By the universal property, it is easy to see that ◆H : H ! G and ◆K : K ! G are
both injective. Moreover, G is unique up to isomorphism, so G must be generated
by H and K.

Suppose that H = hS|Di,K = hT |Ei are given by presentations. Then by
Theorem 3.3, the group G given by the presentation hS [ T |D [ Ei is the free
product of H,K.

Understanding H and K as disjoint alphabet sets, an alternating word w is of
form h1k1 · · ·hmkm, where hi 2 H, kj 2 K. The length of w is the number of letters
in word. It is called reduced if hi 2 H \ 1, kj 2 K \ 1.

We consider the set ⌦ of all reduced alternating words h1k1 · · ·hmkm in H and
K. The following result is fundamental in understanding free products.

Theorem 4.1. [Normal form theorem][4, Thm 3.1] Every element of G = H ?K
is equal to a unique alternating expression of the form h1k1 · · ·hmkm 2 ⌦

Sketch of the proof. Since G is genearted by H and K, any element in G can be
written as an alternating expression of the form h1k1 · · ·hmkm. To prove the unique-
ness, we shall construct a free action of G on the set ⌦ of all alternating expressions.
To that end, we first construct the homomorphisms of H and K into the symme-
try group of ⌦ and then by the above universal property, the homomorphisms of
G ! Sym(⌦) is defined correspondingly.

For each h 2 H, the associated bijection �H(h) is given by sending h1k1 · · ·hmkm
to hh1k1 · · ·hmkm with a neccessary modification so that the image is alternating
expression. Note that �H : H ! Sym(⌦) is an injective homomorphism. Similarly,
we can define �K : K ! Sym(⌦) which is also injective. These define a group
homormorphism G ! Sym(⌦).

Consider the empty word ; in ⌦. Any alternating expression h1k1 · · ·hmkm
of element g in G maps ; to the alternating word h1k1 · · ·hmkm. This word is
nonempty i↵ g 6= 1 This establishes the uniqueness of the statement. ⇤
Corollary 4.2. If an alternating word w = h1k1 · · ·hmkm reprensents the identity
in G, then it must be not reduced: there exists some i such that hi = 1 or ki = 1.

In particular, if two reduced words represent the same group element, then they
are equal letter by letter.

4.2. Free products acting on trees. Let G = H ? K be a free product. We
define a graph � as follows.

(1) The vertex set V consists of two types H and K: V = {gH, gK : g 2 G}.
(2) The edge set E consists of all group elements in G.
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(3) The edge g 2 E = G connects gH and gK.

Then G acts on �: each element g 2 G sends xH to gxH and xK to gxK. The
edge relation is preserved. So G acts on � by graph isomorphism.

Theorem 4.3 (Bass-Serre Trees for free products). The graph � is a tree so that
the degree of vertex of type H (resp. K) equals ]H (resp. ]K).

Moreover, the action of G on � has trivial edge stablizers and vertices stablizers
of type H and K conjugated to H and K respectively so that the quotient is an
interval.

Proof. By definition of action of G on the graph, there are two di↵erent orbits of
vertices: G ·H and G ·K. The vertex H is adjacent to hK for h 2 H. That is to
say, the set of edges adjacent to H has one-to-one correspondence with the set of
elements in H. Similarly, the edges adjacent to K correspond to the set K. Since
G is generated by H and K, the graph � is connected.

We now prove that � is a tree. Let � be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that � is based at H; the case at
K is similar. According to the adjacency, there are an even number of edges in �,
where edges in � must be of form H $ hK for h 2 H or K $ kH for k 2 K up
to translation. Thus, tracing out the loop �, we see that the terminal point is the
vertex h1k1 · · ·hnknH for hi 2 H and ki 2 K.

Since � is a loop, we have the equality h1k1 · · ·hnknH = H. We obtain that

(4) h1k1 · · ·hnkn = h

for some h 2 H. Since there exists no backtracking, we see that ki 6= 1 for i < n
and hi 6= 1 for i > 1. It is possible that kn = 1 or h1 = 1, but they cannot happen
at the same time. So, up to removing h1 or kn from the left side in (4), we obtain
a reduced word of length at least 2. But the right side in (4) is a reduced word of
length 1. This is a contradiction to the normal form theorem 4.1. The graph � is
thus a tree. The proof is complete. ⇤
4.3. Free products with amalgamation. Now suppose that each of H and K
contain a subgroup isomorphic to F : there exists monomorphisms � : F ! H and
⌧ : F ! K. We want to formulate a biggest group G generated by H and K so
that H \K = F is realized inside G.

Precisely, a group G is called a free product of H and K with malgamation over
F if there exist a pair of homomorphisms ◆H : H ! G and ◆K : K ! G such that
they are universal in the following diagram:

F

H G K

�

�
⌧

◆H

�H
�

◆K

�K

By the universal property, it is easy to see that ◆H : H ! G and ◆K : K ! G are
both injective. Moreover, G is unique up to isomorphism, so G is generated by H
and K.

Let w = h1k1 · · ·hnkn be an alternating word over the alphabet set H and
K such that hi 2 H and ki 2 K. If it has length strictly bigger than 1 and
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hi 2 H \ F, ki 2 K \ F , then w is called a reduced alternating word. Let ⌦ be the
set of all such that hi 2 H \ F and ki 2 K \ F , unless the alternating word is of
length 1.

The following fact is obvious.

Lemma 4.4. Every element of G = H ?F K is equal to a reduced alternating
expression of the form h1k1 · · ·hmkm. It may not be unqiue, but the length of the
alternating word is unique.

However, such an expression will not be unique, due to the nontrivial intersection
F . To obtain a unique normal form, we have to choose a right coset transversal
TH and TK of F in H and K respectively: namely, in each right H-coset, choose
a right coset representative. We then consider the set ⌦ of words concatenating F
with the alternating words in TH and TK .

Given a reduced alternating form h1k1 · · ·hmkm, we convert the letters from right
to left so that they become to be the corresponding right coset representatives. In
the final form, we will get a normal form fh0

1k
0
1 · · ·h0

mk0m for some f 2 F . So, any
element has a normal form which turns out to be unique. Also note that in this
process, the length of a normal form is the same as that of the original one.

Theorem 4.5. [Normal form theorem][4, Thm 3.7] With the choice of the right
coset transversal TH and TK as above, every element of G = H ?F K is equal to
a unique normal form fh1k1 · · ·hmkm with f 2 F, hi 2 TH and ki 2 TK when
present.

Corollary 4.6. If an alternating expression h1k1 · · ·hmkm gives the identity, then
it is not reduced: there exists hi or ki such that hi, ki 2 F.

Let G = H ?F K. We define a graph � as follows.

(1) The vertex set V consists of two types H and K: V = {gH, gK : g 2 G}.
(2) The edge set E consists of all left F -cosets in G.
(3) The edge gF 2 E connects gH and gK.

Again, G acts on �: each element g 2 G sends xH to gxH and xK to gxK. The
edge relation is preserved. So G acts on � by graph isomorphism.

We have the same result for free product with amalgamation. The only di↵erence
is that the edge stabilizer is a conjugate of F , instead of a trivial group.

Theorem 4.7 (Bass-Serre Tree for amalgamation). The graph � is a tree so that
the degree of vertex of type H (resp. K) equals ]H/F (resp. ]K/F ).

Moreover, the action of G on � has edge stablizers conjugated to F and vertices
stablizers of type H and K conjugated to H and K respectively so that the quotient
is an interval.

Proof. The proof is similar to that of Theorem 4.3. We emphasize the di↵erences
below.

We now prove that � is a tree. Let � be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that � is based at H; the case at
K is similar. According to the adjacency, there are an even number of edges in �,
where edges in � must be of form H $ hK for h 2 H/F or K $ kH for k 2 K/F
up to translation. Tracing out the loop �, we see that the terminal point is the
vertex h1k1 · · ·hnknH for hi 2 H and ki 2 K.
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Since � is a loop, we have the equality h1k1 · · ·hnknH = H. We obtain that

(5) h1k1 · · ·hnkn = h

for some h 2 H. Since there exists no backtracking, we see that ki /2 1 for i < n
and hi /2 F for i > 1. It is possible that kn 2 F or h1 2 F , but they cannot happen
at the same time. So, combinning h1 with k1 or kn with hn from the left side in
(5) if necessary, we obtain a reduced word of length at least 2. But the right side
in (5) is a reduced word of length 1. This is a contradiction to the normal form
theorem 4.5. The graph � is thus a tree. The proof is complete. ⇤

4.4. HNN extension. Let G be a group with two isomorphic subgroups H and
K. Let ⌧ : H ! K be an isomorphism. We want to build a new group G̃ such that
G ⇢ G̃ and H,K become conjugate in G̃. If G is given by a presentation

hS|Ri.

As usual, we request G̃ to be the biggest one with this property. Then the desired
group G̃ must have presentation as follows

hS, t|R, tht�1 = ⌧(h), 8h 2 Hi,

which is called HNN extension of G over H,K, denote by G?H⇠K . The new
generator t is usually called stable letter.

By definition, every element in G̃ can be written as a product of form called
t-expression as follows:

g0t
✏1g1 · · · t✏ngn

where gi 2 G or ✏i 2 {1,�1}. Any subword tht�1 for h 2 H and t�1kt for t 2 K
is called t-pinch in the above form. A t-expression form without t-pinches is called
reduced.

A reduced t-expression of an element may not be unique. In order to get a normal
form, we choose right coset transversal TH and TK of H and K in G respectively.

Theorem 4.8. [Normal form theorem][4, Thm 3.1] Every element of G̃ = G?H⇠K

is equal to a unique reduced t-expression of the form g0t
✏1g1t

✏2g2 · · · t✏ngn with gi 2
TH [ TK when present. If ✏i = 1 for i > 0, then gi 2 TH ; if ✏i = �1 for i > 0 then
gi 2 K.

Corollary 4.9 (Briton’s Lemma). If a t-expression in G̃ = G?H⇠K represents the
trivial element, then it must contain t-pinches.

Let G̃ = G?H⇠K . We define a graph � as follows.

(1) The vertex set V consists of all left cosets of G: V = {xG : x 2 G̃}.
(2) The edge set E consists of two types H and K: all left H-cosets and K-

cosets in G̃.
(3) The edge xK 2 E connects xG and xtG; And xH 2 E connects xt�1G and

xG.

We define an action of G̃ on �: each element g 2 G̃ sends xG to gxG. The edge
relation is preserved. So G acts on � by graph isomorphism.

Though we have two types of edges, they actually belongs to the same orbit: the
element t sends the edge [t�1G,G] to [G, tG].
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Theorem 4.10 (Bass-Serre Tree for HNN extension). The graph � is a tree so that
the degree of vertex equals ]G/H+ ]G/K. Moreover, the action of G on � has edge
stablizers conjugated to H (or equivalently K) and vertices stablizers G so that the
quotient is a loop.

Proof. The proof is similar to that of Theorem 4.3. In this case, there are only one
orbit of vertices and edges.

We now prove that � is a tree. Let � be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that � is based at G. According
to the adjacency, edges in � must be of form as follows, up to translation,

G $ gtG

for g 2 G/K or
gt�1G $ G

for g 2 G/H. Thus, tracing the loop �, we see that the terminal point is the vertex
g1t

✏1g2t
✏2 · · · gnt✏nG for gi 2 G and ✏i 2 {1,�1}.

Since � is a loop, we have the equality g1t
✏1g2t

✏2 · · · gnt✏nG = G. We obtain that

(6) g1t
✏1g2t

✏2 · · · gnt✏n = g

for some g 2 G.
Since there exists no backtracking, we see that if ✏i = 1 and ✏i+1 = �1, then

gi+1 2 G \H. Indeed, if not, we have gi+1 2 H. Recalling that G acts transtively
on �, we can assume that i = 1. Thus, g1tg2t�1G = G. So the subpath

G $ g1tG $ g1tg2t
�1G = G

gives a backtracking in �.
By the same reasoning, if ✏i = �1 and ✏i+1 = 1, then gi+1 2 G \K. Again, it is

possible that g1, gn 2 H[K, but it cannot happen at the same time that g1, gn 2 H
and g1, gnK. So, combinning h1 with k1 or kn with hn from the left side in (6) if
necessary, we obtain a reduced word of length at least 2. But the right side in (6)
is a reduced word of length 1. This is a contradiction to the normal form theorem
4.8. The graph � is thus a tree. The proof is complete. ⇤
Exercise 4.11. Draw a portion of the Cayley graph of the group ha, t : ta2t�1 = a3i.

4.5. Abelianization of free products. Let G = H ? K be a free product. By
the universal property, there exists a natural morphism G ! H ⇥ K. We denote
by N the kernel of this morphism.

We start with a classification of isometries on trees.

Lemma 4.12. Let g be an isometry of a tree T . Then either g fixes a point or g
preserves a unique geodesic by translation.

Proof. Suppose that g does not fix any point. Fix a basepoint o 2 T . Consider
the geodesic segments [o, go] and [o, g�1] both originating from o. Since T is a tree,
let b be the branching point of these two geodesics. We then claim that d(o,m) <
d(o, go)/2. Otherwise, the middle point m of [o, go] coincides with that of [o, g�1o],
which is gm. So m is fixed by g: a contradiction. Hence, d(o, b) < d(o, go)/2. We
now form a geodesic � preserved by g. Let � = [i2Z[g�1m,m]. It is clear by the
the above Claim that � is a geodesic. The proof is then complete. ⇤
Exercise 4.13. Prove the uniqueness statement in Lemma 4.12.
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Exercise 4.14. Any finite group acts on a tree with a global fixed point.

Corollary 4.15. All finite subgroups in a free product must be conjuated into H
or K.

Exercise 4.16. Let G = H ?F K be a free product of non-trivial groups H,K over
F . Using Bass-Serre tree to prove that the center of G is contained in F .

Lemma 4.17. N is a free group generated by S = {[h, k] : h 2 H \ 1, k 2 K \ 1}.

Proof. By Theorem 2.20, we only need to show that N acts freely on the Bass-Serre
tree �. To prove the freeness of N , any vertex stabilizer of the Bass-Serre � is sent
to a non-trivial subgroup under the morphism H ?K ! H ⇥K. This implies that
the kernel N of this morphism acts freely �. Thus the conclusion follows. ⇤


