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Chapter 1

Preliminaries

The reader is assumed to be familiar with the basics of group theory includ-
ing the isomorphism theorems and the structure theory of finitely generated
abelian groups. The groups we will be dealing with are usually infinite and
non-abelian. In relation to several topics the reader will also be expected to
be familiar with the theory of fundamental groups and covering spaces. In
this chapter we establish some notational conventions and collect some fre-
quently used facts from both elementary group theory and from the theory
of covering spaces.

1.1 About groups

We normally write groups multiplicatively: if G is a group and g, h € G then

their product is gh, the identity is 1 € G and the inverse of ¢ is g~!. Two
elements g, h € G are said to commute if gh = hg. Observe that

gh=hg— h tgh=g< g 'hlgh=1.
For any elements u,v € G we define their commutator [u,v] = u v uv

which measures whether or not v and v commute.

The element v~ 'uv is called the conjugate of u by v, while vuv~! is the
conjugate of u by v~!. Two elements u,w € G are said to be conjugate in G
if there exists and element v € G such that w = v~'uv. Being conjugate is
an equivalence relation. For fixed v € G the function ¢, : G — G defined by
Ly(g) = v1gv is called conjugation by v. Tt is a homomorphism since

to(gh) = v ghv = v~ guv™ h = 1,(g)t.(R)
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and in fact it is an automorphism of G (that is, an isomorphism of G with
itself) called an inner automorphism.

If S is a subset of G, we denote by (S) the smallest subgroup of G
containing S, called the subgroup generated by S. This subgroup (S) can be
characterized as the set of all g € G which are equal to a (possibly empty)
product of s; € S and their inverses, that is

{9€G|g=s{ss s for some s; € S and ¢; = +1}.

To see this, just observe that the collection of elements having such expres-
sions contains S and is closed under products and also taking inverses since
(185~ sf) 71 = ;% - 532,

Similarly if R is a subset of G we denote by either nmg(R) or sometimes
(R)Y the smallest normal subgroup of G containing R, called the normal
closure of R in G. This normal subgroup nmg(R) can be characterized
as the set of all ¢ € G which are equal to a (possibly empty) product of

conjugates of r; € R and their inverses, that is the set of g € GG such that
g =uy g uy s uy - -u,;lr,?“uk for some r; € R,u; € G and ¢; = £1.

Of course this is just the subgroup generated by all the conjugates of elements
of R. To see that it is a normal subgroup we observe that, for g expressed
as above,

vlgy = v Nty uy trsPug g triFug v

o -1 -1 €1 —1 —1 .e2 -1 —1 €k
= UV Uy T{UWVV Uy TQUV: -V uk Tk UV

= (u0) 5 () (upv) 7 (upv) - (upv) T (ugw)

One particularly important subgroup of any group G is its commutator
subgroup [G, G| which is defined to be the subgroup generated by all the
commutators [g, h] with g,h € G. Since the conjugate of a commutator is
again a commutator, [G,G] is a normal subgroup and the quotient group
G/|G, G is abelian because every commutator belongs to [G, G|. If we sup-
pose ¢ : G — A where A is abelian, then ¢([g, h]) = [¢(g), ®(h)] =a 1 since
A is abelian and so [G, G] C ker ¢. Thus G/[G, G] is the largest abelian quo-
tient group of G. The subgroup [G, G| has the additional property that it is
fully invariant, meaning that it is mapped into itself by any homomorphism
¥ : G — G. (Note that a fully invariant subgroup is necessarily normal.)



Another subgroup of interest is the center Z(G) consisting of all elements
z such that zg = gz for all ¢ € G. It is easy to see that Z(G) is a normal
subgroup of G and moreover that it is characteristic, meaning that it is
invariant under any automorphism of G.

The commutator subgroup [G, G| is sometimes called the derived group
and denoted G’. Next one can define G" = [/, G'] = [|G, G|, |G, G]] which is
the commutator subgroup of G'. Inductively one defines a descending series
of subgroups by GV = [G(™) G™)] called the derived series of G of which
G’ and G" are the first two terms. The G®) are fully invariant subgroups and
the successive quotients G* /G*+1) are abelian. A group G is solvable (or
soluble) of derived length < n if G = 1. In this case G can be constructed
by taking successive extensions by the abelian groups G*)/G*+1)_ In the
particular case that G = G” = 1, the derived group G’ of G is abelian
and G is said to be metabelian. As an example, the multiplicative group
of invertible n x n upper triangular matrices over any commutative ring is
solvable of derived length n — 1.

Another commonly studied descending series of fully invariant subgroups
of G is the lower central series defined by v1(G) = G and v,11 = [1.(G), GJ.
Here, if H, K are subgroups of G, then [H, K] is the sugroup generated
by the commutators [h, k] with h € H,k € K. Thus v (G) = [G,G] and
713(G) = [[G, G], G]. A group is said to be nilpotent of class ¢ if v.11(G) = 1.
So a group G is nilpotent of class 2 if [[G,G],G] = 1 which is equivalent
to saying that [G,G] C Z(G) or “commutators are central in G”. More
generally v.41(G) = 1 means the v.(G) is contained in the center of G. Some
examples: if p is a prime, a finite p-group is always nilpotent (of some class)
and a finite nilpotent group is a direct product of its Sylow p-subgroups.
The multiplicative group of n x n upper triangular matrices over Z (or any
commutative ring) with 1’s on the diagonal is nilpotent of class n — 1.

1.2 About fundamental groups and covering
spaces

Useful references for fundamental groups and covering spaces are the text-
books by Massey [6] and Rotman [8]. We here summarize (with almost no
proofs) some of the basic facts we will need.

The spaces we will deal with will always be CW-complexes. These can



be thought of as cell complexes which are built inductively by attaching the
boundaries of new standard n-cells to an existing complex. Thus a CW-
complex X is a Hausdorff space which is the union of an increasing sequence
of subspaces X° C X! ¢ X? C --- C X. The initial 0-skeleton X° is a
discrete set of points. The n-skeleton X™ is obtained from X! by attaching
n-cells along their boundary (see [6] or [8] for details). X is endowed with the
weak topology meaning that a subset A of X is closed if its intersection with
each n-cell of X is closed. Since we are largely interested in fundamental
groups, we will normally need only 2-dimensional CW-complexes, that is
X = X2

We assume the reader is familiar with the fundamental group. If zq is a
O-cell of X, the fundamental group (X, zg) is the collection of homotopy
classes of loops beginning and ending at x( relative to this endpoint. The
group multiplication is composition of paths meaning first go along one and
then the other. Any path with endpoints in X is homotopic relative to its
endpoints to a path in X!. An homotopy between two such paths in X
can be pushed into X? which is why we usually only need 2-dimensional
complexes.

The main tool for computing the fundmental group is the following.

Theorem 1.1 (Seifert-vanKampen) Let X = U UV where U, V and
UNYV are all non-empty, arc-wise connected open subsets of X. Choose a
base point xo € UNYV for all of their fundamental groups. Then the diagram
of fundamental groups with maps induced by inclusions

’/Tl(UmV)

m(U) m1(X)

Ly Ly

7T1(V)

is a pushout. That is, if G is a group and o : m(U) — G and B : m (V) — G
are homomorphisms such that ac = (7 then there is a unique homomorphism



v m(X) — G such that « = vy and B = ~yuy. The diagram is:

7T1(Uﬂ V)
g T
7T1(U) w 7T1(X) o 7T1(V)
"3l
N :EI.'y 3
A\
G

O

Usually there are ways around the requirement that U and V' be open
and it is enough to assume they are sub-complexes. Here is the special case
which is of most interest to us.

Corollary 1.2 Suppose that the CW-compler X s obtained from the con-
nected CW-complex Y attaching a single 2-cell by identifying its boundary
with the loop X\ C Y based at xy. Then 7 (X, xq) is isomorphic to the quo-
tient group of m (Y, xg) by the normal closure of the element [\ € w1 (Y, xo).

Proof: Think of the 2-cell as the unit ball B? in R?. Let V be the image
of the interior of B? in X and let U be Y union the image of B?minus the
origin. Now U NV is V minus the image of the origin and so is topologically
an open annulus with 71 (U N'V) = Z. Since V is topologically an open disk
we have m;(v) = 1. Hence, by the Seifert-vanKampen Theorem, m(X) is
the quotient of 7 (U) by the normal closure of a loop corresponding to the
generator of 7 (U N'V). But Y is a deformation retract of U and under the
retraction the annular region U NV maps simply onto A. a

We now turn to covering spaces. For convenience we will assume all spaces
are arc-wise connected (path connected) and locally arc-wise connected unless
otherwise specified. Since we have in mind CW-complexes the local topology
is always well behaved for our applications.

Let X be (path connected) topological space. A covering space is a path
connected space X together with a continuous mapping p : X — X such that
for each x € X there is an open neighborhood U = U, of x that is evenly
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covered by p, that is, p~}(U) is a disjoint union of open sets S; called sheets
such that p|g, : S; — U is a homeomorphism for each i. The map p is often
called the covering projection. If o € X the discrete set of points p~*(zg) is
called the fiber (or fibre) over x.

By a path in a space X we mean a continuous map A : I — X where
I = [0,1], the unit interval. Some important properties of covering spaces
are the following.

Theorem 1.3 (Unique Path Lifting) Letp: X — X be a covering space
and let g € X and xo € X be such that p(Zg) = xo. Then for any path
A I — X with wnitial point xq there is a unique path X I — X with initial
point To such that pS\ =\

Theorem 1.4 (Covering Homotopy Lemma) Letp: X — X be a cov-
ering space and let o, 7 : [ — X be two paths with the same initial point. If
their images po and pt are homotopic (rel endpoints) in X, then o and T
are homotopic (rel endpoints) in X by a homotopy which projects to the one
m X. In particular, o and T have the same end points.

Corollary 1.5 Let p : X — X be a covering space and let &9 € X and
xg € X be such that p(Zg) = xo. Then the induced map

D« 7T1()~(,53'0) - 7T1(X7~’170)

is a monomorphism. Thus a closed loop A starting at xo in X lifts to a
closed loop starting at To if and only if [A] lies in the subgroup p.(mi (X, o))
of m (X, xg).

Let Z = p~!(xo) be the fibre over a point zy € X. If g € 7 (X, x¢), for
each z € Z we define zg € Z as follows: g is represented by some closed
loop A : I — X at zy. A lifts uniquely to a path X : I — X starting at z
and ending at some point A(1) in Z. We define zg = A(1). One can check
using the above results that this definition is independent of the choice of
A representing g. Moreover this defines a group action of (X, zg) on the
fiber over zg, that is, z1 = z and (zg1)g2 = 2(g192). In terms of this action
we have the following.

Theorem 1.6 Let p : X — X be a covering space and let Z = p~'(z0) be
the fibre over a point xqo € X. Then



1. m(X,x) acts transitively on the fibre Z.
2. If 2 € Z then the stabilizer of z is p.(m (X, 2)).

3. The elements of Z are in one-one correspondence with the right cosets
of pu(m1 (X, 2)) in m (X, xo).

Consequently the fibres over any two points of X have the same number of
elements. a

If 21,2 € Z = p~Y(x0) then the images p,(m (X, 2)) and p.(m1(X, 23))
are conjugate subgroups of m1(X, zg). To see this choose a path A from z; to
Z9 In X.If 09 is a closed loop at starting at 2y, then Ao A~! is a closed loop
starting at z;. Moreover every closed loop starting at z; is homotopic to one
of this form (hint: insert AA~'). Hence

[PAIp«(m1(X, 22))[pA] 7" = pu(mi(X, 21)).

One can also check that any conjugate subgroup of a given p,(mi (X, 2))
arises in this way by lifting the conjugating element.

A covering space p : X — X is said to be regular if p,(m (X, %)) is a
normal subgroup of m(X,zg). Note that this is independent of the choice
of base point in the fibre over zo. If m (X, &) = 1, that is if X is simply
connected, then X is called the universal covering space of X (it is unique).
Of course the universal covering space is regular.

Unique path lifting has an important generalization which gives a criteria
for lifting arbitrary maps to a covering space.

Theorem 1.7 (Lifting Criterion) Let p: X — X be a covering space and
let Y be a connected, locally path connected space. Suppose yo € Y, Ty € X
and xy = p(Zo). Given a map of pointed spaces ¢ : (Y,yo) — (X, x0), there
exists a lifting ¢ = (Y, yo) — (X, &o) with ¢ = po ¢ if and only if

¢u(m1(Y, 10)) € pa(mi (X, %)),
If this lifting exists, it is unique.

Let p: X —» X bea covering space. A homeomorphism ¢ : X — X is
said to be a covering transformation if p o ¢ = p. The collection of covering
transformations is clearly a group under composition. It is easy to check that
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covering transformations are compatible with the action of (X, z() on the
fibre Z = p~'(z¢) in the following sense: ¢(zg) = ¢(z)g for g € m (X, z0)
and z € Z.

Applying the above Lifting Criterion, one can show the following.

Corollary 1.8 Let p: X — X and 21,20 € Z = p~Yxo). Then there is a
covering transformation ¢ such that ¢(z1) = ¢(22) if and only if

p*(”l(f(azl)) ZP*(Wl(Xa»’&))-

Hence the group of covering transformations acts transitively on Z = p~1(xo)
if and only if p : X—>Xisa reqular covering space.

Moreover, if p : X — X is a reqular covering space then the group of
covering transformation is isomorphic to the quotient group

7Tl<X7 .130)/p*(7T1(X, Z))

for any z € p~*(xo). In particular, when p : X — X is the universal covering
space, then the group of covering transformations is isomorphic to m (X, o).

This bring us to the existence problem for covering spaces. On needs
some local conditions on the topology of the space X. These conditions do
hold for X a CW-complex, so we state this vaguely as the following.

Theorem 1.9 Under suitable local conditions on X, given any conjugacy
class of subgroups of m (X, xg) there exists a covering space p : X — X
corresponding to the given conjugacy class. In particular, any subgroup of

71 (X, o) is the image p.(m (X, 2)) for some choice of z € p~!(xp).

This completes our sketch of covering space theory.
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Chapter 2

Free groups and presentations

In introductory courses on abstract algebra one is likely to encounter the
dihedral group D3 consisting of the rigid motions of an equilateral triangle
onto itself. The group has order 6 and is conveniently described by giving
two generators which correspond to rotation through 120° and flipping about
a central axis. These operations have orders 3 and 2 respectively and the
group Dj is described by the presentation

Ds={(a,b|a*=1,>=1,a"ba=0b"")

some equivalent version. Here the symbols a and b are called generators and
the equations they are subjected to are called defining relations.

Combinatorial group theory is concerned with groups described by gen-
erators and defining relations and also with certain natural constructions for
making new groups out of groups we already have in hand. Also one would
like to (1) say something about their structure, their subgroups, and various
properties they might enjoy and to (2) find algorithms for answering some
natural questions about them and their elements. Combinatorial group the-
ory has many connections with algebraic and geometric topology which have
provided both motivation and methods for studying groups in this manner.

In order to begin our study of presentations we first need to discuss free
groups. We will then introduce presentations in terms of generators and
relations more formally and indicate their connection with algebraic topology
via the fundamental group.
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2.1 Free groups

In most algebraic contexts a free object is an object which has a free basis.
The pattern for groups is typical of this sort of definition.

A subset S of a group F is said to be a free basis for F' if, for every (set)
function ¢ : S — G from the set S to a group G can be extended uniquely
to a homomorphism @ : F' — G so that ¢(s) = ¢(s) for every s € S.

S - F
el

@ .

¥

G

A group F is said to be a free group if there is some subset which is a free
basis for F'.

Consider the infinite cyclic group C' (written multiplicatively) which con-
sists of all powers of a single element a,so

C={.,a%a"1=0d"a=a"d*d. .}

and multiplication is defined by a' - a/ = a**J for i,j € Z. Then C is a free
group with free basis the set with a single element S = {a}. Forif o : S — G
is any function, say ¢(a) = g € G then ¢ extends to a homomorphism
¢ : C — G by defining ¢(a’) = g'. Moreover it is clear this is the only way
to extend ¢ to a homomorphism. Notice that C also has another free basis,
namely the singleton set {a~!'} and that these two are the only free bases for
C.

Similarly, the additive group of integers Z (which is of course isomorphic
to C) is also a free group with either of the singleton sets {1} or {—1} as a
free basis. As a slightly more exotic example, we note that the trivial group
consisting of {1} alone is a free group with the empty subset as free basis.

Beyond these familiar examples we have to do something to prove that
free groups exist. In fact we can make a free group with any given set S as
a basis in the way described below.

Theorem 2.1 If S is any set, there is a free group Fs having S as a free
basis.
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Suppose we are given a set S which we think of as just a set of symbols (S
need not be countable or ordered). By a word on S we mean an expression
of the form ai'a3’ ...a;* where ¢, = £1 and a; € S (not necessarily distinct
symbols). That is, a word is a string of elements of S with exponents either
+1 or —1. The intention is that a~* and a™ are to be mutually inverse group
elements and one usually identifies a*! with a.

Sometimes it is convenient to adopt a slightly different definition. Let
S™t = {a7' | a € S} be thought of as the set of inverse symbols for the
symbols of S. Then by a word on S we would mean just a string of symbols
from S U S~!. This rarely causes confusion and we use whichever version is
convenient.

A word on S is said to be (freely) reduced if it does not contain a subword
(consecutive substring) of the form aa™' or of the form a~'a; such substrings
are called inverse pairs of generators. If a word w contains an inverse pair,
say w = ua~‘av where u and v are subwords, then in any group containing w
one must have w = wv (here = means identical as words and = means equal
as group elements). In removing an inverse pair, the two symbols a and a™!
are said to cancel .

If we start with any word w by successively removing (canceling) inverse
pairs we arrive in a finite number of steps at a freely reduced word w’ which
we call a reduced form of w. There can be several different ways to proceed
with the cancellations, but one can show that end result w’ does not depend
on the order in which the inverse pairs are removed. This is a basic but
non-trivial fact which certainly requires proof. It allows us to call w’ the
reduced form or free reduction of w and we write this as w’ = p(w). Here is
the required result:

Lemma 2.2 There is only one reduced form of a given word w on S.

Proof: Let x € SUS™! and write 7! for the corresponding inverse symbol
(so if @ € S then a is the inverse symbol of a=! € S~1). We use induction
on the length of w as a string of symbols. If w is reduced there is nothing
to show. So suppose w = uzz v and focus on this particular occurrence
of an inverse pair which we distinguish by underlining as in uzz'v. If we
can show that every reduced form w’ of w can be obtained by canceling this
occurrence first, then the lemma will follow by induction on the shorter word
uv thus obtained.

Let w’ be a reduced form of w. We know that w’ is obtained by some
sequence of cancellations. First suppose that the pair we are focusing on

13



xz~ ! is cancelled at some step in this sequence. Then we can clearly rear-

range the order so that this particular pair is canceled first. So this case is
settled. Now xz~! cannot remain in w’ so at least one of these two sym-
bols must be canceled at some step. The first cancellation must then look
like iz 'z~ vy —Yuy # 1oy or wyzzTlrv—)uixr #71 Fu;. But in ei-
ther case, the word obtained by cancellation is the same as that obtained by
cancelling the original pair. So we may cancel the original pair at this stage

instead. Hence we are back in the first case and the lemma is proved. O

We are now ready to define the free group Fg with free basis S. The
elements of Fyg are the freely reduced words on S (including the empty word
which we denote by 1). Multiplication in Fg is defined by u - v = p(uv),
that is the product is the free reduction of one word followed by the other
(concatenation). One now must check the axioms for a group. The identity
is the empty word 1 and the inverse of a{*a$?...ay* is a, % a, * ™" ... a7
The associative law follows from the fact that the reduction of a word is
independent of the order in which inverse pairs are removed.

To see that Fl is in fact free, consider any function ¢ : S — G where G
is a group. We define

€1 €2 €k

Plat'ay’ ... aqpf) = (ar) p(az)?. .. plag)®™.

This map ¢ is easily checked to be a homomorphism. Moreover, it is clear the
definition is forced upon us so that it is the unique homomorphism extending
the function .

Here is one consequence of the above.

Corollary 2.3 FEvery group is a quotient group of a free group. Thus if G is
a group there is a free group F and a normal subgroup N such that G = F/N.

To see this, given a group G we think of G as a set (forgetting its group
operation for the moment) and form the free group F as above. Then the
identity function ¢ : G — G from G as a set to G as a group (remember the
group operation) extends uniquely to a homomorphism ¢ : Fg — G. The
homomorphism ¢ is clearly surjective (since ¢ is a bijection), so G & Fg/N
where N = ker ¢.

In general, if S is a subset of a group G, the subgroup denoted by (S)
(called the subgroup generated by S) is the image of the extension ¢ : Fg — G
of the inclusion function. That is, the subgroup (S) generated by S consists

14



of those elements of G which are equal to some product of elements in S and
their inverses. In particular, if (S) = G, we say that S generates G.

The rank of a the free group Fys is the cardinality of the set S of gener-
ators. One can show this is an invariant of the free group Fy, that is if T is
another free basis for Fg then S and T have the same cardinality (number
of elements). If G is any group, then the rank of G is the cardinality of the
smallest set of generators for GG, that is the rank of the smallest free group F'
for which there is a surjection ¢ : F' — G. It is often difficult to determine
the rank of a group (other than a free group).

Notation: Although we somewhat carefully distinguished between ¢ and
@ in the above, we often adopt the notational convention that the extending
homomorphism is also denoted . This is common practice and usually
causes no confusion. In some cases to be more precise we may resort to the
original notation. We will also use notation such as w = uwv to mean that
the word w is identical to the word u followed by the word v. The equation
w = uv or w =g uv means that w is equal in some appropriate group G to
the product of u and v. Also, if z,y € G their commutator is the element
denoted [x,y] which is by definition [z,y] = 7'y txy. As usual, two such
elements commute if xy =¢ yx which is equivalent to [z, y] =4 1.

Terminology We use the terms surjective,epic and onto for functions in-
terchangeably. An epimorphism is a surjective homomorphism. Likewise,
the terms injective monic and one-one are interchangeable, and a monomor-
phism is an injective homomorphism.

Theorem 2.4 (Characterization of freeness) Let G be a group, and S a
subset of G. Then G is free with basis S if and only if the following both
hold:

1. S generates G; and

2. If w is a word on S and w =g 1, then w is not freely reduced, that is
w must contain an inverse pair.

These conditions imply that every element of GG is equal to a unique freely
reduced word in G. For if u =¢ v and v and v are freely reduced, then uv=!
contains an inverse pair. Hence the last symbol of u is the same as the last
symbol of v. So inductively v and v must be identical. Thus different freely
reduced words represent different elements of G. Hence the obvious extension
of the identity on S is an isomorphism from Fg onto G.
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Recall that two elements say ¢ and h in a group G are conjugate if there
exists some x € G such that ¢ = 27 thz. A word w in the free group Fy
with basis S is said to be cyclically reduced if every cyclic permutation of w
is (freely) reduced. If w is (freely) reduced, cyclically reduced is equivalent
to saying the first symbol of w is not the inverse of the last symbol of w.

Exercise 2.1 Show that two cyclically reduced words v and v in a free group
Fs are conjugate if and only if one is a cyclic permutation of the other.

Exercise 2.2 Show that in a free group two elements commute if and only if
they are powers of a common element, that is uv = vu implies that u = w™
and v =w" for some w and m,n € 7.

2.2 Presentations by generators and relations

As in the case of D3 above, we want to describe groups by writing down
some elements which generate the group and then imposing some equations
on them. Such a piece of notation might look like

G:<a1,a2,... |U1:1)1,U2:U27...>

where the a; are symbols and the u; and v; are certain words in the q;.
(While we habitually use this sort of notation, it is not necessary for the set
of generators to be countable or ordered.)
In any group, v = v if and only if wv™
presentations in the equivalent form

1 = 1 so we can always write our

G:<a1,a2,... |T1:1,7’2:1,...>

where r; = w;v; 1 Although we will use presentations with equations of the
form u = v, for our theoretical discussion it is convenient to assume our
defining equations are of the form r = 1.

To be a bit more formal for a moment, a presentation P = (S | D) is
a pair consisting of a set S called generators and a set D of words on S
called (defining) relators. The group presented by P, denoted gp(P) is the
group Fs/Np where Fg is the free group with free basis S and Np is the
normal closure of D in Fg, that is the smallest normal subgroup containing
D. Thus if r € D, then r € Np and so r =g,p) 1. If G = gp(P) we often
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abuse notation and write G = (S | D) when it is not necessary to distinguish
between a group and a description of that group.

A presentation P = (S | D) is said to be finitely generated if S is a finite
set and to be finitely related if D is a finite set of words. If both S and
D are finite, P is said to be a finite presentation. If S = {aj,as,...} and
D = {ry,rq,...} we use either the notation

P = <CI,1,CL2,... | 7’1,7”2,...)
in which case the r; are called relators, or the notation
P= <a1,a2,... | 7”1:1,7’2:1,...>

in which case the equations r; = 1 are called relations. Usually we also
extend the latter to allow

P:<6L1,CL2,... ‘U1:U1,U2:’U2,...>

~1
where r; = uv; .

Here are a few more examples of presentations.

1. The infinite cyclic group C' written multiplicatively with generator a
has presentation C' = (a | ) with an empty set of defining relators.
More generally the free group Fg with free basis S has a presentation

Fs=(S|0).

2. The finite cyclic group C,, of order n has a presentation C,, = (a | a" =
1).

3. The free abelian group of rank 2 has a presentation (a,b | ab = ba) or
equivalently (a,b | aba™'b~! = 1). In this group, which is isomorphic
to Z @ 7Z, every element is equal to a unique word the form a’¥’ where
1,j € 7Z and multiplication is addition of the corresponding exponents.

4. The dihedral group D,, of order 2n consisting of the rigid motions of
the regular n-gon has presentation

D, ={a,b|a®=1,b"=1,a""ba=0b"").
5. The presentation P = (a,b | ababa = 1) turns out to be a presentation
of the infinite cyclic group. This is not quite obvious, but we will show

this below.
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6. Any finite group G has a finite presentation. For generators we can
take all the group elements, say {a1,...,a,}, and for relations we take
all the equations from the multiplication table (these have the form
a;a; = a and are n? in number.)

Of course when we write down some defining relations for a group there
can be consequences we don’t expect. For instance consider the group men-
tioned above with presentation G = (a, b | ababa = 1). Now baaba =¢ 1 since
this is just a conjugate of the given relator. Multiplying this by the inverse
of the relator we obtain

1 =¢ (baaba)(ababa)™" = baabaa b~ 'a b a™ = bab 'a™"

and so ab =g ba. It follows that GG is an abelian group which may not have
been apparent at first.

Exercise 2.3 Let G = (a,t | t7'at = a®). Show that every element of G
is equal to a word of the form t"a*t™™ where n > 0 and m > 0. Let N
denote the normal closure in G of the element a. Show that N is generated
by elements of the form t"at™, and that N is abelian.

Exercise 2.4 Let G = {a,b | a”'ba = b*, b~ rab = a*®). Show that a =¢ 1
and b =g 1 and conclude that this is a presentation of the trivial group.

Suppose that G = (S | D) is a group given by a presentation. There is
a sort of theoretical characterization of those words w such that w =4 1,
namely

Lemma 2.5 Let G = (S | D) be a group given by a presentation. If w is
any word in the generators of G, then w =¢ 1 if and only if as an element
of the free group Fs there is an equation

w =py urriuy ugruy L ugrgug !
for some words u; € Fs, r; € D and ¢; = £1.

To see this, one simply observes that the set of words equal to such
expressions contains D and is closed under conjugation, multiplication and
inversion. Hence it is Np, the smallest normal subgroup containing D.
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2.3 Dehn’s fundamental problems

Suppose we are studying groups given by presentations. We would like to
know about the existence and nature of algorithms which decide

e [ocal properties — whether or not elements of a group have certain prop-
erties or relationships;

e global properties — whether or not groups as a whole possess certain
properties or relationships.

Such questions are called decision problems. The groups in question are
assumed to be given by finite presentations or in some other explicit manner.

Historically the following three fundamental decision problems formulated
by Max Dehn in 1911 have played a central role:

word problem: Let G be a group given by a finite presentation.
Does there exist an algorithm to determine of an arbitrary
word w in the generators of G whether or not w =¢ 17

conjugacy problem: Let GG be a group given by a finite pre-
sentation. Does there exist an algorithm to determine of
an arbitrary pair of words v and v in the generators of G
whether or not u and v define conjugate elements of G?

isomorphism problem: Does there exist an algorithm to de-
termine of an arbitrary pair of finite presentations whether
or not the groups they present are isomorphic?

The word and conjugacy problems are decision problems about local prop-
erties while the isomorphism problem is a decision problem about a global
relationship.

Motivation for studying these questions can be found in algebraic topol-
ogy. For one of the more interesting algebraic invariants of a topological
space is its fundamental group. If a connected topological space T' is reason-
ably nice, for instance if T is a finite complex, then its fundamental group
m1(T) is finitely presented and a presentation can be found from any reason-
able description of T'. The word problem for m;(7") then corresponds to the
problem of determining whether or not a closed loop in T is contractible.
The conjugacy problem for 7 (T") corresponds to the problem of determining
whether or not two closed loops are freely homotopic (intuitively whether one
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can be deformed into the other). Since homeomorphic spaces have isomor-
phic fundamental groups, a solution to the isomorphism problem would give
a method for discriminating between spaces (the homeomorphism problem).

2.4 Homomorphisms

One useful aspect of having a presentation for a group is that it gives us
a method of checking whether a proposed map between groups is a ho-
momorphism. Suppose that we have a group given by a presentation, say
G = (S| D), and that ¢ : S — H is a function. We want to know whether
can be extended to a homomorphism from G to H. Now we do know that v
extends uniquely to a homomorphism ) : Fs — H. The map t is of course
just a formal extension of ¢ to all (freely reduced) words.

Recall that G = Fg/Np where Np is the normal closure of D. The
original ¢ extends to a homomorphism if and only if Ny C kere. Hence
1 extends to a homomorphism if and only if ¢(r) =5 1 for all r € D. We
record this observation as

Theorem 2.6 Let G = (S | D) and suppose that 1 : S — H is a function.
Then v extends to a homomorphism ¢ : G — H if and only if ¢(r) =g 1 for
all v € D where ¢ : Fg — H 1s the formal extension of ¥ to all words.

As an illustration, consider the group G = (a,b | ababa = 1) and the
infinite cyclic group C' = (¢ | ) with generator ¢. Consider the function
Y defined by ¥(a) = t72 and (b) = t3. We ask whether 1) extends to a
homomorphism. We compute that

Y(ababa) = t2537 13172 =150 =4 1

and so we can conclude that, yes, 1) extends to a homomorphism.
Continuing this example, the function ¢(t) = ab extends uniquely to a
homomorphism from ¢ : C' — G since C' is free with basis ¢ (or technically

{t}). Now
(Yo p)(t) = ¢(p(t) = p(ab) =t7%> =t

and

(pov)(a) = p(¥(a)) = p(t™) = (ab) * =a
(po)(b) = ¢(¥(a)) = (t’) = (ab)* = b
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where last equations are follow easily from the relation ababa = 1, for instance
(ab)® = ababab = b and a = (ab)2ababa. It follows that the homomorphisms
are mutually inverse and hence are both isomorphism. So G is isomorphic
to the infinite cyclic group as we claimed earlier.

Here is another illustration using equation notation. Consider the group
with presentation G = (a,t | t"'at = a*®). We ask whether the function v
defined by ©(a) = a?® and (t) = t extends to a homomorphism from G
to itself. To check this we simply compute ¥ of both sides of the defining
relation and show they are equal.

Ot at) = o) @)y (t) = t1d’t = (t1at)’ = (a®)? = ().

Hence v defines a homomorphism from G to itself which we again denote by
1. Observe that this homomorphism is surjective. For its image contains ¢
and a? and hence also a since a = ta*t~' is a consequence of the defining
relation.

Next consider the function ¢ defined by ¢(a) = tat™! and (t) = t. One
can check that ¢ extends to a homomorphism and that ¢) and ¢ are mutually
inverse. Hence they are both automorphisms of the group G.

This group is actually one of a family of interesting groups having pre-
sentations

Gmn = (a,t | t71a™t = a™)

which are known as Baumslag-Solitar groups. In this notation the above
group is G 2.

Exercise 2.5 Consider the group Gi5 = {(a,t | t *at = a?®). Define a func-
tion from given the generators of G 2 to the group GL(2,Q) of 2 x 2 matrices
with rational coefficients by

11 0
2
~loi] e-la ]
Show that this function defines a homomorphism ¢ : Gh2 — GL(2,Q). Also

show that ¢ is injective and hence G4 2 is isomorphic to a group of matrices.
(Hint: the results of an earlier exercise may be helpful.)

Again consider a presentation of a group G = (S | D) and let E be any
set of words in Fs. Then the group presented by (S | D U E) is Fs/Npug
which is a quotient group of G. The quotient homomorphism from G to
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(S| DU E) is defined by just sending the symbols in S to themselves.
Moreover if 6 : G — H is surjective, then H = Fg/Np g for some suitable
set of words E; simply take E to be the set of words in the kernel of . We
record this as follows:

Theorem 2.7 (von Dyck) Let G = (S | D) be a presentation of a group
and let E be any set of words in Fg. Then the group presented by (S | DUE)
s a quotient group of G with quotient homomorphism defined by the identity
map on S. Moreover, every quotient group of G is isomorphic to a quotient
of this form.

Suppose that we have a presentation
G = <a1,&2,... ‘ r = 1,7”2: 1,>

Then we can present the abelianization G/[G,G] of G (which is the largest
abelian quotient), by simply adding all the relations a;a; = a;a;, thus

G/[G, G} = <a1,a2, e | a;a; = ajai(‘v’i,j),rl = 1,7”2 = 17. . >

In case the given presentation is finite, one can then use the resulting pre-
sentation to compute the decomposition of G/[G, G| as a direct sum of cyclic
groups.

Exercise 2.6 Suppose that G = (ay,...a, | 11 = 1,...1, = 1) and that
H={ay,...a, | =1,...0p = Lirpe1 = 1). If G is finite, does the order
of H divide the order of G 2 Justify your answer.
Exercise 2.7 Consider the group with presentation G = {(a,b,c | ¢ctac =
b,ctbc = a,c* = 1). Determine whether or not G is infinite.
2.5 Presentations and fundamental groups
Consider a group G given by a presentation, say

G={(a,a9,...,a, | "1 =1,1m0=1,... 1, =1).

Such a presentation corresponds in a standard way to a 2-dimensional com-
plex Y whose fundamental group is isomorphic to G, that is G = (Y, 0).
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We review the features of this correspondence. Most of what we say can
also be done for presentations with arbitrarily many generators and relations
by resorting to CW-complexes. There are no substantial difficulties, just
distracting topological niceties.

We start with a single 0-cell which we label as o. For each a; we take an
oriented 1-cell, identify its ends with o and label its positive direction by the
generator a;. This gives us a space X consisting of a bouquet or wedge of n
loops at 0. The fundamental group of this space is a free group with basis
the (homotopy classes of the) closed loops labeled by the a;. So we identify
71 (X, 0) with the free group F = (a, as,...,a, | ).

We now add 2-cells corresponding to the defining relations. For each r;
take a 2-cell, thought of as a disk, and subdivide and label its boundary
according to r;. So if r; = aj) ... aj; we subdivide the boundary of the 2-cell
into k 1-cells with orientation and labeling chosen so that reading in the
counter-clockwise direction the label on the boundary is just r;. We then
attach or glue each of these 2-cells to X by identifying the oriented edges
in the boundary labeled by a; with the corresponding loop in X and the
0-cells in the boundary with o. Call the resulting space Y. So Y has a single
0-cell o, a 1-cell for each generator a; and a 2-cell for each relation r;. The
Seifert-vanKampen Theorem tells us that the fundamental group of Y is just
G, that is G = m (Y, 0).

As an illustration consider the group G = Z & Z which has presentation
G = {a,b | aba=*b~' = 1). In this case X consists of 2 loops at o labeled by a
and 0. There is a single 1-cell with 4 boundary edges labeled as shown. The
space Y is then the 2-dimensional torus which is homeomorphic to S x S*.
As in general, G = (Y, 0).
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The universal covering space Y of Y in this example can be identified
with the Euclidean plane R?. With suitable identifications, the O-skeleton of
Y consists of the lattice of points in the plane with integer coordinates and
the 1-skeleton Y! of Y is the grid of horizontal and vertical lines with one
integer coordinate.

In the general situation, fix a O-cell 6 in the universal cover Y of Y as a
base point. Any word w in the generators of G can be thought of as a closed
path A, starting in X at o. Now X is just the 1-skeleton of Y, so as a path
in Y we can lift \,, to a unique path Ay in the 1-skeleton Y of Y starting
at 6. Now ), is a closed path if and only if w belongs to the subgroup
of G corresponding to Y, that is, if and only if w =¢ 1. This means that
the 1-skeleton Y of Y is just the covering space of X corresponding to the
normal subgroup Np of Fg = m (X, o).

By a graph we mean a 1-dimensional CW-complex. The graph Y! we
have just been considering is called the Cayley graph of G (with respect to
the given generators) and is usually denoted I' = I'¢ ¢ where the decorative
subscripts are used when necessary to show the group and generating set.
(Notice that I' does not depend on the particular defining relations used,
but rather on the whole normal subgroup Np.) The Cayley graph is of
fundamental importance in the area known as geometric group theory.

2.6 Tietze transformations

There are some alterations one can make to a presentation which result in
presentations of a group isomorphic to the original. These are called Tietze
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transformations and we describe them as follows:

T1 (add consequences) If in Fs we have a collection of words £ C Np (and
hence Np = Npug), replace (S | D) by (S | DU E).

T17! (remove redundancies) If in Fg we have a collection of words E such
that Npug = Np (and hence the relators in F are redundant), replace

(S| DUE) by (S| D).

T2 (introduce abbreviations) If 7" is a collection of symbols disjoint from S
and {u; | t € T'} is a set of words on S, replace (S | D) by (SUT | DU
{t7'u; | t € T}). (The effect here is to introduce abbreviations of the
form t = u; where w; is a word on the S symbols.)

T2~ (remove abbreviations) If T' is a collection of symbols disjoint from S
and {u; | t € T} is a set of words on S and the words in D do not
contain T symbols, replace (SUT | DU {t 'u, | t € T}) by (S | D).
(The effect is to remove abbreviations.)

If only one consequence is introduced (removed) or one abbreviation is
introduced (removed) with a transformation, we term the move a single step
transformation. In general we need to allow more the more general opera-
tions, but in finite situations a sequence of single step transformations suffice.

Theorem 2.8 Suppose that the groups presented by the two presentations
(S| D) and (T | E) are isomorphic. Then there is a sequence of Tietze
transformations leading from one of these to the other. If these presentations
are both finite the sequence can be taken to be a finite number of single step
transformations.

Proof: Roughly the proof proceeds as follows. Use the isomorphisms between
the two groups to expand each of the given presentations to a common pre-
sentation containing both of the given presentations. Then since the inverse
of a transformation is also a transformation, the result follows. Here are the
details:

We write the two presentations as

<CL1,CL2,... ]7’1(&’) :1,7’2(6) :17>

and

(b ba, .. | (b)) =1,0(0) = 1,...)
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where the notation 71 (d) means that r; is a word on the symbols ay, as, ...

We may suppose the isomorphisms are induced from maps of the free groups
Fs and Fr defined by

o(a;) = u;(D) for i =1,2,... and (b;) = v,(@) for j =1,2,....

Starting with the first presentation, we apply transformations of type T2
to obtaint he presentation

<CL1, ag, . .. 761, bg, . ‘ 7"1(&) = 1,7’2(6) = 1, . ,bl = vl(Zi), bQ = ’UQ(Ei), .. >
Since v is a homomorphism each ¢ (T)) is equal to 1 in this group and so using
transformations T1 they can be added as relators to obtain the following
presentation for G:

<a1,a2,...,b1,b2,... | Tl(a) == 1,7”2(&) == 1,...,b1 = ’Ul(a),bg = Ug(a),...,
Q1(b) = 17(]2(b) = 17 e >
Now ¢ o 9¥(a;) = a; so the relations a; = wu;(by, bs,...) are consequences of
our current set of relations so we can apply transformations T1 to obtain the
presentation for G

<CL1,CL2, .. .,bl,bQ, ce | 7“1(6) = 1,7“2(6) = 1, ce ,bl = Ul(a),bg = Ug(a), ceey
ql(b) = ]_, QQ(b) = ]_, Lo, Q1 = U1<b), a9 = Ug(b), .. >

Now this presentation obtained starting from the first presentation is sym-
metric in the sense that it could also be obtained from the second presenta-
tion. Since the inverse of a Tietze transformation is again a Tietze transfor-
mation, this proves the theorem. O

An analogous result is actually true for a large class of algebraic systems
and a similar proof can be used.

Exercise 2.8 Use Tietze transformations, carefully showing every step, to
transform the presentation

{a,b,c | ¢ tac = b,c'bec = a,c* = 1)

into the presentation {(a,c | ¢* = 1).
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2.7 Extraction principles

A group G is said to be finitely generated if there is some some finite set
of elements {g1,...,9,} which generates G, that is, every element of G is
equal to a product of the g; and their inverses (see the Preliminaries). In
this case we can take a set of n symbols, say S = {ay,...,a,} and define
a homomorphism from Fg onto G by a; — g¢g;. If we let D be any set
of words on S whose normal closure is the kernel of this map, it follows
that G = gp((S | D)). Thus (S | D) is presentation for G on a finite
set of generating symbols. That is, G is finitely generated if and only if
G = gp((S | D)) for some finite set S.

Similarly G is said to be finitely presented if there is some presentation
for G with a finite set of generators and a finite set of relations, that is
G = gp({(S| D)) where both S and D are finite.

Suppose we are given an arbitrary presentation of a group G which sat-
isfies one of these conditions. Is it possible to somehow extract a suitably
finite “subpresentation” from the one we have. The answer is provided by
two of the results below.

Theorem 2.9 Suppose that G is a finitely generated group and that G is
isomorphic to a group with presentation (T' | E). Then there is a finite
subset Ty C T and a collection of words Dy on Ty such that the inclusion of
Ty into T induces an isomorphism (Ty | Do) = (T | E).

Proof: We can identify G with gp((T' | E)). Since G is finitely generated
there is some finite set of words {uy(?),...,u,(f)} on T which generate G.
Let T} be the set of all symbols from T which appear in these words u;(7).
Then Ty, is finite and (7}) contains all the u;(#) so that (T,) = G. Hence the
inclusion of 7§ into 7" induces a homomorphism from Fr, onto G. taking D
to be a set of normal generators for the kernel, the result follows. 4

Even if GG is finitely presented in the above result it may not be possible
to choose Dy a finite subset of the given relators . An example is contained
in an exercise below. However, in case the generating set was already finite,
this can be done.

Theorem 2.10 Suppose that G is a finitely presented group and that G is
isomorphic to a group with presentation (T | E) where T is finite. Then there
15 a finite subset Ey C E such that in Fr the normal subgroups Ng, = Ng
and hence (T | Ey) = (T | F).
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Proof: By hypothesis G has some finite presentation
G=(ay,...,a, | ri(d)=1,... (@) =1)
and we can suppose
(T|E)=(by,....bw | 1(0) =1,2(8) =1,...).

These are both presentations of G so we may suppose the isomorphisms are
between the groups presented are defined by

o(a;) = u;(b) for i =1,2,... and P(bj) =vj(a) for j =1,2,....
We now apply transformations of type T2 to obtaint he presentation
(@1, .. ap, by, . by | r(@) =1,. .. rg(d) = 1,

b1 = ’U1<Ei), e ,bm = Um(a»

From the relations in this presentation we can deduce the relations

a; = ul(g),...,an :un(g )

~—

Using these we can replace the relations r;(d) =

1 and b; = v;(d@) by the
equivalent relations 7;(%(b)) = 1 and bj = v;(u (b)) to obtain the following
presentation for G:

(a1, ... an, by, ... by | 11(@(0) =1,...,7x(T(0) = 1,b; = vy (%)), ...

b = v (T(0)), a1 = g (D), . . . an = un ().

Now we can eliminate the a;’s to obtain the finite presentation
G2 by, by | P (@0) =1,..., (W) = 1,

by = v (A(D)), ..., b = v (T(D))).

We record the observation that this presents G on the generators {by, ..., b}
using k + m defining relations.

Finally we observe that the k& + m relations in this finite presentation for
G are all consequences of some finite subset Ey C E = {¢; (B) = 1} and then
(T | Ep) is a presentation of G as required. O
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Corollary 2.11 ( B.H. Neumann) Suppose that a group G has a presen-
tation with n generators and k defining relations. If by, ..., b,, is another set
of generators of G, then G can be defined by at most m + k relations on the
bi,...,bm.

The following exercise gives an example in which simultaneously passing
to finite subsets of generators and relations is not possible.

Exercise 2.9 Consider the group G presented by
a,b,co,c1,¢o,... | at =1,0%=1,¢c5'bcy = a?, ¢ eoer = b,
( 0 1

1 —1
Cy C1Cy = Cp,Cq CaC3 = C1,...).

Show that G is cyclic of order 2. Show that any finite sub-presentation of
this, say (Ty | Eo), defines a group of order 3, or a group of order 4 or an
infinite group.
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Chapter 3

Construction of new groups

We are going to discuss several methods of constructing new groups from
groups we already have in hand. In each case we write down a presentation
of the resulting group and give some information on expressing elements in
a normal (standard) form.

3.1 Direct products

A hopefully familiar construction is the direct product. Suppose we are
given two groups H and K. We can construct their direct product H x K
as the set of ordered pairs (h,k) with h € H,k € H with multiplication
defined by (hy, k1) - (he, ke) = (hiha, k1k2). The maps defined by h +— (h, 1)
an k +— (1,k) embed H and K respectively into H x K. Though of as
subgroups in this way H and K are called the direct factors of H x K.
Observe that (h,1)(1,k) = (h,k) = (1,k)(h,1) so the (images of) the direct
factors commute in H x K.

Suppose that H and K are given by presentations, say H = (S | D) and
K = (T | E). By changing one of the alphabets if necessary, we can assume
S and T are disjoint, that is SN7T = (). Then a presentation for H x K can
be obtained by joining these together and adding the relations which imply
that elements of H commute with elements of K, that is

HxK={(S,T|D,E, st=tsVseS,teT).

Here the notation means that generators are those symbols in S and those in
T, and similarly for relations. We prefer this to the more set theoretic SUT.
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The inclusion maps on generators induce embeddings of H and K into
H x K presented in this way. The projection of H x K onto H, for instance,
is defined by adding the relations t = 1 V¢ € T, thus “killing” the factor K.
Observe that every element w € H x K can be written by using just the
commuting relations st = ts in the form w = wv where v is a word on S and
v is a word on T'. Moreover, if w =g« 1 then v =y 1 and v =, 1. This
last fact is equivalent to the following: if w = ujv; = usve where the u; are
words on S and the v; are words on T, then u; =g us and v; =g vs.

There is a more abstract way (arrow theoretic or categorical) to define
the direct product of H and K. It goes as follows. A group D is said
to be the direct product of groups H and K if there are homomorphisms
pu: D — H, pg: D — K satistying the following condition: for every group
G, for every pair of homomorphisms o : G — H, 3 : G — K there is a unique
homomorphism v : G — D such that a = py oy and = px o 7.

G
@ Ty N\
v
H D K
bu Pk

One easily sees the group H x K has the properties required of D where
7 is defined for any given «, 5 by v(g9) = a(g)3(g). A diagram chase using
uniqueness now shows that D = H x K.

But let’s recover the description just using this arrow theoretic definition.
Assume that D satisfies the above definition. If we take a to be the identity
may on H and 3 to be the trivial map, we get py o~y is the identity map on
H and so pg is surjective and v is injective. Hence py maps the subgroup
v(H) of D isomorphically onto H. For this same choice we have px o~ is the
trivial map and so v(H) C ker pg.

An analogous choice of a and 3 for K, shows that px maps a subgroup
d(K) of D isomorphically onto K and that §(K) C kerpy. Hence we can
identify H with v(H) and K with §(K') and so think of H and K as subgroups
of D and py and pg as retractions onto those subgroups. Nowifh € H k € K
observe that their commutator [h, k| € ker pyNker px What we expect is that
[h, k] =p 1 which follows if we can show this intersection is trivial.

Suppose 1 # x € kerpy Nkerpg. Let C be the infinite cyclic group
generated by a and take o and [ to be the trivial maps from C' to H and

31



K respectively. Now there are two maps which when composed with the
projections give v and [3: one is the trivial map, the other sends a to x. So
this contradicts the uniqueness requirement. Thus kerpy N kerpr = {1}.
Hence also [H, K] = {1} and D = HK as desired.

3.2 Free products

Suppose that H and K are two groups. A L is said to be the free product of H
and K if there are homomorphisms (g : H — L and 1x : K — L satisfying
the following condition: for any pair of homomorphisms o : H — G and
0 : K — G where G is any group, there is a unique homomorphism v : L — G
such that « = v oty and =~y o k.

H L K
A\

LH LK

Jly
&)

G

An easy diagram chase show that the free product of H and K is unique (up
to to isomorphism) and we will denote it by H % K.

It is easy to see that free products exist because we can just write down
a presentation for H x K. Suppose that H and K are given by presentations,
say H = (S | D) and K = (T' | E). By changing one of the alphabets if
necessary, we can assume S and 7' are disjoint, that is SNT = (. Then a
presentation for H x K can be obtained by joining these together, thus

HxK=(SUT|DUE).

The required maps ¢y and ¢ are just the homomorphisms induced by the
inclusions on generators. Both of these are monomorphisms. For instance, if
we define ¢ : Hx K — H by s +— s,t +— 1 Vs € S;t € T, then ¢ defines a
homomorphism and ¢ o ¢y is the identity on H. So ¢ty is a monomorphism.
It also follows from this argument that H N K = {1}.

Finally, given homomorphisms « and 3 as in the definition, the required
7 is given by 7(s) = a(s) for s € S and v(t) = §(t) for t € T. Then ~y defines
a homomorphism; since the definition was clearly forced on us, this is the
unique such map.
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In a sense the free product H x K is the “freest” group containing H and
K. The subgroups H and K are called the (free) factors of H x K. The
construction can be generalized to any number of factors, say H;(j € J), in
which case we denote the free product by jéJH ;-

By an alternating word or expression in H x K we mean a product of the
form hiky - - - h,,k,, where each h; € H and each k; € K; by convention, we
allow the possibility that one or both of h; or k,, is not present so that all
possible beginnings or ends are covered. That is, such an expression could
have one of the four forms hik;---hpky,, or ki---hpyk, where hy is not
present, or hik; - - - h,, where k,, is not present, or ky - - - h,, where neither h;
nor k,, is present. The number of terms present is called the length of the
word. We allow the empty expression which has length 0.

Such an alternating expression is said to be reduced if each h; #5 1 and
each k; #x 1 when present. If such an alternating word is not reduced, it
is equal in H x K to a shorter alternating expression obtained by removing
one of the terms and regrouping. Thus if h; = 1 the alternating expres-
sion hiky---ki_1h;k;--- h,k,, we can replace this alterating expression by
the alternating expression hiky - - - hi—1(ki—1ki)hiy1 - - - hinky, having fewer al-
ternations and stiil representing the same group element. Continuing in this
way we eventually arrive at a reduced alternating expression representing
the same group element as the original. Note that the empty expression is
reduced.

Theorem 3.1 (Normal Form Theorem) Every element of H x K is equal to
a unique alternating expression of the form hiky - - - hyky, with h; #g 1 and
k; #x 1 when present. Here uniqueness means that if two such expressions
are equal in H x K, say

haky - hokm =mac WYKok,
then n = m and each h; =g h; and each k; =k k.
Proof: That any element is equal to an alternating expression is clear from
the presentation. The uniqueness assertion is a non-trivial result and re-
quires proof. To this end we let {2 denote the set of all reduced alternating

expressions. With each element h € H we associate a permutation ¢(h) in
the group Sym(€2) of all permutations of €2 by the rule

[ kiha bk, if b= hy!
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where we understand the first case includes the possibility h; is not present
and h = 1. Also in the second case h; is not necessarily present.

It is easy to check that ¢(h™') = (é#(h))~! and that for h,h' € H we
have ¢(h)p(h') = ¢(hh'). Thus the map h — ¢(h) defines a homomorphism
from H to Sym(f2). In an entirely analogous way we define an action of
K on Q and hence a homomorphism 1 : K — Sym(£2). We thus obtain a
homomorphism ¢ x ¢ : H x K — Sym(£2).

Now if hiky - hyk, is a reduced alternating expression, then the per-
mutation ¢ * ¥ (hiky - - - by k) sends the empty expression to hiky -« - Ay k.
Hence hiky -« - bk, # 1 in H x K unless it is the empty expression.

By induction this implies uniqueness. For suppose

Ik - hikn =prerc hiky - bk,
where both sides are reduced alternating expressions. Then
1= hky - by (kpky Yhe - by

and hence the right hand side is not reduced by what we have proved. Since
the original expressions were reduced, we must have k,, = k], and so by
induction the two expressions are identical. O

The following is an alternate version of the normal form theorem which
gives an equivalent characterization of free products. It follows immediately
from the above proof.

Theorem 3.2 (Characterization of free products) G is the free product of
its subgroups H and K if and only if the following two conditions hold:

1. H and K generate G, that is every element of G is equal to an some
alternating expression hiky - - - hpky,; and

2. if w = hiky - - hpky, 1 an alternating expression and if w =g 1 then
for some i either h; =g 1 or k; =g 1. O

As an example, consider the group G = HxK where H = (a | a* = 1) and
K = (b | b® = 1). Then G has the presentation G = (a,b | a*> = 1,6% = 1).
Several questions arise. Is G infinite 7 What are the possible orders of the
elements of G ? Clearly G has elements of finite order 2 and 3 (and 1 if you
consider the identity element).
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Consider the element ab. Could its order be finite 7 A power of ab has the
form (ab)™ = abab- - - ab which is an alternating word. By the normal form
results, if (ab)™ = 1 then either @ =5 1 or b =k 1 and neither is the case.
Hence ab has infinite order in G. In fact this argument easily generalizes to
show that if H and K are non-trivial groups then H x K contains an element
of infinite order.

An alternating word hqky - - - hy,k,, is said to be cyclically reduced if it is
reduced and either has length 1 or even length. It follows that a cyclically
reduced w alternating word has first and last term from different factors
and every cyclic permutation (as an alternating word) is reduced. Also if a
cyclically reduced word w has length at least 2, the w has infinite order in
H x K, for the same reasons that ab had infinite order in our example.

But by cyclically permuting and reducing as often as possible one arrives
at a cyclically reduced word. Hence any alternating word is conjugate to a
cyclically reduced word in H x K Hence an element of finite order must be
conjugate to an element of length 1, that is and element of H or K.

We record this observation as follows.

Lemma 3.3 In the free product H x K, every element of finite order is con-
jugate to an element of H or of K. If both H and K are non-trivial, then
H x K has elements of infinite order; in fact every reduced alternating word
of even length a has infinite order.

It is reassuring that no new finite orders have been introduced in our
construction since we didn’t add any equations to force such new orders.

Recall that the rank of a group is the minimum number of elements in
any generating set. One quite useful fact about free products is the following
result whose proof we omit:

Theorem 3.4 (Grushko-Neumann) The rank of the free product H x K is
the sum of the ranks of H and K.

Recall that the centre of a group G is Z(G) = {x € G | gx = xzg Vg € G}.

Exercise 3.1 Show that if both H and K are non-trivial, then H x K has a
trivial centre.
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3.3 Free products with amalgamation

We want to generalize the free product construction to the following: suppose
H and K have a isomorphic subgroups, so there are a pair of embeddings
(monomorphisms) ¢ : M — H and 7 : M — K. We want to form the
“freest” group containing H and K in which their subgroups o(M) and
7(M) are identified, so hopefully H N K = o(M) = 7(M).

The group L will be called the free product of H and K with amalgamated
subgroup M if there are maps vy : H — L and i : K — L such that tgyoo =
L o 7 satisfying the following condition: for any pair of homomorphisms
a:H — G and g : K — G such that « o0 = f o7 where GG is any group,
there is a unique homomorphism v : L — G such that @« = vy oty and

f=vyou.

M

o T
H L K

LH | LK

3!
« . 7 16}

\i

G

An easy diagram chase shows that the free product L of H and K with
amalgamated subgroup M is unique (up to isomorphism) and we will denote
ithy L=H * K.

It is also easy to see that amalgamated free products exist because we
can just write down a presentation for H ot K. Suppose that H and K are
given by presentations, say H = (S | D) and K = (T | E). Also suppose
that M = (@ | V') (only the generators of M are relevant here). By changing
one of the alphabets if necessary, we can assume S and T are disjoint, that
is SNT = (0. Then a presentation for H x K can be obtained by joining

these together and identifying the images of M, thus

HﬁKz(SUT|DUE,a(q):T(q) Vg € Q).

36



The required maps ¢y and tx are just the homomorphisms induced by
the inclusions on generators. Both of these are monomorphisms, but this is
not obvious. Also one can show H N K = (M) = 7(M), but again this is
not obvious.

Finally, given homomorphisms « and [ as in the definition, the required
7 is given by v(s) = a(s) for s € S and v(t) = B(t) for t € T. Then ~ defines
a homomorphism; since the definition was clearly forced on us, this is the
unique such map.

In case the group M is the trivial subgroup, H X K reduces to the free

product H x K discussed previously. We sometimes refer to H x K as the
ordinary free product.

There is another convenient notation for the above that is frequently used.
Namely, let A =0(M) C H and B = 7(M) C K. Then these subgroups A
and B are isomorphic via the homomorphism ¢ = 700! : A — B. The
amalgamated free product is then often denoted H g K and is presented

in the following equivalent form:
HAtBK: (SUT | DUE,a=¢p(a) Va € 0(Q)).

We will use both sorts of notation.

Here is a concrete example which the reader is urged to keep in mind
in connection with the following discussion. Consider the two infinite cyclic
groups H = (c | ) and K = (d | ) with their respective subgroups A = (c?)
and B = (d®) which are isomorphic via the map ¢* — d3. Then their
amalgamated free product is

G=H » K={(c,d|c=d.
A=B

To make effective use of an amalgamated free product we need to give
a canonical expression or “normal form” for each of its elements and give
methods for computing them and for proving expressions are equal. Let
G=H P K be an amalgamated free product. The notion of an alternating

word or expression is exactly as for ordinary free products. Clearly every
element g € GG is equal to some alternating expression. But some caution is
required since we do not yet know that H and K are embedded in G, so we
should think of expressions as sequences which have a natural image in G.
For an amalgamated free product we say that an alternating expression

hiky -« hyky, is reduced if no h; € A = o(M) and no k; € B = 7(M)
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when present. Suppose that the alternating expression hiky - - - hp,k,, is not
reduced, say with some if h; = a; € A. In this expression

Bk bishiki - ok

we can replace h; = a; € A by the corresponding b; = ¢(a;) to obtain (after
consolidating) the alternating expression

haky -« hioi(kioabiki)hitr -+ hikp

having fewer alternations and still representing the same group element. Sim-
ilarly if k; € B we can replace it by a corresponding a; and consolidate to give
an expression with fewer alternations equal to the original. So continuing in
this way we eventually arrive at an alternating expression, representing the
same group element as the original, which is either reduced or is an element
of A=B.

In terms of our suggested example

G=H « K={(cd|c*=d
A=B

we note that the two words ¢*d=° and ed=2 are both reduced. Now in G we
have ¢3d™® = cc?d™® = cd®d™® = cd~? so these two words are equal in G,
that is they represent the same group element. So “reduced” is not strong
enough to give a unique canonical form.

To overcome this difficulty proceed as follows. We first choose a transver-
sal Y for the right cosets of A in H, that is Y contains exactly one element
(called the coset representative) from each right coset Ah where h € H sub-
ject to the condition that the representative chosen for A itself is 1. Similarly
we choose a transversal Z for the right cosets of B in K. We define a nor-
mal form to be either an element of A = B or an expression of the form
ahiky -+ - hpk, with 1 # h; € Y and 1 # k; € Z when present and a € A.
Here hiky - - - h,,k,, is an alternating expression meaning that as usual we al-
low it to any of the four forms hiky - - - h, k,, or ki« hyky,, or hiky -+ hy,,
or hiky---hy (to avoid too many case distinctions). So a normal form is
an alternating product of elements of the transversals Y and Z (all different
from 1 so that the expression is reduced) preceded by an element of A = B.
In the case hy is not present we usually use b = ¢(a) instead and write
bky - - - hy,k,,. This is the same group element since a = b in G.
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We need to show that every element w of GG is represented by such a nor-
mal form. First applying our reduction process, we may suppose we have a re-
duced alternating expression for w. We work from right to left across the word
converting it into a normal form. So we can suppose hiky - - - k;_1hik; - - - hpkn
is reduced and that each term to the right of say h; is an element in Y or Z
different from 1. Now we write h; = ah! where a € A and h, € Y. Note that
h; # 1 since h; ¢ A because the expression is reduced. Let b = ¢(a) € K
and note that a = b in the group. We now replace the current expression
by the revised alternating expression hiky - - h;_1(k;_1b)hik; - - - hy,ky, which
is still equal to the original group element. It is still reduced since k; 1 ¢ B
implies k;_1b ¢ B. Continuing in this way we obtain a normal form for the
original group element w. Note that normal form of w has the same length
as the first reduced expression we obtained for w.

We summarize these procedures as follows:

Lemma 3.5 Let G = H Pt K be an amalgamated free product. Choose

tranversals Y for A in H and Z for B in K as above. Then, if w is any
element of G,

1. w is equal in G to an alternating expression.

2. any alternating expression for w can be converted either to a reduced
alternating expression or to an element of A = B which equal to w in

G.

3. any reduced alternating expression for w can be converted into a normal
form having the same length which is equal to w in G. a

Here is an exercise which may help clarify these processes.

Exercise 3.2 Consider G = (c,d | ¢* = d*) with the above notation for
subgroups. As a transversal for A in H take Y = {1,c¢} and for B in K
take Z = {1,d,d=}. Compute the normal forms of the elements c3d—2c~*d*

and c3dc™*d*cd®. Repeat the exercise with the transversals Y = {1,¢7'} and
Z={1,d2d).

Two difficulties remain. We would like to know that when we obtain a

normal form for w € G it is unique. Moreover it is not yet clear whether the
images of H and K inside of G are actually isomorphic copies. This would
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follow from uniqueness of normal forms: for h; #p hy have normal forms
hy = a b} and hy = ashl, with h; € Y which depend only on H and are
different. Hence they represent different elements of G. Similarly for K and
uniqueness implies they are both naturally embedded.

Here is one version of the result we are after.

Theorem 3.6 (Embedding and Reduction) Let G = H Pt K be a free

product with amalgamation. Then

1. The maps defined by inclusion of generators induce monomorphisms of
H and K into G; and

2. if w = hiky - hyk,, s an alternating expression and if w = 1 in G,
then for some i either h; € A viewed as an element of H or k; € B
viewed as an element of K.

Proof: The above Lemma established the existence of a normal form rep-
resenting each element of G. We proceed as in the case of ordinary free
products by letting 2 be the set of all normal forms. With each element
h € H we associate a permutation in the group Sym(2) of all permutations

of Q2 by the rule

b'kihs -
a’h’lkl .

- hpky,, if hahy € A=B
e(h)(ahﬂﬁ RN hmkm) = { o hyk,,  if hahy ¢ A=RB
where hah; = a'h} with b} € Y and v/ = 6(a’). Here we understand the
first case includes the possibility A; is not present. Also in the second case
hy is not necessarily present. Again is easy to check that §(h~') = (6(h))™*
and that for h,h' € H we have 0(h)f8(h') = 6(hh'). Thus the map h +— 6(h)
defines a homomorphism from H to Sym(f2).
In an analogous way we define an action of K on 2 by the rule of € by

the rule for hy not present:

| bhy e by ke, it kbky € A=1B

where b = p(a) and kbk; = b'k} with k] € Z and V/ = ¢(a); and for the case
hy present by the rule:

Vkyhiks - bk i kb€ A= B
k) (ahiky - ki) = { Uhiky - hoky kb€ A — B
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where b = p(a) and kb = V'k{, with k € Z. Again one checks this defines a
homomorphism ¢ : K — Sym(2).

But we also observe that if b = ¢(a), the actions of a and b on €2, that is
0(a) = 1(b). By the definition of amalgamated free product, these two maps
extend to a homomorphism 6 * Y G — Sym(2).

Now if ahik1 - - - hypky, is a normal form, then the permutation
gb 71: ’(/)(a,hlkil s hmkm)

sends the empty expression to ahiky - - - hyky,. Hence ahiky -+ - hyky # 1 in
G unless it is the empty expression.

If 1 # h € H with say h = ahy; where hy € Y, then the image of h in
G sends the empty string to ah;. So the image of h #5 1 and hence H is
naturally embedded in GG by the inclusion map. Similarly K is embedded
in GG. Since our construction of a normal form from a reduced expression
preserves length, it follows that an alternating expression which represents
the identity 1 cannot be reduced. This proves the second assertion of the
theorem. O

Using this Theorem we can now show HNK = A= B. Clearly HNK D
A = B. Suppose g € HN K. Then g = h = k for suitable words h and
k in the generators of H and K respectively. Hence, applying the second
assertion above to hk™! = 1 we know either h € A or k € B, and in either
case it follows that g € A = B.

Another consequence is the normal form theorem for amalgamated free
products.

Theorem 3.7 (Normal Form Theorem) FEvery element of G = H e K

is equal to a unique normal form ahiky---hpk,, with 1 # h; € Y where
1 # k; € Z when present and a € A. Here'Y and Z are the transversals
chosen above. The uniqueness assertion means that if two such expressions
are equal in H x K, say

ahiky -+ hykm =g a'Ri k- - b K],
then n = m and each h; = bl and each k; =k, and a = a'.

Proof: The existence of a normal form for any element follows from the above
Lemma. Uniqueness of the normal forms follows easily from the previous
Theorem. For if

ahiky - bk = ' BK - BLK,
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are two normal forms for the same group element, then

L=¢ (W) - Iy, (R ke Dbyt - k= (B e ™)
is not reduced. Hence k' k' € B and so k!, = k,, since they belong to the
transversal Z. Uniqueness follows by induction. O
In fact, as the proofs makes clear, these two theorems are easily shown to
be equivalent without resort to permutations. The following is an alternate
version which is often useful.

Theorem 3.8 (Characterization of amalgamated free products) G is the free
product of its subgroups H and K with amalgamated subgroup M = H N K
if and only if the following two conditions hold:

1. H and K generate G, that is every element of G is equal to an some
alternating expression hiky - - - hy Kk, and

2. if w = hiky - - hpky, 1 an alternating expression and if w =g 1 then
for some i either h; € M or k; € M.

Continuing with our earlier example G = (c,d | ¢* = d*) observe that the
element ¢? lies in the centre of G since c?d = d*d = dd® = dc?® so that 2
commutes with the generators of G and hence every element.

Also observe that G is not abelian. For consider the alternating word
w = ¢ 'dled. If it were the case that w =g 1 then either ¢ =5 d¥ or
d =g d¥ for some j € Z by the normal form results. But neither is the case,
so we conclude w #¢ 1.

Exercise 3.3 Determine the centre of the group G = {(c,d | ¢* = d?).

Exercise 3.4 Define a suitable notion of cyclically reduced alternating words
for amalgamated free products. Show that every element is conjugate to a
cyclically reduced word.

Exercise 3.5 Show that in an amalgamated free product, any element of
finite order is conjugate to an element of one of the factors.
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3.4 HNN extensions

Suppose that we are given a group G, say by a presentation G = (S | D) and
a pair of isomorphic subgroups A and B with an isomorphism ¢ : A — B.
We want to find a larger group containing G in which the subgroups A and
B are conjugate by an element realizing the isomorphism between them.
Naturally we want to do this in the “freest” possible way.

It is easy to write down a candidate for the desired group, but not so
easy to show it has the required properties and to give a normal form result.
By the HNN extension of G with associated subgroups A and B via the
isomorphism ¢ : A — B we mean the group G ?; with presentation

Gx = (S,p| D,p~lap = p(a) Va € A).
)

The additional generator p added here is called the stable letter. We note
that it suffices to add only the relations p~tap = ¢(a) for a ranging over a set
of generators for A. (Remark: HNN stands for Higman-Neumann-Neumann,
the names of the authors who introduced this construction).

As for amalgamated free products, to make effective use HNN extensions
we need to know that G is still embedded G:, to give a reduction process

and to give a method of finding a “normal form” for each element. It is clear
the p generates an infinite cyclic subgroup of G x since the infinite cycle on
¢

p is a quotient group by the obvious map.

Here is a concrete example which the reader is urged to keep in mind in
connection with the following discussion. Consider the infinite cyclic group
G = (c | ) with respective subgroups A = (c?) and B = (c¢®) which are
isomorphic via the map ¢ — ¢®. Then the corresponding HNN-extension is
Gx ={ep|pcp=0c’)

In general G Z: is the quotient group of the ordinary free product G * (p)

of G with the infinite cycle on p obtained by adding the indicated relations.
A p-expression is a sequence of the form

9P 10 Gg2 - - - P Gm,

where the g; are elements of G and ¢, = +1. We allow the case where
there are no p symbols appearing, and say that a p-expression wnvolves p
if at least one p or p~! appears. Clearly any word in the generators of
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G * can be viewed as such a p-expression. If for some ¢ the sub-expression
©

p~tgip appears and if g; = a € A then we can apply the defining relation
p~tgip = p~tap = p(a) = b € B and hence replace the given expression by

gop™ -+ P (gi1bgia) PO PTG

which has two fewer p symbols and represents the same element of G .
©

Similarly if the sub-expression pg;p~! appears and if g; = b € B we can
apply the relation pg;p~ = pbp~! = ¢! (b) = a € A to obtain an expression
with two fewer p symbols representing the same element of Gx. Either of

these two kind of replacements of sub-expressions of the indicafed form are
called p-pinches or sometimes p-reductions. If no p-pinches are possible, the
p-expression is said to be p-reduced. Notice that we have described a process
for p-reducing an a p-expression.

If ghp® gip®2gh - - pr gl another p-expression such as the above, then the

two are said to be p-parallel if n = m and €; = 01,...,€6, = 0,,. It turns
out that any two p-reduced expressions representing the same element of G %
©

must be p-parallel, but this requires proof. (It follows from the normal form
results below.)
In terms of our suggested example Gx = (¢, p | p~1c*p = ¢*) we note that
©

the two words ¢pc=®p~! and cpc?p~! are both p-reduced. Now in G we

%)
have

ApePp = Epe3epl = B tpept = epeip

so these two words are equal in G, that is they represent the same group
element. So “p-reduced” is not strong enough to give a unique canonical
form.

To overcome this difficulty proceed as for amalgamated free products.
We first choose a transversal Y for the right cosets of A in G subject to the
condition that the representative chosen for A itself is 1. Similarly we choose
a transversal Z for the right cosets of B in G. We define a normal form to
be a p-expression

gop' G102 - . D" Gm

where if ¢, = —1, then ¢g; € Y; if ¢, = +1, then ¢; € Z; and if g; = 1 then
€, # —€;11. S0 go is arbitary, but each of gy, . . ., g,, must be in the appropriate
transversal Y or Z. The last condition means there are no inverse pairs of
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p symbols separated by the trivial coset representative 1. Observe that a
normal form is necessarily p—reduced.

We need to show that every element w of G is represented by such a
normal form. First applying our reduction process, we may suppose we have
a p-reduced expression for w. We work from right to left across the word
converting it into a normal form. So we can suppose

9op' 10 Gg2 . . . D" G

is p-reduced and that the portion of the expression to the right of g; satisfies
the normal form conditions. In case ¢, = —1 in G we can uniquely write
g; = ay; where a € A and y; € Y. In the above expression replace p~lg; =
p~tay; = bp~ly; where b = ¢(a) € B to obtain

Gop™ -+ Pt (i1 b)p My P D G

Note that if y; = 1 then ¢g; € A so that ¢;,1 = —1 because the expression
was p-reduced. Also note that if ¢,_y = 1, then g; 1 ¢ B because our
expression was p-reduced. Hence in this case we also have g;_1b ¢ B so
our new expression is p-reduced and a larger right hand portion satisfies the
normal form conditions. The case ¢, = —1 is similar: in G write g; = bz;
where b € B and z; € Z. Replace pg; = pbz; = apz; where a ¢~ 1(b) to obtain

Gop™ -+ - pt (gim1a)pzi P - PO G

By similar considerations this expression is again p-reduced and a larger right

hand portion satisfies the normal form conditions. After m steps we arrive

at a p-reduced expression in normal form which is p-parallel to the original.
We summarize these procedures as follows:

Lemma 3.9 Let Gx be an HNN extension. Choose transversals Y for A in
%)
G and Z for B in G as above. Then, if w is any element of G,

1. w is equal in G to a p-expression.

2. any p-expression for w can be converted to a p-reduced expression which
s equal to w in G.

3. any p-reduced expression for w can be converted into a mormal form
which is p-parallel to the given expression and is equal to w in G. O
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Here is an exercise which may help clarify these processes.

Exercise 3.6 Consider Gx = (c,p | p~'c?p = ) with the above nota-
©

tion for subgroups. As a transversal for A in G take Y = {1,¢} and for
B in G take Z = {1,c,c'}. Compute the normal forms of the elements
ASpc?p~ e tpctpt and ¢ Ppep~teipc?ptepd®pt. Repeat the exercise with
the transversals Y = {1,c7 '} and Z = {1,¢72,}.

Here is the main result about this construction.

Theorem 3.10 (Embedding and Reduction) Let G * be the HNN extension

©
of G with associated subgroups A and B wia the isomorphism ¢ : A — B.
Then

1. (Higman,Neumann,Neumann) The identity map on generators induces
and embedding of G into G, and p generates an infinite cyclic sub-
©

group of G x.
©

2. (Britton’s Lemma) Let w be any word of G which involves p, that is
%)

either p or p~! appears as a subword. If w =g, 1, then w contains a
@

subword of the form (i) p~tcp or (i1) pep™', where ¢ is a word on S,

and such that, in case (i) ¢ is equal in G to an element of A, and in
case (ii), ¢ is equal in G to an element of B.

Remark: The second assertion, known as Britton’s Lemma, says that if w
is a p-expression which involves p and if w = 1 in G, then w is not p-

©
reduced and hence some p-pinch can be applied. So by repeatedly applying
p-reductions we will eventually arrive at a word of G' (no p symbols) which
is the equal to 1 because of the relations of G.

Proof: The above Lemma established the existence of a normal form rep-
resenting each element of Gx. We proceed as in the case of ordinary and

©
amalgamated free products by letting €2 be the set of all normal forms. With
each element g € G we associate a permutation in the group Sym(2) of all
permutations of {2 by the rule

0(9)(gop 10 - - P Gm) = (990)P" 1P - - - D" G-
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It is easy to check that 6 defines a homomorphism from G to Sym(£2).
With the symbol p we associate a permutation

apzop gip? - PGy, if e =1
Y(P)(gop 9102 - D Gm) = < apzepT Gip P gm  if 20 # 1 and ¢ = —1
(agl)p P G if zo=1and ¢, = —1

where gy = bzy with b € B, 29 € Z and a = ¢ !(b). Similarly with p~! we
associate

) bpyop gip - PG, if e =1
(P ) (gop 1™ - P Gm) = § bpyop T g1p? - pgm i yo# land ¢ =1
(591)1062 .. .pEmgm if Yo = 1 and €1 = 1

where gy = ayo with a € A,yp € Y and b = ¢(a). A routine check shows
that 1 (p) oy (p™') and ¢ (p~*) o1 (p) are both the identity. Hence they both
define permutations an determine a homomorphism ) from the infinite cycle
on p to Sym(2).

Now these homomorphisms extend to a homomorphism

0% : Gx(p) — Sym(Q)

and one can check that 0 x¢(pp(a)) and @ x1)(ap) are the same permutation

of 2, that is the relations of G x are sent to the identity permutation. Now
%)

if gop g1p® - - - P gy, is a non-trivial normal form, it is clear that

0 % b (gop™ 910 - " gm) (1) = gop™ G10? -~ P G-
Hence such a normal form is not equal to 1 in Gx. In particular it follows
©
that GG is embedded in G x and that a p-reduced word which involves p is

not equal to 1. This proveg the theorem. O

As another illustration, consider the infinite cyclic group G = (a | )
and its two isomorphic subgroups A = (a) and B = (a?). The the corre-
sponding HNN extension has presentation G* = {(a,p | p~tap = a®). Let

w = a ‘pap~!. We claim that w #G* 1 and hence G* is not abelian. For if
W =G 1, then by Britton’s Lemma 1t must contain a p-pinch. But there is

only p0881b111ty, at the subword pap~! with a € B. But clearly a ¢ B since
B consists of the even powers of a. So there is no such pinch and w #g, 1
7

The unique normal form theorem is now easily proved.
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Theorem 3.11 (Unique normal form) FEvery element in G is equal to a
%)

unique expression of the form

9P 1P g2 - - D" Gn

where if ¢, = —1, then g; € Y; if ¢, = 41, then g; € Z; and if g; = 1 then
€ # —€41. Here Y and Z are the transversal chosen above.

Proof: We already know the existence of a normal form for each element.
Suppose gop< gy - - P g and ghp®iygl -+ prgl, are two normal forms repre-
senting the same element. Then
5 5” - —Cm - - -
L= gop™ gy " (g 97 )P~ g1 P g
and so there must be a p-pinch. Since the normal forms are reduced this
implies ,, = €,,. Moreover for §,, = —1 we must have ¢/, g,-! € A and hence
g, = g, while for §,, = 1 have ¢/, g.;' € B and hence ¢/, = g,, since the g;
and ¢! belong to transversals. By induction this proves uniqueness. a

Exercise 3.7 Define a suitable notion of cyclically p-reduced words for HNN
extensions. Show that every element is conjugate to a cyclically p-reduced
word.

Exercise 3.8 Show that in an HNN extension G %, any element of finite
©

order is conjugate to an element of G.

Finally, we remark that the whole discussion above for HNN extensions
applies more generally to adding any number of stable letters pq, ps, ... con-
jugating pairs of isomorphic subgroups (A, By), (As, Bs), ... onto each other.

3.5 HNN related to amalgams

The reader will have noticed the similarity in our treatment of HNN ex-
tensions and amalgamated free products. There are many connections and
parallels between between these two constructions and we now spell out a
few of them. Often facts about one can easily be deduced from facts about
the other.
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Let Gx = (S,p | D,p tap = ¢(a) Ya € A) be an HNN extension and
%)
consider the subgroup L generated by the two subgroups G and pGp~! of G *.
¢

Observe that these two subgroups intersect in A = pBp~!. Every element of
L can be written as an alternating expression (from alternate subgroups) of
the form

JoPGrD ™ gapgsp " - PGan— 1D Gon-
If such an expression is equal to 1 in G'x, then by Britton’s Lemma for
©

some ¢ either go; € A or go; 1 € B. Hence this is not a reduced alternating
expression. It follows that L is isomorphic to the free product of G and
pGp~! with amalgamated subgroup A = pBp~!. We record this as follows.

Lemma 3.12 (Higman) Let Gx = (S,p | D,p tap = ¢(a) Va € A) be an
©

HNN extension. Then the subgroups G and pGp~"' generate their free product

with amalgamated subgroup A = pBp~!. O

Again let Gx = (S,p | D,p~tap = p(a) Va € A) be an HNN extension.
©

We form the ordinary free product of this group with the infinite cyclic group
on x and perform a sequence of Tietze transformations as follows:

(G:)*@‘) = (S,p,z | D,p'ap = ¢(a) Va € A)

I

S,p,x,y | D, y=p 'z, p~lap = p(a) Va € A)

I

S,p,x,y | D, p=ay ", p~lap = ¢(a) Va € A)

I

S,p,x.y | D, p—xy ! a7lar =y lp(a)y Va € A)

I

12

S,z,y | D, v 'ax =y 'p(a)y Va € A)
* (x)) * (G (y))-

(

{

(

(S,p,z,y | D, p=ay™", yr azy™" = p(a) Ya € A)
{

(

G Gra—1 Az=Goy—1

*T r=Gxy~ 1By

I

That is, we observe that in G % (x) the subgroups G and z~'Ax generate

their ordinary free product. This subgroup is isomorphic to the subgroup of

G * (y) generated by G and y~'By. So (G ) * (x) is isomorphic to the free
%)

product of G * (x) and G x (y) amalgamating the indicated subgroups.
Notice that from the theory of amalgamated free products it follows that
G is embedded in G x. It is also possible to easily deduce Britton’s Lemma
%)
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from the reduction results for amalgamated free products. So using the above
observations we could reduce the study many aspects of HNN extensions to
the study of amalgamated free products.

But we can also go the other way. Suppose H and K are groups with
isomorphic subgroups A and B = ¢(a). First form the ordinary free product
Hx K and then the HNN extension conjugating A to B, which can be written
as

L= (H*K): = (H,K,p|ptap = ¢(a) Ya € A).

We define a map 0 : H — L by 6(h) = p~'hp and a map ¢ : K — L by
(k) = k. Then for a € A we have 6(a) = p~tap = p(a) € B. But in HAfBK

we have a = ¢(a) € K so that 6 and 1) agree on the amalgamated subgroup.
Hence they define a homomorphism from H Pt K to L. Now using the

theory of HNN extensions it follows that both H and K are embedded in

H g K.
The reduction theorem for amalgamated free products follow from Brit-
ton’s Lemma. To see this, suppose w = hiky---h,k,, is an alternating

expression in H o K. The image of this expression in L is
=B

p  hapkip hop - - pT Ry ki

If w = 1 then its image is equal to 1 and so by Britton’s Lemma must contain
a p-pinch. Hence some h; € A or some k; € B. So w was not reduced in
H Pt K. This proves the reduction theorem. So the study of many aspects

of amalgamated free products reduces to the the study of HNN extensions.

3.6 Semi-direct products and wreath prod-
ucts

A subgroup H of a group G is a retract it there is a homomorphism p : G — H
such that p(h) = h for all h € H. Such a p is called a retraction from G
onto H. If we put K = ker(p), then K is a normal subgroup of G such that
G = KH and K N H = 1. Conversely given a pair of subgroups H and K
satisfying these conditions, then H is a retract of G. We also say that G is
the split extension of K by H since the exact sequence

1—-K—=d éH—>1
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splits because p o inclusion is the identity on H.

Observe that H acts on K by conjugation k — h~'kh. This defines
a homomorphism 6 : H — Aut(K), the group of automorphisms of K.
Conversely, given two groups H and K and a homomorphism 6 : H —
Aut(K) we can construct a group K x H as the set of pairs hk with k € K
and h € H with multiplication defined by the formula:

(haki) - (hoks) = (hiha)(0(h1)(k1)ks).

It is routine to check that this is a group containing H and K as subgroups
with H N K = 1. One can verify that h~'kh = 0(h)(k) as expected. The
group K x H constructed in this way from external data is called the semi-
direct product of K and H. Of course H is a retract of K x H which is a
split extension as above.

One important example of these kinds of groups occurs whenever we have
a homomorphism ¢ : G — F’ where F’ is a free group with basis z/, x5, .. ..
For each « pick a lift x; € G such that ¢ (z;) = x}. Then the subgroup F of G
generated by z1, s, ... is free and is a retract of G under p(g) = lift of ¥ (g).
Thus any group GG mapping onto a free group is a split extension the kernel
by (a copy of) that free group. In particular, this is true for maps onto the
infinite cyclic group.

We now describe another construction construction called the wreath
product of two groups. Suppose that A and H are two groups. Begin by
making an isomorphic copy Aj of A for each h € H. Next form the (re-
stricted) direct product of all of these groups B = @peyAyn. Now we can let
H act on the right as an automorphism of B by defining (as) - g = any € Apg
where g € H and a;, € Ay. Finally we define the wreath product of A and H
by AtH = AwrH = B x H. Observe that A H is generated by A; together
with H. In particular if A and H are finitely generated, then A H is finitely
generated.

To gain a little more insight into this construction, we consider the case
in which both A and H are infinite cyclic groups, say A = (a) and H = (t).
We write a; instead of the more elaborate a,;. Then B can be presented
as B = (a;(1 € Z) | a;a; = aja;(i,j € Z)). Now t acts on B by sending
a; — a;y1, SO we can write down a presentation for the wreath product as

A l H = <(l> ! <t> = <CL1('L € Z),t | t_lait = CLi_H,(IZ'CLj = ajai(i,j) < Z))

But this group is clearly generated by a¢ and ¢ and in terms of these gener-
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ators we have the following presentation:
AVH = (a) 2 (t) = (a0, t | agt "agt" =t agt'ap(i € Z)).

Exercise 3.9 Show that (a) ! (t) as above is not finitely presented.
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Chapter 4

Properties, embeddings and
examples

In this chapter we will utilize some of the constructions above to build new
groups with interesting properties. In a sense we are exercising the mathe-
matical muscles the results the preceding chapters have developed.

At the outset one might ask a number of naive questions such as the
following. Is every subgroup of a finitely generated group, finitely generated?
How many finitely generated groups are there (up to isomorphism of course)?
Is every finitely generated subgroup of a finitely presented group again finitely
presented? These questions among others will be answered in the next two
sections.

4.1 Countable groups embed in 2-generator
groups

Let F' = (a,b | ) be a free group on two generators a and b. Consider the set
of elements a~"ba’ (i > 0). One can show that any freely reduced word in
these elements is not equal to 1 in F, because in forming such an expression
and then reducing in F' the central b of each term survives. Hence, by our
characterization of freeness, these elements are a free basis for the subgroup
they generate. (Notice that this answers one of our naive questions because it
shows a subgroup of a finitely generated group need not be finitely generated.)
We use this observation to prove the following remarkable fact.
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Theorem 4.1 (Higman, Neumann and Neumann) Any countable group can
be embedded in a group with two generators.

For let C' be a countable group with presentation C' = (¢, ca,... | D)
on a countable set of generators. First form the group L = C x F' where
F = {(a,b| ) is the free group as above. Now the two subgroups

A = (b,cia 'ba, coa”*ba?, czaba’, . . .)

B = (a,b 'ab, b ?ab* b 3ab?, . ..)

are both free with free bases the listed generators by our previous discussion.
So we can form the HNN extension

G = {a,b,c1,cy,...,t | D,t7 bt = a,t 'c;a "ba't = b"ab" (i > 1))

in which the stable letter ¢ conjugates the basis for A to the basis for B.

We can rewrite these added defining relations of G to put them in the
equivalent form

¢ = thtabt ta b td!
so the group G is generated by {t,a,b}. But since b = tat™!, the group G
is even generated by a and t alone. So if we substitute tat~! for b in the
above we get equations of the form ¢; =g u;(a,t) where the u; are (suitably
complicated) words on a and ¢t. Now the words in D are words on the ¢;
alone so if we rewrite them in terms of the u; we obtain a new set of words,
say D. Applying Tietze transformations to eliminate the other symbols, it
follows that G can be presented as G 22 (a,t | D).

Now our previous results on free products imply that C' is embedded in L
and our results on HNN extensions imply that L is embedded in G. Hence C'
is embedded in G which is a two generator group. This completes the proof.

Notice that GG can be presented with the same number of relations as C'.
Also observe that by properties of free products and HNN extensions, any
element of finite order in G is conjugate to an element of C'. Hence the group
G has an element of finite order £ if and only if C' has and element of order
k. So have actually proved slightly more, namely:

Corollary 4.2 IfC is a countable group having a presentation with n gener-
ators and m defining relations, then C' can be embedded in a group G having
2 generators and m defining relations. Moreover, G can be constructed so
that any element of finite order in G is conjugate to an element of C'.
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Using this more detailed version, we can also determine how two generator
groups there are (up to isomorphism).

Corollary 4.3 There are continuously many non-isomorphic two generator
groups.

Observe that there are at most continuously many such groups since there
are at most continuously many presentations on two generating symbols. To
construct lots of non-isomorphic groups, we start with an arbitrary infinite set
P of primes, say P = {p1, ps,ps,...}. Consider the group with presentation

Cp={ci,co.. | =1, =1, P =1,.)

and let G p be the group constructed for Cp in the previous corollary. Observe
that Cp is just the free product of the infinitely many cyclic groups of order
p; € P. Hence Cp and thus GGp contain an element of finite order k if and
only if £ € P. So if @) is a different set of primes then Gp and Gg are
not isomorphic. Since there are continuously many ways to choose such a
set of primes, there are continuously many such non-isomorphic Gp. This
completes the proof.

Suppose that G = (S | D) is a group and that v and v are two words
which have the same order as elements. Then we can form the HNN-extension
G: = (S,t | D,t7'ut = v) in which they are conjugate. More generally, if

the pairs we have a set of such pairs u; and v; which have the same order,
we can form the HNN extension

Gx = <S,t1,t2, R ‘ D,tflultl = Ul,t;1u2t2 = Vg, .. >
®

in which these pairs become conjugate. This observation may be helpful for
the following exercise.

Exercise 4.1 (Higman,Neumann and Neumann) Show that any countable
group can be embedded in a countable group in which any two elements of the
same order are conjugate. Also show that there is a countable torsion free
group in which any two non-trivial elements are conjugate.
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4.2 Non-finite presentability of subgroups

We are going to give an example of a finitely presented group G having a
finitely generated subgroup L which is not finitely presented. But to do this
we need a method of showing that a group is not finitely presented. The
following gives appropriate criteria for HHN extensions and amalgamated
free products.

Theorem 4.4 (G. Baumslag[13])

1. If G = H x K is an amalgamated free product where H and K are

finitely presented groups, and if M is not finitely generated, then G is
not finitely presented.

2. Let G = (S| D) be a finitely presented group with isomorphic subgroups
via the isomorphism ¢ : A — B. If A is not finitely generated, then
the corresponding HNN extension

G?/j = (S,t | D,t7'at = ¥(a) (a € A))

s not finitely presented.

We prove the second assertion. The proof of the first is similar using
facts about amalgamated free products. We can assume that G = (S | D)
is a finite presentation so that the given presentation of G z is finite except

for the t~'at = 1 (a) relations. Assume on the contrary that G?Z is finitely

presented. Then, by the extraction theorem, some finite subset { D, t ta;t =
P(ay), ...t a,t = ¥(a,)} of the given relations suffice.

Let Ay = (ai,...,a,) be the subgroup of A generated by the a; that
appear in these relations. Form the HNN extension of G with associated
subgroups Ay and 1(Ag) which can be presented as,

H={(S,t| Dt rait =v(ay),...,.t " at = (an)).

Since A was not finitely generated we know there is some = € A\ Ag. Then
by Britton’s Lemma applied to H we know t'zt(x)~! #5 1. But above
we saw ¢t~ txtp(z)™! = 1 is a consequence of the given relations, which is a
contradiction. Hence Gz is not finitely presented.
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We are now going to construct an example of a finitely presented group
(namely F' x F where F' is free of rank 2) which has a finitely generated
subgroup L which is not finitely presented. We are going to use the following
fact.

Exercise 4.2 Let F = {(a,b | ) be the free group on a and b and consider the
subgroup K = (a'b™" (i € Z)). Show that the listed elements are a free basis
for K. Also show that K is normal and is in fact the kernel of the quotient
map from F onto the group {(a,b | a =0).

Let I' and K be as in the previous exercise. Form the HNN extension
corresponding to the identity isomorphism on K which has presentation

L={a,bt|t a'b't=a'b"" (i € Z)).

Since the associated subgroup K is not finitely generated, by the previous
theorem L is not finitely presented.

Observe the K is a normal subgroup of L. If we let ¢ : L — G where
G = (a,b,t | a = b) be the map induced by the identity on generators, then
K = ker p. Observe that GG is just a free group on two generators and ¢ is
surjective. It is convenient to change notation slightly and write G = (s,t | )
where we rename the image of a and b by the letter s.

Let b : L — F be the map which is the identity on F' and sends the stable
letter t to 1 € F'. Clearly ker¢) N F' = {1} so that ker o Nkert = {1}. Hence
the map v : L — F x G defined by v(z) = (¢(z), ¢(z)) is a monomorphism
and so L embeds in F' x G. In terms of the given generators we have ~y(a) =
(a,s), v(b) = (b, s) and 7(t) = (1,t). We summarize this as follows.

Theorem 4.5 Let F' = (a,b | ) and G = (s,t | ) be two free groups. Their
direct product D = F x G is finitely presented, for instance by

D = (a,b,s,t | as = sa,bs = sb,at = ta, bt = tb)

but the subgroup L of D generated by the three elements {(a, s), (b, s), (1,t)}
s not finitely presented.

Later we will discuss a remarkable theorem of Graham Higman which
actually characterizes those finitely generated groups which are subgroups of
finitely presented groups.
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4.3 Hopfian and residually finite groups

A group G is said to be hopfian if G/N = G implies N = {1}, that is, every
epimorphism « : G — G is an automorphism.

Being hopfian has aspects of a finiteness property. Clearly any finite
group is hopfian since a function from a finite set onto itself is a bijection.
A free group Fs with an infinite basis S = {ay, as, ...} is not hopfian since
alar) = 1,a(a;11) = a; (i > 1) defines a homomorphism « : Fs — Fg which
is surjective but not injective.

We will eventually see that all finitely generated free groups are hopfian
and all finitely generated abelian groups are hopfian. It is also known that all
finitely generated groups of matrices are hopfian. So one might ask whether
all finitely presented groups are hopfian since they satisfy one sort of finiteness
condition. The answer is know as the following simple example shows.

Theorem 4.6 (Baumslag-Solitar) The group with presentation
G = {(a,t | t'a’t = a®)
18 non-hopfian

To prove this we define () = ¢ and ¥(a) = a®. To see that 1) de-
fines a homomorphism we observe that ¢ (t7a?t) = t7la't =¢ a® = ¥(a?).
Also since a =¢ t~'a’ta™? the homomorphism 1 is surjective and hence an
epimorphism.

Now [t~tat,a] =t ta 'ta 't lata #5 1 by Britton’s Lemma since there
are no t-pinches possible. But

St at ) = [ a%, a?) =0 o ?] = 1

so that [t71at, a] is a non-trivial element in the kernel of ¢). Hence 1) is not
an isomorphism as desired.

Exercise 4.3 (G. Higman) Show that the group with presentation

H={a,p,q|ptap=d® q'ag=ad?

s non-hopfian.
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There is a large class of finitely generated groups which turn out to be
hopfian, namely, the residually finite groups. Before proving this result, we
briefly discuss residual properties in general.

Let P be a property of groups which is abstract in the sense that it
depends only on the isomorphism type of the group and not on the way it
is presented or defined. For example “being finite” is such a property. A
group G is said to be residually-P if for every 1 # g € G there is a surjective
homomorphism 1 : G — H where H € P with ¢(g) #5 1. Equivalently, if
for every 1 # g € G there is a a normal subgroup N, of G such that g ¢ N,
and G/N, € P. Thus the fact that g #¢ 1 is witnessed in some quotient
group of G which enjoys the property.

For example the infinite cyclic group C' = (a | ) is residually finite. To
see this observe that if a™ (n # 0) is any nontrivial element, then a" ¢ (a®")
and C'/(a®") is finite. Also any finite group is residually finite.

Exercise 4.4 Show that the direct product of two residually-P groups is
residually-P

A property P is said to be hereditary if every subgroup H of a group
G € P also has property P. Examples of hereditary properties are “being
finite”, “being abelian”, “being nilpotent” “being solvable” and so on.

Exercise 4.5 Show that residually abelian is the same as abelian. Show that
residually-(residually-P) is the same as residually-P.

Exercise 4.6 Show that if P is a hereditary property, the G is residually-
P if and only if G is isomorphic to a subgroup of an (unrestricted) direct
product of groups with property P.

We want to investigate residual finiteness, but to do so we need a few
facts about subgroups of finite index in groups. We pose these as exercises.

Exercise 4.7 Let G be a group and let H and K be two subgroups of finite
index in G. Show that H N K has finite index in G.

Exercise 4.8 Let G be a group and H a subgroup of finite index in G. Show
that H contains a subgroup N which is normal in G and [G : N] < oco.

Exercise 4.9 Show that if G is a finitely generated group and 1 < k € N,
then there are at most finitely many subgroups of G of index k.
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Exercise 4.10 Show that G is residually finite if and only if the intersection
of all of the subgroups of finite index in G is the trivial subgroup {1}.

The following useful result provides more examples of residually finite
groups.

Theorem 4.7 If H and K are residually finite, then their free product Hx K
1s residually finite.

We first observe that it suffices to consider the case in which both H and
K are finite groups. For if w = hiky ... h,k, #g.x 1 is a reduced word, since
H and K are residually finite they have normal subgroups finite index N and
M respectively such that the h; ¢ N and the k; ¢ M. Hence the image of
w in the quotient group (H/N) (K /M) is reduced and has the same length
as w and so is not equal to 1. So it suffices to show this latter, which is the
free product of two finite groups, is residually finite. Hence we can assume
from now on that H and K are finite groups.

Now assume w = hiky ... hyk, #px 1is a reduced word of length m. Let
2., be the collection of all elements of Hx K of length at most m, so that €2, is
a finite set. We let H act on 2, by the following rule: if u € €2, the h-u = hu
if the length of hu after reduction is < m; otherwise h-u = u. Once can check
this is an action and therefore it defines a homomorphism o : H — Sym/(£2,,),
the group of all permutations of €2,,. Similarly define an action of K on €2,
which gives a homomorphism 5 : K — Sym(£,,). Hence, by the definition
of free product, there is a homomorphism v : H x K — Sym($Q,,) which
extends these. Thus the two actions extend to an action of H « K on (2,,.

Now the element w acting on 1 € 2, yields w, that is w -1 = w and so
w acts non-trivially. Thus vy(w) # 1 in Sym(€2,) and this later is a finite
group. Thus for any non-trivial element w we have found a homomorphism
to a finite group which sends w to a non-trivial element. Hence H x K is
residually finite. This completes the proof.

Since a free group is a free product of infinite cyclic groups, we conclude

Corollary 4.8 Free groups are residually finite.

Linear groups provide a rich source of residually finite groups because of
the following which we state without proof.

Theorem 4.9 (Malcev) A finitely generated linear group (group of matrices)
1s residually finite.
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At last we are ready to prove an assertion we made in connection with
the hopfian property.

Theorem 4.10 (Malcev) Finitely generated residually finite groups are hop-
fian.

For suppose that G is finitely generated and residually finite. Let ¢ : G —
G be an epimorphism. Let H be a subgroup of finite index, say n = [G : H].
Then ¢ ~!(H) is again a subgroup of finite index n in G (which contains
ker ). If K is another subgroup of G having this same index n, so H # K,
then ¢y~ (H) # ¢! (K). Hence ¢! defines an injection from the set ©,, of
subgroups of GG having index n into itself. But by the exercises above ©,, is
a finite set and so ¢! must be a bijection. Thus

kery C m H.

Heo,

Hence ker v lies in the intersection of all of the subgroups of finite index in
G. Since G is residually finite, that intersection is the trivial subgroup, so v
is an isomorphism. This completes the proof.

4.4 Local and poly properties

Let P be a property of groups. A group L is said to be locally-P if every
finitely generated subgroup of L has the property P. Thus a group is locally
finite if every finitely generated subgroup is finite. For example, if C,, denotes
the cyclic group of order n, then the infinite direct sum A = @;°, C, is
an infinite, locally finite group. Similarly Q/Z and S, the group of all
permutations of N which move only finitely many symbols are both locally
finite groups.

Exercise 4.11 Suppose that the group G has a normal subgroup N such that
both N and G/N are locally finite. Show that G is locally finite.

Observe that a locally abelian group is always abelian. In contrast to
this observation, locally nilpotent (respectively solvable) groups need not
be nilpotent (respectively solvable). To see this, let H,, be a sequence of
nilpotent groups of class exactly n. Specifically we can take H, to be the
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group of upper triangular matrices in GL(n + 1,7Z) with 1’s on the diagonal.
Then the direct sum G = @;°, H, is a locally nilpotent group which is not
nilpotent. Since the H,, also have increasing derived length, it also follows
that G is locally solvable but not solvable.

A group L is said to be coherent if all of its finitely generated subgroups
are finitely related, that is if it is locally finitely presented. Locally finite
groups are coherent. Since finitely generated abelian groups are a direct
sum of cyclic groups, it follows that abelian groups are coherent. Also free
groups are coherent (since subgroups of free groups are free - see Theorem
5.1). In Theorem 4.5 we showed that the direct product of two free groups is
not coherent by exhibiting a finitely generated subgroup which is not finitely
related.

The property P is said to be a poly property if P is preserved by extensions,
that is N and G/N both having P implies G has P. For example being finite
is a poly property and, by the previous exercise, being locally finite is a poly
property. The following is an easy but useful fact.

Theorem 4.11 (P. Hall) Being finitely presented (respectively finitely gen-
erated) is a poly property.

Proof: Suppose that G is a group with a normal subgroup N such that N
and G /N have presentations

N={(ay,...,ap |m1=1,...,rpn=1)

G/N =(x1,...,xp | s1=1,...,8,=1).

Pick elements of G, again denoted z;, which map onto the z; in G/N. Since
N is a normal subgroup of G, there are words v;; on ay,...,a, such that
aji_laja:i = v;; in G. Similarly there are word wuy in a4,...,a, such that
sk = ug in GG. In terms of this data we can present G as

G={a,...,0n,21,...,0p |1 =1,...,r =1, s, =u, (1 <k <gq)
x;lajxi:vij (1<i<p1<j<n)).

It is clear that the x;’s and a;’s generate G, and we leave to the reader the
verification that the listed relations suffice to define G. a

Exercise 4.12 Complete the details of the above proof by showing that any
word in the given generators which is equal to the identity is a consequence
of the listed relations.
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If P is a property, a group G is said to be poly-P if there is a finite series of
subgroups G = Go>G1 >+ G,,_1 > G, = 1 such that G;/G;;1 has property
P. Observe that if P is a poly property, then “being poly-P” is the same as
“being P” .

Exercise 4.13 Show that a group is poly-abelian if and only if it is solvable.

4.5 Finitely presented coherent by cyclic groups

The purpose of this section is to give a very simple proof of the following
theorem due largely to Bieri and Strebel [16] and to deduce a number of
consequences which we will describe in due course.

Theorem 4.12 Suppose that G is a group having a normal subgroup L with
G/ L infinite cyclic. If G is finitely presented then G is an HNN extension of
a finitely generated subgroup H of L with finitely generated associated sub-
groups. If in addition L is coherent, then G is an HNN eztension of a finitely
presented subgroup H of L with finitely presented associated subgroups.

Proof: We can suppose G is presented in the form
G: <t,b1,...7bn|7”1: 1,...,7”m:1>

where the b; represent elements of L and the r; have exponent sum 0 on
t. It follows that all of the r; are freely equal to words in the elements
Bir. = t7*b;t*k. So, replacing each of the r; by t~‘r;t* we can assume that all
of the [3;; that arise have k£ > 0 by simply choosing ¢ sufficiently large.

Since the r; are finite in number there is a maximum value, say d of k
required so that all the r; are freely equal to words in the §;; for k =0,...,0
andi=1,...,n.

We now perform Tietze transformations on our presentation to obtain a
presentation of the form

t 1 Bt =Bk 1<i<n, 0<k<6—1))

where the g; are the r; expressed as words in the (3.
We denote the subgroup generated by the 3;, by H. Notice that H is
finitely generated, but not necessarily finitely related. We may enlarge the
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set of relations g; so that they give a presentation for H on the generators ;.
Now in H the subgroup Cy generated by the elements G (1 < i <mn, 0 <
k < 6 — 1) is isomorphic to the subgroup C; generated by Gy (1 < i <
n, 1 <k <) since they are conjugate in G by ¢t. Thus we have exhibited G
as an HNN extension of the finitely generated group H. Under the additional
assumption L is coherent, it is immediate that H, Cy and C} are also finitely
presented.

Recall that the HNN extension G = (H,t | t7'Cot = C}) is said to be
ascending if either Cy = H or C} = H. Let L be the normal closure of H in
the HNN extension (G. The structure of L is very different in the ascending
and non-ascending cases.

If G is ascending with say Cy = H then we have

DB Ht 2 DOtHt ' D H Dt 'HtD -

so that L = U,ezt " Ht". Thus L is the union of copies of H.
On the other hand if G is not ascending so that Cy # H # C; then L has
the structure of a two-way infinite amalgamated free product

ctHtY o« H o« tT'Ht * t2HE -
tC1t—1=Co  Ci=t—'Cot t=1Cyt=t—2Cot?
where the amalgamations are proper (see for example [18] or [19]). From this
one can easily deduce that L has non-abelian free subgroups. Here is a very
elementary proof of this folklore fact which doesn’t rely on this structural
description.

Since the HNN extension is not ascending there are elements hy € H \ Cj
and hg € H \ Cy. Then of course hy' ¢ Cy and h;' ¢ C). Define two
elements u = hot2hit? and v = thot 2hit = tut™'. We claim the v and v
freely generate a free subgroup of G. Consider the following six products
(shown freely reduced):

1. uv = hot=2hyt? thot—2hyt

2. uv™t = hot~2hy t hy't2hy !

3. vu = thot2hit hot 2ht?

4. vy =t 2R hot 2Ry t?

5. u? =uu = h0t72h1t2 h0t72h1t2
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6. v2 = vv = thot2hit thot 2hqt

Notice that only in case (2) has there been any free reduction and in that
case the final ¢ of u cancels with the initial t=! of v~!. In the other case the
concatenation is freely reduced as written. Also observe that none of u, v nor
these six products contains a t-pinch, that is a subword of the form t~!cyt
or teit™! with ¢; € C;. So by Britton’s lemma [?], none is equal to a word
with fewer ¢ symbols. Moreover it is clear that any non-empty freely reduced
word w(u,v) in v and v has only small free reductions from case (2) giving
a non-trivial word involving ¢ which is ¢-reduced an so not equal to 1. Again
by Britton’s lemma w # 1. Hence our claim holds, completing the proof.
Our discussion can be summarized as follows.

Lemma 4.13 Suppose G = (H,t | t'Cot = C}) is an HNN extension and
let L be the normal closure of H in G. Then

1. if G is ascending, then L is is a union of subgroups isomorphic to H;

2. if G is not ascending, then L contains non-abelian free subgroups. O
Next we observe

Corollary 4.14 Suppose that G is a group having a locally finite, normal
subgroup L with G/L infinite cyclic. If G is finitely presented, then L is
finite.

Proof: Theorem 1 applies here and we continue the notation in its proof.
Notice that the resulting H is finite. Now suppose that C, # H. Then Cj #
H since Cj and (' have the same order. So G is not ascending and Lemma
4.13 implies L contains non-abelian free subgroups. But by hypothesis L is
locally finite, a contradiction. Hence Cy = C; = H and H is normal, so it
must be all of L.

The following special case of Theorem 1 applies in particular to finitely
presented free-by-cyclic groups:

Corollary 4.15 Suppose that G is a group having a locally free, normal
subgroup L with G /L infinite cyclic. If G is finitely presented, then G is
an HNN extension of a finitely generated free subgroup H of L with finitely
generated associated subgroups. a
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Corollary 4.16 Suppose that G is a group having an abelian normal sub-
group L with G/L infinite cyclic. If G is finitely presented, then G is an
ascending HNN extension of a finitely generated abelian subgroup H of L.

Except for the ascending assertion this is a special case of Theorem 1.
Since such a group G must be solvable, the ascending assertion is an imme-
diate consequence of Lemma 4.13.

Here is a generalization of the Corollary 5 which has essentially the same
proof.

Corollary 4.17 Suppose that G is a group having an locally polycyclic nor-
mal subgroup L with G /L infinite cyclic. If G is finitely presented, then G is
an ascending HNN extension of a (finitely generated) polycyclic subgroup H
of L. a

By way of a concrete example of the last several corollaries, we recall
the groups BS;, = (t,b | t7'bt = b). They are visibly ascending HNN
extensions of the infinite cyclic group. The normal closure of the element b
in these groups is isomorphic to the additive group of the p-adic rationals
Z[%] which is locally infinite cyclic.

Conversely suppose that G has a locally infinite cyclic, normal subgroup
L with G/L infinite cyclic. Now locally infinite cyclic is the same as the
conjunction of locally free and abelian. So Corollaries 4.15 and 4.16 imply
that G is an ascending HNN extension on an infinite cyclic group H. Hence
G must be one of the groups BS| .

Finally we give here an example to show that the conclusion Theorem 1
when L is not coherent cannot be strengthened to conclude that H is finitely
presented. To this end, let H = (a)(s) be the wreath product of the infinite
cyclic group on a by the infinite cyclic group on s. Then H is not finitely
presented by Corollary 4.16 (or see [12]).

Put Cy = H and C; = gp(as~tas,s). Then C; = (as tas) ! (s) is again
the wreath product of two infinite cyclic groups and so we can form the HNN
extension

G=(H,t|t at =as 'as,t st = s)

with associated subgroups Cy and C;. But now (by the following exercise or
[14]) G is finitely presented.
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Exercise 4.14 Suppose H = (a) 1 (s) and as above define
G=(Ht|t " at =as tas, t" st = s).

Show that G s finitely presented.
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Chapter 5

Subgroup Theory

We are going to discuss the structure of subgroups of various kinds of groups
introduced above.

5.1 Subgroups of Free Groups

We first consider subgroups of free groups. The general case is easily dealt
with, but in the case of a finitely generated subgroup algorithms and more
information are available.

5.1.1 The general case

The fundamental group of a graph Y is easy to compute. We first choose a
maximal tree T in Y. Contracting 7" to the base point yields a bouquet of
circles at the base point, one circle for each edge of Y not in 7. Hence the
fundamental group of Y is free with basis the loops formed by connecting
the edges not in T" to the base point by paths in T" from their vertices.
Using this observation we prove the following Nielsen-Schreier theorem.

Theorem 5.1 Subgroups of free groups are free.
The fundamental group of any graph is free. A free F' group is the funda-
mental group of a suitable graph X. A subgroup H of F' is the fundamental

group of a corresponding covering space Y of X. But Y is again a graph, so
H is free.
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5.1.2 Finitely generated subgroups of free groups

Let F' be a free group and H the subgroup of F' generated by a finite set of
words H = (wy, ..., wy,). We know that H is actually a free group, but the
w; may not be a free basis. There are graphical and computational meth-
ods available to construct a basis for H which give algorithms for deciding
membership in A and computing coset representatives. It is convenient to
discuss an extended example of these methods rather than give a theoretical
description.

Suppose for example that we are interested in the free group F' with two
free generators a and b. Consider the subgroup H of F' generated by the
three words w; = b~2a?b, wy = ab?, ws = b~ 'a"'ba.

We begin by forming three loops in the plane joined at a common vertex
labeled o. We then subdivide each loop and orient and label the resulting
edges according the the words w; in the usual manner. This gives us the
following initial (oriented and labeled) graph.

b

Initial graph

Now observe that there are four edges labeled b coming into the vertex
o. We identify these edges and also identify the vertices they come from to
reduce the graph to the following:
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In this graph there are two edges labeled a and two edges labeled b enter-
ing the central vertex. If we first identify the b edges and then the a edges,
we obtain (after two steps) the graph D shown at the left below.

b /“"\a

ay

e OO
b (0]

X

This graph D now has the property that at any vertex at most one edge
arriving at that vertex is labeled by a given generator and at most one edge
leaving that vertex is labeled by a given generator. We say that such a graph
is reduced.

Observe that there is a continuous map p from this graph D to the stan-
dard space X with fundamental group F' consisting of two oriented loops at
o labeled by a and b. The map p sends all the vertices to o and the oriented
edges homeomorphically onto the corresponding oriented loops. Observe
that the induced map on fundamental groups has p.(m(D,0)) = H C F =
71(X, 0) since the image is generated by the words w;.

Let X denote the universal covering space of X. So X is a tree and at
each vertex there is exactly one edge leaving and one edge entering labeled
by each of the generators a and b. As it stands D is not a covering space
of X. But we can enlarge D to a covering space Y of X by adding infinite
branches from X corresponding to missing edges. For example at o there is
no outgoing edge labeled b. So in X we remove an outgoing branch labeled b
(that is, the component obtained by cutting that edge) and glue this branch
on to D at o. The map p extends to this added branch in the obvious
way. Repeating this for each missing edge at each vertex of D we obtain a
space Y and an extension of p. Now (Y, p) is a covering space since at each
vertex there is exactly one edge leaving and one edge entering labeled by
each of the generators a and b. Moreover, since Y is formed by attaching
trees at various vertices of D, the graph D is a deformation retract of Y and
p«(m(Y;0)) = p.(m(D,0)) = H.

In general, starting with a finite set of generators for a subgroup H of
F', we obtain in this way a graph Dy and a covering space Yy O Dy cor-
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responding to H. Now the index of H in F' is the number of vertices of Yy
which is infinite unless Yy = Dpy. Thus the graph Dy constructed in this
way is a covering space of X if and only if H has finite index in F.

Thus one way to think of D is as the core of the covering space Y corre-
sponding to H obtained by removing all infinite tree branches. But there is
also way to regard D as the graph of a finite state automaton for determining
membership in H.

For suppose u is a freely reduced word in the generators of F'. By covering
space theory, v € H if and only if tracing out the word u starting from o € Y
along the corresponding labeled edges we return to o exactly at the end of
u. Since u is freely reduced the corresponding path must must consist of a
path in D possibly followed by a path off into one of the added branches at
the end. Thus u € H if and only if u corresponds to a path entirely in D
which returns to o at the end.

To determine membership of a freely reduced word v in H, we start
tracing out u in D from o. If there is ever no edge corresponding to the next
symbol in u, then we know v ¢ H (in Y we would go off into one of the
infinite branches here). If we finish the path corresponding to uw and are not
at o, then again u ¢ H. Finally if we finish at o, then u € H so the test was
successful.

Remark: D can also be used to compute a unique coset representative
with respect to H for any word in F'.

So the vertices of D can be regarded as the states of a finite state au-
tomaton and the edges as giving the transition instructions depending on the
next symbol being read.

The information needed here is conveniently described in tabular form
which we call the automaton table. First we number the vertices of D in
some manner, for instance as shown below (with 0 the number of o).




The table is to have one row for each vertex. The columns of the table
correspond to the generators of F' and their inverses. The number j in row
¢ in the column headed by generator a means there is an edge with label a
from vertex ¢ to vertex j. The number j in row ¢ in the column headed by
inverse a~! of a generator means there is an edge with label a from vertex j
to vertex ¢. If there is no edge at vertex ¢ with the given label a -1 is placed
in the table.

The automaton table for the graph D of our example is shown at the left
below:

Edge Table

Automatori;l“}jelile Edge | Label Initial Terminal
Vertex | a a* b b1 1 & 0 1

2 b 2 0
o 1 4 -1 2

3 a 4 0
1 3 o 2 -1

4 b 1 2
2 -1 3 o 1 5 1 3
3 12 1 4 -1 &
4 o -1 -1 3 0 & 3 2

7 b 3 4

With any graph we can also associate what we term an edge table. This
is a table with one row for each edge of the graph. Each edge is considered
in the positive orientation of the labeling generator, and the row in the table
for the edge contains the labeling generator and the numbers of the initial
and terminal vertices. The edge table for our example D is shown at the
right above.

It is computationally quite easy to pass between these two tables if the
graph is reduced. To even write down the automaton table we must have a
reduced graph. But the edge table makes sense in general, and the reduction
process described before can be carried out on a computer using the edge
table for the graph.

In order to write down a Nielsen basis for the subgroup H we first select
a maximal tree T" in D with root o. First we choose an edge from each vertex
at distance 1 from o back to o - this gives a subtree T;. Then choose an edge
from each vertex at distance 2 from o back to 7} - this gives a larger tree
T5; and so on. There is a simple procedure for doing this by passing through
the above automaton table d times where d is the maximum distance of any
vertex from o. Such a maximal tree for our example is shown below.
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o
T

In such a maximal tree T there is a unique reduced path from any vertex
to 0. This information is conveniently recorded in the following table which
completely describes T'.

Vertex | Previous Label Distance
o - - 0
1 o at 1
2 o b 1
3 1 a! 2
4 o a 1

As usual, H is free on the omitted edges, and a Nielsen basis for H is
uy = abb, us = aaab, uz = aaba

where the underlined symbol corresponds to the edge omitted from 7'. This
underlined symbol is isolated in the sense it remains uncancelled when form-
ing freely reduced words in the u;.

Exercise 5.1 Let F' be the free group with free basis {a,b} and consider the
subgroup H = {(aba? ba,a’b,v?,a®) generated by the listed elements. Deter-
mine the automata graph Dy of H. Also find the corresponding automaton
table and edge table. Finally find a Nielsen basis for H. What is the index
of Hin F'? Is H normal?

Exercise 5.2 Repeat the previous exercise for the subgroup
K = (a® ab* ab 2, b rab™ b a 7).

Exercise 5.3 If L is a subgroup of index 2 in F', use the geometry of Dy
to explain why L is normal. Also, by drawing an appropriate covering space,
show that if 2 < n € Z, there is a subgroup of index n which is not normal.
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5.1.3 More on subgroups of free groups

We use the methods of the previous section collect few more useful facts
about finitely generated subgroups of free groups.

First, suppose that N # 1 is a finitely generated normal subgroup of
F'. Construct the corresponding finite graph Dy as in the previous section.
Then Dy C Yy where Yy is the covering space of X corresponding to N
which is obtained by adding infinite tree branches to certain vertices of Dy.
Now Dy = Yy if and only if N has finite index in F' and no infinite branches
need to be added. By covering space theory, F/N acts transitively on Yy
as a group of homeomorphisms, so Yy must look the same viewed from each
vertex.. But this is not possible if Yy contains an infinite tree branch because
there are closed loops at the base point of length at most 2k + 1 where k is
the number of vertices of Dy. This proves the following fact:

Theorem 5.2 A non-trivial, finitely generated, normal subgroup of a free
group has finite index. a

If we are given two finite sets of elements of ' which generate subgroups
H and K, we can find the corresponding reduced automata graphs Dy and
Dy as above. We also have two maps py : Dy — X and pg : Dg — X.

Now form the pull-back Z of these two maps. Then Z is a graph with
vertex set the collection of pairs (u,v) where u is a vertex of Dy and v is a
vertex of Dy. There is an edge labeled by a generator a from vertex (uq,v;)
to vertex (ug,vy) in Z if and only if there is both an edge labeled by a in Dy
from u; to uy and an edge labeled by a in Dk from vy to vs.

The component of the vertex (0y,0x) in the pull-back graph Z of these
two graphs is then a reduced graph which accepts exactly those words in
HNK.

Note that Z may have vertices of degree 1. For instance, if H = (a?) and
K = (ab) so HN K =1, one finds that Z is a graph with 2 vertices joined
by a single edge with label a. But after successively removing all vertices
of degree 1 and their incident edges, we obtain the the graph Dyngx. In
particular, H N K is finitely generated and this gives an algorithm for finding
its automata graph and hence a set of generators. In particular we have
proved the following.

Theorem 5.3 (Howson) The intersection of two finitely generated subgroups
of a free group is again finitely generated. O
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Exercise 5.4 Let F', H and K be as in the previous exercises. Determine
the automata graph Dyni of their intersection. Also find the corresponding
automaton table and edge table. Finally find a Nielsen basis for HNK. What
is the index of HN K in F?

Suppose that H is a finitely generated subgroup of the free group F. As
in the previous section we associate with H a graph Dy and corresponding
automaton and edge tables. Observe that an edge of Dy with label a gener-
ator, say a, gives rise to exactly one non-negative entry in each of the a and
a~! columns of the automaton table. Hence, for any -1 in the a column, there
must be a (not necessarily unique) -1 in the ¢! column, and vice-versa.

Suppose the uy,...,u,, is a basis for H, say computed using Dy. In
light of the above observations we successively add new edges to Dy with
appropriate labels until we obtain a covering space of Dy, of X corresponding
to a subgroup L of finite index. The vertices of Dy, are the same as those of
Dy and if we use the same tree to compute a basis for L we see that L has
basis uy, ..., Un, v, ..., v, where each v; corresponds to a unique added edge.
If we define k = (vq,...,vg), it follows that L decomposes as the ordinary
free product L = H x K. So we have shown the following:

Theorem 5.4 (M. Hall [17] - see also [21]) If H is a finitely generated sub-
group of the free group F, then H s a free factor of a subgroup of finite index
i F. a

Suppose that a group G is generated by n elements. Then G is the
homomorphic image of a free group on n generators, say F' = (ay,...,a, | )
with ¢ : F — G. If H is a subgroup of index k in G, then ¢~ '(H) is
a subgroup of index k in F. Moreover the isomorphism theorems tell us
that o~! gives a bijection between the subgroups of G of index k and the
subgroups of F' of index k£ which contain ker . We have seen that the
subgroups of index k in F' correspond uniquely to certain reduced graphs
D with k vertices. There are clearly only finitely many such graphs, so we
conclude the following:

Proposition 5.5 If G is a finitely generated group and k > 0, then the
number of subgroups of G having index exactly k is finite. a
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5.1.4 Subgroups of a direct product with a free group

In an earlier section we gave an example of a finitely generated subgroup of a
direct product of two free groups which was not finitely presented (Theorem
4.5). It turns out this is not at at all accidental. Baumslag and Roseblade [15]
have shown that, with only the “obvious” exceptions, the finitely generated
subgroups of a direct product of free groups are never finitely presented.
Using the results of the previous section, we can now give a very simple
proof of this result [20].

Theorem 5.6 Let AX F be the direct product of a group A with a free group
F. Suppose that G < A X F is a subgroup which intersects F non-trivially.

1. If G is finitely generated, then G has a subgroup Go of finite index
which s an HNN-extension of the form

Go=(D,t |t 'bt =0, Vbe L)
where D s finitely generated and L =G NA < D.

2. If G is finitely presented, then L = G N A is finitely generated.

Proof: Since subgroups of free groups are free, we may assume that both
of the projection induced maps py : G — A and pr : G — F are surjec-
tive. Since G intersects F' non-trivially, there is some 1 # ¢t € GN F. By
Marshall Hall’s Theorem 5.4, F' contains a subgroup M of finite index which
has the cyclic group (t) as a free factor. Thus M has a basis of the form
{t,51,89,...,8,}. Foreachi=1,... n pick alift §; € pa'(s;).

If we put L = AN G, then Gy = pz' (M) is a subgroup of finite index in
G which has the structure of an HNN-extension

Go=(L,t,31,...,8, | t7'bt = b,5,'b3; = ¢3(b),i=1,...,n,Vb € L)

where ¢; is the automorphism of L induced by conjugation by §;.

Suppose now that G is finitely generated (so that n < oo in the above).
Then Gy is also finitely generated and hence is generated by a finite set
of elements ay,...,a; in L together with ¢, 5,...,5,. Notice that since ¢
acts trivially by conjugation, L is generated by the a;’s together with their
conjugates by words in the 3;. Let D be the subgroup generated by the a;
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and §;, that is D = (aq,...,ax, S1,...,8,). Of course L is a subgroup of D.
Now G also has the structure of an HNN-extension of D, namely

Go=(D,t |t bt =0, Vbe L).

Assume now that G is finitely presented. Then Gy is also finitely pre-
sented since it has finite index in G. So Baumslag’s extraction principle for
HNN extensions (Theorem 4.4) implies that L must also be finitely generated.
This completes the proof of the theorem. O

The theorem of Baumslag and Roseblade is an easy consequence of The-
orem 9.6.

Corollary 5.7 (Baumslag and Roseblade [15]) Let I X Fy be the direct
product of two free groups Iy and Fy. Suppose that G < Fy x Iy is a subgroup
and define L; = G N F;.

1. If either L; = 1 then G s free.

2. If both L; are non-trivial and one of them is finitely generated, then
Ly x Ly has finite index in G.

3. Otherwise, G is not finitely presented.

Proof: Since subgroups of free groups are free, we can assume both of the
induced projections p; : G — F; are surjective. The subgroups L; are normal
in G' and, since the p; are surjective, each L; is also normal in F;. If one of
the L; is trivial, say L; = 1, then the projection p, is an isomorphism and
hence G is free.

Suppose both L; are non-trivial and one of them, say L, is finitely gen-
erated. Then L, is a non-trivial, finitely generated normal subgroup of F}
and hence has finite index. Thus p;'(L;) = L; X Lo has finite index in G.

The final assertion now follows immediately from Theorem 5.6. a

5.2 Subgroups of presented groups

Suppose we are given a group G by a presentation. It is convenient to write
this presentation as

G:<(l1,a2,... |T1:1,T2:1,...>
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although the sets of generators and relations need not be countable. Our
notation will be cumulative for this section and somewhat at variance from
that used in other sections.

Suppose that H is a subgroup of G. We want to find a presentation for
H. To this end, we inductively choose a set of words 7" in the generators of
G which are a transversal for the right cosets Hx of H in GG. First we choose
the empty word 1 as the representative of H. By the length of a coset Hx we
mean the length of the shortest word in the generators of G representing an
element of Hx. Suppose that representatives have been chosen for all cosets
of length n. For each coset of length n+ 1, select an element of length n + 1,

say aj ...a; al”ii Then as representative of this coset, choose the element
€1 €n En+1
N
where a;j! ... a" is the representative already chosen for a;! ... af".

If 6 G we denote the coset chosen representative of rbyzsoxr eT.
We use the letters K and M as variables ranging over these the chosen
representatives in 7. Observe that by construction an initial segment of a
representative is again a representative.

Topological interpretation: We can realize G in the standard way as the
fundamental group of a 2-complex X with a single 0-cell, so G = m(X, o).
Let Y be the covering space corresponding to H so H = m(Y,0). We
then choose an “expanding maximal tree” T based at 6. Each coset of H
corresponds to a O-cell of Y, and the unique reduced path in 7" joining o to
a 0-cell can be taken as a coset representative. Again an initial segment of a
representative is a representative.

We want to find a presentation for H. To this end, for each K € T and
each generator a; of G we introduce a new symbol sk ,,. Each such symbol
is to represent the element Ka;(Ka;)™' of H. We now define a rewriting
process T which assigns to each word in the a; a corresponding word in the
SK.q;- Given a word w = a; ...a;" in the generators of G, we define 7(w) as

2

follows: 7(w) is the word obtained from w by replacing the j-th symbol a:-j
by the following rule: if €; = 1 replace aZ by in sk.q,, where

— €1 €j—1
K=ua;...a;",

. _ €5 . —1
and if €; = —1 replace a; by in s Kai, where
K=a...a7
=aj ...a;.

Lj
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Remark: In the topological interpretation the path corresponding to
Ka;(Ka;)~! goes out along K in the maximal tree T, then across the edge
labeled a; then back to o in the tree T'. If the edge labeled a; is in T then
the path back to o is the same as that going out, so the whole path is homo-
topically trivial. Otherwise it is a genuine loop in the 1-skeleton of Y. The
set of such loops generate (Y, 0). The effect of 7 is to express any path as
a product of these followed by the unique path in T back to o. If the path is
closed, it expresses the path in terms of the generators for m (Y, 0).

Observe that it can happen that Ma; and Ma; are freely equal (topolog-
ically they are homotopic in 7). In this case we must have sy, =g 1.

With the above notation we are now ready to specify how to present
subgroups of groups given by presentations.

Theorem 5.8 (Reidemeister-Schreier) Suppose that G is a group given by a
presentation
G = <CL17(12,... | ™ :17T2:17...>

and that H is a subgroup of G. Choose a transversal T and introduce a
rewriting process T as above. Then H can be presented as follows:

1. generators: sg,, for each K € T' and each a;

2. relators: syr., = 1 whenever Ma; and Ma; are freely equal; and

T(Kr;K~') =1 for each K € T and each relator r; in the presentation
for G.

In case the index of H in G is finite (so the number of K € T is finite)
and the number of a;’s is finite (so G is finitely generated) we can draw the
following consequences.

Corollary 5.9 1. If G is a finitely generated group and H a subgroup of
finite index, then H 1is finitely generated.

2. If G is a finitely presented group and H a subgroup of finite index, then
H is finitely presented.

Here are some exercises in carrying out the Reidemesister-Schreier proce-
dure for presenting subgroups.
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Exercise 5.5 Let G = S3 = D3 = (a,b | a®* = b® = 1,aba = b') which
1s the non-abelian group of order 6. Use the Reidemeister-Schreier method
to obtain a presentation for H = (b) the normal subgroup of order 3. Then
use Tietze transformations to simplify the presentation you get. Repeat the
exercise for the subgroup (a) which has order 2 but is not normal.

Exercise 5.6 Let G = {a,b | b='ab = a®) and let H be the normal closure
of a, that is the kernel of the map from G onto the infinite cyclic group (b).
Use the Reidemeister-Schreier method to obtain a presentation for H. Then
use Tietze transformations to simplify the presentation you get.

Exercise 5.7 Let F' be the free group with basis {a,b} and let H = [F, F] be
its commutator subgroup. Find a free basis for H by using the Reidemeister-
Schreier method to obtain a presentation for H.

5.3 Subgroups of free products

The subgroups of an (ordinary) free product have a particularly simple struc-
ture as described in the following.

Theorem 5.10 (Kurosh Subgroup Theorem) Let G = ‘*]Hi be the free prod-
1€

uct of a collection of groups H;. If A is a subgroup of G, then A decomposes
as a free product of the form
A=F*(*( » Anu;Hu:*
(5 5 AN )
where F is a free group. That is, A is the free product of a free group and of
various subgroups which are the intersections of A with conjugates of the H;.

A fairly straight forward proof using covering spaces can be found in
Massey’s text [6]. It also follows from the more general results described in
the next section.

Note that applying the Kurosh Subgroup Theorem to the free product of
infinite cyclic groups implies that subgroups of free groups are free. Here are
a few other special cases.

Corollary 5.11 If a subgroup A of a free product G = '*IHi intersects each
(S

conjugate of an H; trivially, then A is a free group. In particular if A is a
normal subgroup which intersects each H; trivially, then A is free.
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Corollary 5.12 The kernel of the epimorphism H x K — H x K is a free
group.

5.4 Groups acting on trees

The subgroup structure of amalgamated free products and HNN extensions
is more difficult to describe. In fact one considers a more general notion
of a graph of groups which is a graph together with a collection of groups
corresponding to vertices and a collection of (sub)groups corresponding to
edges end embeddings of the edge groups into the vertex groups of their
initial and terminal vertices. There is a notion of the fundamental group of
such a graph of groups; ordinary free products, amalgamated free products
and HNN extensions are all special cases.

By considering the universal cover, such a graph of groups acts on a
suitable tree (all actions here are without inversions). The stabilizers of
vertices are the vertex groups and the stabilizers of edges are the edge groups.
Conversely any group acting on a tree has a description in these terms. In
particular, a group is free if and only if it acts freely on a tree. Hence
subgroups of free groups are free.

Using these methods rather detailed structural information about sub-
groups of all these objects can be obtained. The reader is referred to the
book by Serre [11] or the notes by Scott and Wall [10] for two different (but
related) accounts of this theory.
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Chapter 6

Decision Problems

6.1 The word and conjugacy problems
A finite presentation m of a group is a piece of notation such as
(x1,...,xp | =1,...,rp=1)

where the z; are letters in some fixed alphabet and the r; are words in the
x; and their inverses z;'. The group presented by 7, denoted gp(n), is the
quotient group of the free group on the z; by the normal closure of the r;.
Usually it is not necessary to distinguish so carefully between a group and
its presentation and we often write simply

G=(x1,...,¢p |1 =1,....rpn=1)

to mean the G is the group defined by the given presentation.

It is convenient to introduce some notation for several decision problems
we will consider. Suppose that G is a finitely presented group defined by a
presentation as above. Then the word problem for G is the decision problem

WP(G)=(Tw e G)(w=¢1).

Here the “7?” is intended as a sort of quantifier and should be read as “the
problem of deciding for an arbitrary word w in G whether or not ....” A
closely related problem is the equality problem:

EqP(G) = (Twy, ws € G)(wy =g wy).
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Of course, w; =¢ wy if and only if wywy ' =4 1 so that an algorithm for
solving either of W P(G) or EqP(G) easily yields an algorithm for solving the
other. On the other hand, from the viewpoint of computational complexity,
these problems are subtly different.

Again using this “?” quantifier, the conjugacy problem for G is

CP(G) = (tu,v € G)(Fz € G)(z 'ur =g v).

If H is a finitely generated subgroup of GG and if H given by say a finite set
of words which generate it, then the generalized word problem for H in G is
the problem of deciding for an arbitrary word w in G whether or not w lies
in the subgroup H, that is

GWP(H,G) = ("w e G)(w € H).

When the subgroup H is an arbitrary finitely generated subgroup rather than
a fixed one we write simply GW P(G).

On the face of it, each of these algorithmic problems appears to depend
on the given presentation. We will show below that the solvability of each of
these problems is independent of the finite presentation chosen. It can hap-
pen that for a particular finitely presented group each of the above problems
is solvable. For instance, if G is a finite group given by a multiplication table
presentation, it is easy to describe algorithms for solving WP(G), CP(G)
and GW P(G). Similarly, if ' = (x1,...,2, | ) is a finitely generated free
group WP(F) is solved by freely reducing and C'P(F') is solved by cycli-
cally permuting and freely reducing. The GW P(H, F') for finitely generated
subgroups H of F is more difficult and its solution is due to Nielsen (see [5]).

Finally, in terms of the “?” notation, the isomorphism problem for finitely
presented groups is

IsoP = (7m, m finite presentations)(gp(m) = gp(ms)).

We assume the reader is familiar with the rudiments of the theory of
algorithms and recursive functions. Thus a set of objects is recursive if there
is an algorithm for deciding membership in the set. A set S of objects is
recursively enumerable if there is an algorithm for listing all the objects in S.
It is easy to see that every recursive set is recursively enumerable. Moreover,
a set S is recursive if and only if both S and its complement are recursively
enumerable. A diagonal argument can be used to prove the important result
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that there exists a set which is recursively enumerable but not recursive. This
fact is in a sense the source of all undecidability results in mathematics.

Each of the above decision problems is recursively enumerable in the sense
that the collection of questions for which the answer is “Yes” is recursively
enumerable. For instance, the set of words w of G such that w =g 1 is
recursively enumerable. For it is the set of words freely equal to a product
of conjugates of the given finite set of defining relations and this set can (in
principle) be systematically listed. Thus W P(G) is recursively enumerable.
Now W P(QG) is recursively solvable (decidable) exactly when the set of words
{w e G | w=¢ 1} is recursive. So W P(G) is recursively solvable if and only
if {w € G | w #¢ 1} is recursively enumerable.

Similarly, one can systematically list all true equations between words of
G and all true conjugacy equations so that EqP(G) and CP(G) are recur-
sively enumerable. GW P(H, () is recursively enumerable since one can list
the set of all true equations between words of G and words in the generators
of H. Finally, if two presentations present isomorphic groups, then one can
be obtained from the other by a finite sequence of Tietze transformations.
Since the set of presentations obtainable from a given one by a finite sequence
of Tietze transformations is recursively enumerable, it follows that IsoP is
recursively enumerable.

We recall the notion of Turing reducibility. If A and B are two sets of
objects, we write A <r B if an (hypothetical) algorithm to answer questions
about membership in B would yield an algorithm to answer questions about
A. Thus the decision problem for A is reducible to that for B. One way
to make this precise is through the theory of recursive functions. Recursive
functions can be defined as the collection of functions obtained from certain
base functions (like multiplication and addition) by closing under the usual
operations of composition, minimalization and recursion. A function is said
to be B-recursive if it is among the functions obtained from the base functions
together with the characteristic function for B by closing under the usual
operations. Then A <7 B is defined to mean that that the characteristic
function of A is B-recursive. Of course, if B is already recursive (that is,
membership in B is decidable) and if A <; B then A is also recursive.

Now the relation <7 is a partial order so we can form the corresponding
equivalence relation. Two sets of objects A and B are Turing equivalent
A =7 B if each is Turing reducible to the other, that is both A < B and
B <p A. In terms of this notation there are some obvious relationships
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among our decision problems:
EqP(G) =r WP(G) <r CP(G)
WP(G) =r GWP(1,G) <r GWP(G).

We have already observed the first equivalence. Since w =4 1 if and only if
w and 1 are conjugate in G it follows that WP(G) <7 CP(G). The other
assertions are clear.

A recursive presentation is a presentation of the form

(x1,...,xn |11 =11re=1,...)

where r1,7,... is a recursively enumerable set of words. A finitely gener-
ated group G is recursively presented if it has a recursive presentation. Of
course finitely presented groups are recursively presented but the converse
is false. The word problem and conjugacy problem are defined for recur-
sively presented groups as before and they are still recursively enumerable
problems.

Lemma 6.1 Let G be a finitely generated group given by a recursive presen-
tation
G=(r1,...,0p |11 =1r9g=1,...).

Suppose that H is a finitely generated group with generators yi,...,Ym and
that ¢ : H — G 1is an injective homomorphism. Then H has a recursive
presentation of the form

H=W,....un 1 =1g=1,...)

where q1, @o, . .. 18 a recursively enumerable set of words in y1, ..., Ym. More-
over, WP(H) <pr WP(G).

Proof: Let F = (y1,...,ym | ) be the free group with basis y1, ..., y,. Now
we can write ¢(y;) = u; (i = 1,...,m) where the u; are certain words on
Z1,...,%,. There is then a unique homomorphism ¢ : ' — G such that
U(y;) = w; (i = 1,...,m) and since ¢ is injective we have H = F/ker 1.
Now the set of all formal products of the words u; and their inverses is a
recursively enumerable set of words of G. The set of words of GG equal to the
identity is also recursively enumerable. Hence the intersection of these two
sets is a recursively enumerable set of words, and it follows that ker v is a
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recursively enumerable set of words on y1, ..., y,,. The first claim follows by
taking q1, ¢o, ... to be a recursive enumeration of ker 1.

For the second claim, suppose that we have an algorithm A to solve the
word problem for G. We describe an algorithm to solve the word problem

for H as follows: let w(yi,...,yn) be an arbitrary word in the generators
of H. Since ¢ is injective, w =g 1 if and only if ¢(w) =g 1. Now ¢(w) =
w(uq, ..., uy) SO we can apply the algorithm Ag to decide whether or not

w(u, ..., un) =g 1. If so, then w =g 1; if not, then w #p 1. This algorithm
solves the word problem for H. Thus WP(H) <y WP(G) completing the
proof.

Lemma 6.2 For finitely presented groups (respectively finitely generated, re-
cursively presented groups), the word problem, conjugacy problem and gener-
alized word problem are algebraic invariants. That is, for any two presenta-
tions w1 and my of the same group on a finite set of generators, W P(my) =
W P(my), CP(m) =p CP(ms) and GW P (1) =r GW P(73).

Proof: The proof is in each case similar to the proof of the second part of
the previous lemma except that ¢ is an isomorphism. We omit the details.
The main local unsolvability result is the following:

Theorem 6.3 (Novikov-Boone) There exists a finitely presented group whose
word problem s recursively unsolvable.

The original proofs of this result proceed along the following lines: start
with a Turing machine 7" whose halting problem is unsolvable. That is, the
problem of deciding whether the machine started with an arbitrary tape in a
certain state will eventually halt is unsolvable. Constructions of Markov and
of Post, associate to such a Turing machine a certain semigroup S(7") whose
defining relations mimic the transition rules defining the Turing machine 7.
They show a code word incorporating a tape and state of 7" is equal in S(T)
to a particular fixed halting word, say qo, if and only if T" halts when started
with that tape and state.

Groups G(T') having unsolvable word problem are constructed by in turn
mimicking the defining relations of S(7") inside a group. The construction is
not so direct as the Markov-Post construction and involves starting with free
groups and performing a number of HNN-extensions and/or free products
with amalgamation. Nevertheless, there is a direct coding of a tape and
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state of T as a word w of G(T') so that w =¢(p) 1 if and only if the machine
T halts when started with that tape and state. Since T has an unsolvable
halting problem, it follows that G(T") has unsolvable word problem.

A readable account of the Novikov-Boone Theorem along these lines can
be found in the textbook by Rotman [9].

In view of the previously noted relationships among our various decision
problems, the Novikov-Boone Theorem has the following immediate corol-
lary:

Corollary 6.4 There exists a finitely presented group G such that W P(QG),
CP(G) and GW P(G) are all recursively unsolvable.

We turn now to briefly consider other local decision problems concerning
elements in a group.

The structure of finitely generated abelian groups can be completely de-
termined from a finite presentation of such a group, and in particular one
can solve the word problem for such groups. Consequently, if G is an arbi-
trary finitely presented group one can effectively determine the structure of
its abelianization G/[G, G]. So for instance, there is an algorithm to decide
whether G is perfect, that is G = [G, G]. Moreover, since one can solve the
word problem for G/[G, G] it follows that one can decide of a arbitrary word
w of G whether or not w € |G, GJ.

However, it would seem that any property of elements a finitely presented
group which is not determined by the abelianization G/[G, G| will be recur-
sively unrecognizable. The following result show a few common properties of
elements are not recognizable.

Theorem 6.5 (Baumslag, Boone and Neumann) There is a finitely pre-
sented group G such that there is no algorithm to determine whether or not
a word in the given generators represents

1. an element of the center of G;

2. an element which commutes with a given element of G;

Co

an n-th power, where n > 1 is a fized integer;

~

an element whose class of conjugates is finite;

“

a commutator;
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6. an element of finite order > 1.

Proof: Fix a finitely presented group U having unsolvable word problem.
Define G to be the ordinary free product of U with a cyclic group of order 3
and an infinite cyclic group, that is,

G=Ux(s|)*{t|t?=1).

We use the commutator notation [z,y] = 27y lzy. In the following, w is a
variable for an arbitrary word in the generators of U.

The center of G is trivial so w lies in the center of GG if and only if w = 1.
So there is no algorithm to determine whether an arbitrary word of G lies
in the center. This gives the first assertion. Similarly, w is permutable with
s if and only if w =y 1 which establishes the second assertion. The element
s"[t, w] is an n-th power if and only if w =y 1 establishing the third assertion.
The conjugacy class of w is finite if and only if w =y 1 since if w #y 1 the
conjugates s “ws’ would all be distinct. This gives the fourth assertion. For
the fifth assertion, note that [s,t]w is a commutator if and only if w =y 1.
Finally for the sixth assertion, observe that tw has infinite order if and only
if w #y 1, while if w =; 1 then tw has order 3. This completes the proof.

6.2 Higman’s embedding theorem

In contrast to the difficulties encountered for finitely presented groups, it is
easy to give examples of finitely generated, recursively presented groups with
unsolvable word problem. For example, let S C N be a recursively enumer-
able set of natural numbers which is not recursive. Define the recursively
presented group

Hg = (a,b,c,d | a~'ba’ = c¢'dc" Vi € S).

Now Hg can be described as the free product with amalgamation of the free
group (a, b | ) and the free group (c,d | ) amalgamating the subgroup (freely)
generated by the left hand sides of the indicated equations with the subgroup
(freely) generated by the right hand sides. It follows from the normal form
theorem for amalgamated free products that a *ba‘c™*d~'¢" =g, 1 if and only
if : € S. Thus S <;y WP(Hg) and so W P(Hg) is recursively unsolvable.

Using this observation Graham Higman gave a very different proof of the
unsolvability of the word problem. Indeed he proved the following remarkable
result:
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Theorem 6.6 (Higman Embedding Theorem) A finitely generated group H
can be embedded in a finitely presented group if and only if H is recursively
presented.

That finitely generated subgroups of finitely presented groups are recur-
sively presented is contained in our first lemma above. The difficult part of
this theorem is to show that a recursively presented group can be embedded
in a finitely presented group.

The Novikov-Boone Theorem is an easy corollary. For let Hg be the
finitely generated, recursively presented group with unsolvable word problem
constructed above. By Higman’s Embedding Theorem, Hg can be embedded
in a finitely presented group, say Gs. Then by an earlier lemma, W P(Hg) <r
W P(Gs) and so Gg has unsolvable word problem.

Higman’s Embedding Theorem has a number of other remarkable aspects.
It provides a complete characterization of the finitely generated subgroups of
finitely presented groups - namely they are the recursively presented groups.
It also provides a direct connection between a purely algebraic notion and a
notion from recursive function theory. Another consequence is the existence
of universal finitely presented groups.

Corollary 6.7 (Higman) There exists a universal finitely presented group;
that is, there exists a finitely presented group G which contains an isomorphic
copy of every finitely presented group.

To prove this one systematically enumerates all finite presentations on a
fixed countable alphabet. The free product of all of these can be embedded
in a two generator group which will be recursively presented. This group can
then be embedded in a finitely presented group which is the desired universal

group.

6.3 The isomorphism problem and recogniz-
ing properties

In this section the existence of a finitely presented group with unsolvable

word problem is applied to obtain a number of global unsolvability results.

Consider the problem of recognizing whether a finitely presented group
has a certain property of interest. For example, can one determine from a
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presentation whether a group is finite? or abelian? It is natural to require
that the property to be recognized is abstract in the sense that whether a
group G enjoys the property is independent of the presentation of G.

An abstract property P of finitely presented groups is recursively recog-
nizable if there is an effective method which when applied to an arbitrary
finite presentation 7w determines whether or not gp(m) has the property P.
More formally, P is recursively recognizable if {m | gp(m) € P} is a recursive
set of finite presentations.

It turns out that very few interesting properties of groups are recursively
recognizable. To formulate the key result we need the following definition.

Definition 6.1 An abstract property P of finitely presented groups is said
to be a Markov property if there are two finitely presented groups G and
G_ such that

1. G4 has the property P; and

2. if G_ is embedded in a finitely presented group H then H does not have
property P.

These groups G and G_ will be called the positive and negative witnesses
for the Markov property P respectively.

It should be emphasized that if P is a Markov property then the negative
witness does not have the property P, nor is it embedded in any finitely
presented group with property P.

For example the property of being finite is a Markov property. For G one
can take (a | a® = 1) which is a finite group. For G_ one can take the group
(b,c | b=1cb = ¢*) which is an infinite group and therefore not embedded in
any finite group.

Similarly, the property of being abelian is a Markov property. Indeed the
two groups chosen as witnesses for the property of being finite will also serve
as witnesses for the property of being abelian.

An example of a property which is not a Markov property is the property
of being perfect, that is G/[G, G] = 1. For it is not hard to show (and indeed
will follow from the constructions given below) that any finitely presented
group can be embedded in a perfect finitely presented group. Hence there
can be no negative witness GG_ for the property of being perfect.

An abstract property P of finitely presented groups is hereditary if H
embedded in G and G € P imply that H € P, that is, the property P is
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inherited by finitely presented subgroups. A property of finitely presented
groups P is non-trivial if it is neither the empty property nor is it enjoyed by
all finitely presented groups. Suppose P is a non-trivial, hereditary property
of finitely presented groups. Then, since P is non-trivial, there are groups
G, € Pand G_ ¢ P. But if G_ is embedded in a finitely presented group
H, then H ¢ P because P is hereditary. Thus P is a Markov property with
witnesses G, and G_. This proves the following:

Lemma 6.8 If P is a non-trivial hereditary property of finitely presented
groups, then P is a Markov property.

Another useful observation is the following:

Lemma 6.9 If () ## P, C P, are properties of finitely presented groups and
if Py is a Markov property, then Py is also a Markov property.

For if G_ is a negative witness for P, and if K € P;, then P; is a Markov
property with positive and negative witnesses K and G_.

Recall from the previous section that Higman has constructed a universal
finitely presented group, say U. If P is a Markov property with positive
and negative witnesses Gy and G_, then G_ is embedded in U so U ¢
P. Moreover, if U is embedded in a finitely presented group H then so
is G_ and hence H ¢ P. Thus P is a Markov property with positive and
negative witnesses G and U. Hence U is a negative witness for every Markov
property.

The main unsolvability result concerning the recognition of properties of
finitely presented groups is the following:

Theorem 6.10 (Adian-Rabin) If P is a Markov property of finitely pre-
sented groups, then P is not recursively recognizable.

Before indicating a proof of this result, we note the following easy corol-
laries:

Corollary 6.11 The following properties of finitely presented groups are not
recursively recognizable:

1. being the trivial group;

2. being finite;
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being abelian;
being nilpotent,
being solvable;
being free;

being torsion-free;

being residually finite;

© NS v S

having a solvable word problem;
10. being simple;
11. being automatic.

For each of (1) through (9) is a non-trivial, hereditary property and hence
is a Markov property. For (10), it is known that finitely presented, simple
groups have solvable word problem and hence, by the above lemma, being
simple is a Markov property. Similarly for (11), automatic groups have solv-
able word problem and so being automatic is a Markov property.

Corollary 6.12 The isomorphism problem for finitely presented groups is
recursively unsolvable.

For by (1) in the previous corollary there is no algorithm to determine of
an arbitrary presentation m whether or not gp(m) = 1.

Proof of the Adian-Rabin Theorem: We are going to give a simple
proof of the Adian-Rabin Theorem which is our modification of one given
by Gordon. The construction is quite straightforward and variations on the
details can be applied to obtain further results. So suppose that P is a
Markov property and that G, and G_ are witnesses for P. We also have
available a finitely presented group U having unsolvable word problem.

Using these three items of initial data, we construct a recursive family
of finite presentations {m, | w € U} indexed by the words of U so that if
w =y 1 then gp(m,) = G4 while if w #y 1 then G_ is embedded in U. Thus
gp(m,) € P if and only if w =y 1. Since U has unsolvable word problem, it
follows that P is not recursively recognizable.

92



The family {m, | w € U} is rather like a collection of buildings con-
structed from playing cards standing on edge. Such a building can be rather
unstable so that if an essential card is removed (corresponding to w = 1)
then the entire structure will collapse. The main technical result needed is
the following.

Lemma 6.13 (Main Technical Lemma) Let K be a group given by a presen-
tation on a finite or countably infinite set of generators, say

K= (z1,29,... |11 =1mr=1,...).

For any word w in the given generators of K, let L,, be the group with pre-
sentation obtained from the given one for K by adding three new generators
a, b, c together with defining relations

atba = c b lebe (6.1)

a2 taba® = ¢ b tebe? (6.2)
a?lw,bla® = ¢ bc? (6.3)
PRSP Gy R Ce T CL U 1O (6.4)

where [w, b] is the commutator of w and b. Then

1. if w #k 1 then K is embedded in L, by the inclusion map on genera-
tors;

2. the normal closure of w in L, is all of L.,; in particular, if w =g 1
then L, = 1, the trivial group;

3. Ly, is generated by the two elements b and ca™".

If the given presentation of K is finite, then the specified presentation of L,
15 also finite.

Proof: Suppose first that w #x 1. In the free group (b, c | ) on generators b
and ¢ consider the subgroup C' generated by b together with the right hand
sides of the equations (1) through (4). It is easy to check that the indicated
elements are a set of free generators for C' since in forming the product of two
powers of these elements or their inverses some of the conjugating symbols
will remain uncancelled and the middle portions will be unaffected.
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Similarly, in the ordinary free product K*(a,b | ) of K with the free group
on generators a and b consider the subgroup A generated by b together with
the left hand sides of the equations (1) through (4). Using the assumption
that w #x 1 it is again easy to check that the indicated elements are a set
of free generators for A.

Thus assuming w #x 1, the indicated presentation for L,, together with
the equation identifying the symbol b in each the two factors is the natural
presentation for the free product with amalgamation

(K *(a,b|)) = (bc]l).
A = C

So if w #k 1, then K is embedded in L, establishing the first claim.

Now let N,, denote the normal closure of w in L,,. Clearly [w,b] € N, so
by equation (3), b € N,,. But equations (1) and (2) ensure that a, b, c are all
conjugate and so a, b, ¢ all belong to N,,. Finally, since each of the system
of equations (4) can be solved to express z; in terms of a, b, ¢, it follows that
x; € Ny, for e = 1,2,.... Thus each of the generators of L,, belongs to N,
and so L, = N,,. This verifies the second assertion.

Finally, let M be the subgroup of L,, generated by b and ca~!. Equation
(1) can be rewritten as b(ca™')b(ca™')"'b~! = ¢ so that ¢ € M. But then
from ca=! € M it follows that @ € M. Finally from the system of equations
(4) which can be solved for the z; in terms of a, b, ¢ it follows that x; € M for
i=1,2,...and so M = L,,. (For later use we note that neither equation (2)
nor equation (3) was used in the proof of the final assertion). This completes
the proof of the lemma.

Using this technical lemma it is easy to complete the proof of the Adian-
Rabin Theorem. We are given the three finitely presented groups U, G, and
G _ which can be assumed presented on disjoint alphabets as follows:

U=(y,....ys |11 =1,...,7,=1)
G_=(s1,..,Sm |ur=1,...,u, = 1)
G+:<t1,...,tn|U1:1,...,’UT:1>

Let K = UxG_ the ordinary free product of U and G_ presented as the union
of the presentations of its factors. Since U has unsolvable word problem, K
also has unsolvable word problem. Also both U and G_ are embedded in
K by the inclusion map on generators. For any word w in the generators of
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U (these are also generators of K') form the presentation L,, as in the Main
Technical Lemma. Finally we form the ordinary free product L,, * G.

A presentation m,, for these groups L, * G, can be obtained by simply
writing down all of the above generators together with all of the above defin-
ing equations. Such a presentation is defined for any word w in U whether
or not w #y 1. But it follows from the lemma that if w #¢ 1 then the group
G_ is embedded in gp(m,) = L, * G4 and so gp(m,) ¢ P by the definition of
a Markov property. On the other hand, if w =y 1 then by the lemma L, = 1
and so gp(m,) = G4 and hence gp(m,) € P.

Thus we have shown that the recursive collection of presentations

{my | w a word in U}

has the property that gp(m,) € P if and only if w =y 1. Since U has unsolv-
able word problem, it follows that P is not recursively recognizable. This
completes the proof of the Adian-Rabin Theorem.
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