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4. GROUPS ACTING ON TREES: A BRIEF INTRODUCTION TO BASS-SERRE TREES

4.1. Free products. In this section, we first introduce a free product G of two
given groups H, K. The group G is the biggest one among the groups generated
by H, K with the property that any group are the quotient of G.

Precisely, a group G is called a free product of H and K if there exist a pair of
homomorphisms ¢y : H — G and (i : K — G such that they are universal in the

following diagram:
— G+ — K
w /

By the universal property, it is easy to see that ¢y : H — G and 1x : K — G are
both injective. Moreover, G is unique up to isomorphism, so G must be generated
by H and K.

Suppose that H = (S|D),K = (T|E) are given by presentations. Then by
Theorem 3.3, the group G given by the presentation (S UT|D U E) is the free
product of H, K.

Understanding H and K as disjoint alphabet sets, an alternating word w is of
form hiky - - - bk, where by € H, k; € K. The length of w is the number of letters
in word. It is called reduced if h; € H\ 1,k; € K\ 1.

We consider the set ) of all reduced alternating words hiky - - - hpkp, in H and
K. The following result is fundamental in understanding free products.

Theorem 4.1. [Normal form theorem/[4, Thm 3.1] Every element of G = H x K
s equal to a unique alternating expression of the form hiky - hpyky € Q

Sketch of the proof. Since G is genearted by H and K, any element in G can be
written as an alternating expression of the form hyky - - - hyy k. To prove the unique-
ness, we shall construct a free action of G on the set 2 of all alternating expressions.
To that end, we first construct the homomorphisms of H and K into the symme-
try group of  and then by the above universal property, the homomorphisms of
G — Sym(Q) is defined correspondingly.

For each h € H, the associated bijection ¢ g (h) is given by sending h1ky -« - - Ay ki,
to hhiky - - - hypks, with a neccessary modification so that the image is alternating
expression. Note that ¢ : H — Sym/(Q) is an injective homomorphism. Similarly,
we can define ¢ : K — Sym(Q) which is also injective. These define a group
homormorphism G — Sym(2).

Consider the empty word @ in . Any alternating expression hiki - hAmkm
of element g in G maps @ to the alternating word hik; --- hy,k,,. This word is
nonempty iff g # 1 This establishes the uniqueness of the statement. g

Corollary 4.2. If an alternating word w = hiky - - - hy ky, reprensents the identity
in G, then it must be not reduced: there exists some i such that h; =1 or k; = 1.

In particular, if two reduced words represent the same group element, then they
are equal letter by letter.

4.2. Free products acting on trees. Let G = H x K be a free product. We
define a graph I as follows.
(1) The vertex set V consists of two types H and K: V = {gH,gK : g € G}.
(2) The edge set E consists of all group elements in G.
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(3) The edge g € E = G connects gH and gK.

Then G acts on I': each element g € G sends zH to grH and =K to grK. The
edge relation is preserved. So G acts on I' by graph isomorphism.

Theorem 4.3 (Bass-Serre Trees for free products). The graph I' is a tree so that
the degree of vertex of type H (resp. K ) equals $H (resp. $K ).

Moreover, the action of G on I' has trivial edge stablizers and vertices stablizers
of type H and K conjugated to H and K respectively so that the quotient is an
interval.

Proof. By definition of action of G on the graph, there are two different orbits of
vertices: G- H and G - K. The vertex H is adjacent to hK for h € H. That is to
say, the set of edges adjacent to H has one-to-one correspondence with the set of
elements in H. Similarly, the edges adjacent to K correspond to the set K. Since
G is generated by H and K, the graph I' is connected.

We now prove that I' is a tree. Let v be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that ~ is based at H; the case at
K is similar. According to the adjacency, there are an even number of edges in ~,
where edges in v must be of form H <> hK for h € H or K <» kH for k € K up
to translation. Thus, tracing out the loop ~y, we see that the terminal point is the
vertex hiky - -hpk,H for h; € H and k; € K.

Since 7 is a loop, we have the equality hiky --- hp,k,H = H. We obtain that

(4) hiky - hpkn = h

for some h € H. Since there exists no backtracking, we see that k; # 1 for i < n
and h; # 1 for 4 > 1. It is possible that k,, = 1 or hy = 1, but they cannot happen
at the same time. So, up to removing h; or k, from the left side in (4), we obtain
a reduced word of length at least 2. But the right side in (4) is a reduced word of
length 1. This is a contradiction to the normal form theorem 4.1. The graph T is
thus a tree. The proof is complete. O

4.3. Free products with amalgamation. Now suppose that each of H and K
contain a subgroup isomorphic to F': there exists monomorphisms o : F' — H and
7: F — K. We want to formulate a biggest group G generated by H and K so
that H N K = F is realized inside G.

Precisely, a group G is called a free product of H and K with malgamation over
F if there exist a pair of homomorphisms ¢y : H — G and tx : K — G such that
they are universal in the following diagram:

By the universal property, it is easy to see that 1y : H — G and tx : K — G are
both injective. Moreover, G is unique up to isomorphism, so G is generated by H
and K.

Let w = hiky---hpk, be an alternating word over the alphabet set H and
K such that h; € H and k; € K. If it has length strictly bigger than 1 and
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hi € H\ F,k; € K\ F, then w is called a reduced alternating word. Let © be the
set of all such that h; € H\ F and k; € K \ F, unless the alternating word is of
length 1.

The following fact is obvious.

Lemma 4.4. Every element of G = H g K is equal to a reduced alternating
expression of the form hiky - hpmkm. It may not be unqiue, but the length of the
alternating word is unique.

However, such an expression will not be unique, due to the nontrivial intersection
F. To obtain a unique normal form, we have to choose a right coset transversal
Ty and Tk of F in H and K respectively: namely, in each right H-coset, choose
a right coset representative. We then consider the set {2 of words concatenating F’
with the alternating words in Ty and Tk.

Given a reduced alternating form hikq - - - by, by, we convert the letters from right
to left so that they become to be the corresponding right coset representatives. In
the final form, we will get a normal form fhik}---hl k., for some f € F. So, any
element has a normal form which turns out to be unique. Also note that in this
process, the length of a normal form is the same as that of the original one.

Theorem 4.5. [Normal form theorem/4, Thm 3.7] With the choice of the right
coset transversal Ty and Tk as above, every element of G = H xp K is equal to
a unique normal form fhiky---hpmky with f € F h; € Ty and k; € Tk when
present.

Corollary 4.6. If an alternating expression hiky - - - hypkm gives the identity, then
it is not reduced: there exists h; or k; such that h;, k; € F.

Let G = H xp K. We define a graph I' as follows.

(1) The vertex set V consists of two types H and K: V = {gH,¢K : g € G}.
(2) The edge set E consists of all left F-cosets in G.
(3) The edge gF € E connects gH and gK.

Again, G acts on I': each element g € G sends zH to gz H and zK to gz K. The
edge relation is preserved. So G acts on I' by graph isomorphism.

We have the same result for free product with amalgamation. The only difference
is that the edge stabilizer is a conjugate of F', instead of a trivial group.

Theorem 4.7 (Bass-Serre Tree for amalgamation). The graph I is a tree so that
the degree of vertex of type H (resp. K ) equals $H/F (resp. K/ F ).

Moreover, the action of G on T" has edge stablizers conjugated to F and vertices
stablizers of type H and K conjugated to H and K respectively so that the quotient
is an interval.

Proof. The proof is similar to that of Theorem 4.3. We emphasize the differences
below.

We now prove that I' is a tree. Let v be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that ~y is based at H; the case at
K is similar. According to the adjacency, there are an even number of edges in 7,
where edges in vy must be of form H <> hK for h € H/F or K <+ kH for k € K/F
up to translation. Tracing out the loop 7, we see that the terminal point is the
vertex hiky -+ hpkp,H for h; € H and k; € K.
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Since + is a loop, we have the equality hik1 - - hpk, H = H. We obtain that
(5) haky - hpkn = h

for some h € H. Since there exists no backtracking, we see that k; ¢ 1 for i < n
and h; ¢ F for i > 1. It is possible that k,, € F or h; € F, but they cannot happen
at the same time. So, combinning h; with ky or k, with A, from the left side in
(5) if necessary, we obtain a reduced word of length at least 2. But the right side
in (5) is a reduced word of length 1. This is a contradiction to the normal form
theorem 4.5. The graph T is thus a tree. The proof is complete. O

4.4. HNN extension. Let G be a group with two isomorphic subgroups H and
K. Let 7: H — K be an isomorphism. We want to build a new group G such that
G C G and H, K become conjugate in G. If G is given by a presentation

(SIR).

As usual, we request G to be the biggest one with this property. Then the desired
group G must have presentation as follows

(S, t|R,tht™! = 7(h),Vh € H),

which is called HNN extension of G over H, K, denote by Gxg~x. The new
generator t is usually called stable letter.

By definition, every element in G can be written as a product of form called
t-expression as follows:

gottgy-- -t gn

where g; € G or ¢; € {1,—1}. Any subword tht~! for h € H and t'kt for t € K
is called t-pinch in the above form. A t-expression form without ¢-pinches is called
reduced.

A reduced t-expression of an element may not be unique. In order to get a normal
form, we choose right coset transversal Ty and Tk of H and K in G respectively.

Theorem 4.8. [Normal form theorem[[4, Thm 3.1] Every element of G = Gxprx
is equal to a unique reduced t-expression of the form got® g1t gs - - - t°* g, with g; €
Ty UTk when present. If ¢, =1 fori >0, then g; € Ty; if ¢, = —1 for i > 0 then
g; € K.

Corollary 4.9 (Briton’s Lemma). If a t-expression in G = Gruox represents the
trivial element, then it must contain t-pinches.

Let G = Gxgx. We define a graph T as follows.

(1) The vertex set V consists of all left cosets of G: V = {zG : = € G}.

(2) The edge set E consists of two types H and K: all left H-cosets and K-
cosets in G.

(3) The edge 2K € E connects G and xtG; And zH € E connects xt~1G and
xG.

We define an action of G on I': each element g € G sends =G to gzG. The edge
relation is preserved. So G acts on I' by graph isomorphism.

Though we have two types of edges, they actually belongs to the same orbit: the
element ¢ sends the edge [t71G, G] to [G,tG].
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Theorem 4.10 (Bass-Serre Tree for HNN extension). The graph T is a tree so that
the degree of vertex equals §G/H + G /K. Moreover, the action of G on T has edge
stablizers conjugated to H (or equivalently K ) and vertices stablizers G so that the
quotient is a loop.

Proof. The proof is similar to that of Theorem 4.3. In this case, there are only one
orbit of vertices and edges.

We now prove that I' is a tree. Let v be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that « is based at G. According
to the adjacency, edges in v must be of form as follows, up to translation,

G < gtG

for g € G/K or
gt G & G
for g € G/H. Thus, tracing the loop 7, we see that the terminal point is the vertex
g1t gate? -+ - gt G for g; € G and ¢; € {1,—1}.
Since 7 is a loop, we have the equality g1t got* - - - g,t**G = G. We obtain that

(6) Gt gat? - gt =g
for some g € G.

Since there exists no backtracking, we see that if ¢, = 1 and ¢;41 = —1, then
gi+1 € G\ H. Indeed, if not, we have g;1 € H. Recalling that G acts transtively
on I', we can assume that ¢ = 1. Thus, ¢1tgt~'G = G. So the subpath

G+ gltG Ad gltggtflG =G

gives a backtracking in .

By the same reasoning, if ¢, = —1 and ¢;41 = 1, then g;11 € G\ K. Again, it is
possible that g1, g, € HUK, but it cannot happen at the same time that g;,9, € H
and ¢1,¢,K. So, combinning hy with k; or k,, with h,, from the left side in (6) if
necessary, we obtain a reduced word of length at least 2. But the right side in (6)
is a reduced word of length 1. This is a contradiction to the normal form theorem
4.8. The graph I' is thus a tree. The proof is complete. O

Exercise 4.11. Draw a portion of the Cayley graph of the group (a,t : ta*t=1 = a®).

4.5. Abelianization of free products. Let G = H x K be a free product. By
the universal property, there exists a natural morphism G — H x K. We denote
by N the kernel of this morphism.

We start with a classification of isometries on trees.

Lemma 4.12. Let g be an isometry of a tree T. Then either g fizes a point or g
preserves a unique geodesic by translation.

Proof. Suppose that g does not fix any point. Fix a basepoint o € T. Consider
the geodesic segments [0, go] and [0, g~!] both originating from o. Since T is a tree,
let b be the branching point of these two geodesics. We then claim that d(o,m) <
d(o0, go)/2. Otherwise, the middle point m of [0, go] coincides with that of [0, g~ 0],
which is gm. So m is fixed by g: a contradiction. Hence, d(0,b) < d(o, go)/2. We
now form a geodesic  preserved by g. Let v = Ujez[g™ m, m]. It is clear by the
the above Claim that «y is a geodesic. The proof is then complete. g

Exercise 4.13. Prove the uniqueness statement in Lemma 4.12.
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Exercise 4.14. Any finite group acts on a tree with a global fized point.

Corollary 4.15. All finite subgroups in a free product must be conjuated into H
or K.

Exercise 4.16. Let G = H xp K be a free product of non-trivial groups H, K over
F. Using Bass-Serre tree to prove that the center of G is contained in F.

Lemma 4.17. N is a free group generated by S = {[h, k] :he H\ 1,k € K\ 1}.

Proof. By Theorem 2.20, we only need to show that N acts freely on the Bass-Serre
tree I'. To prove the freeness of N, any vertex stabilizer of the Bass-Serre I' is sent
to a non-trivial subgroup under the morphism H x K — H x K. This implies that
the kernel N of this morphism acts freely I'. Thus the conclusion follows. g



