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1. Review of group theory

1.1. Group and generating set.

Definition 1.1. A group (G, ·) is a set G endowed with an operation

· : G×G→ G, (a, b)→ a · b
such that the following holds.

(1) ∀a, b, c ∈ G, a · (b · c) = (a · b) · c,
(2) ∃1 ∈ G: ∀a ∈ G, a · 1 = 1 · a.
(3) ∀a ∈ G, ∃a−1 ∈ G: a · a−1 = a−1 · a = 1.

In the sequel, we usually omit · in a · b if the operation is clear or understood.
By the associative law, it makes no ambiguity to write abc instead of a · (b · c) or
(a · b) · c.

Examples 1.2. (1) (Zn,+) for any integer n ≥ 1
(2) General Linear groups with matrix multiplication: GL(n,R).
(3) Given a (possibly infinite) set X, the permutation group Sym(X) is the set

of all bijections on X, endowed with mapping composition.
(4) Dihedral group D2n = 〈r, s|s2 = r2n = 1, srs−1 = r−1〉. This group can

be visualized as the symmetry group of a regular (2n)-polygon: s is the
reflection about the axe connecting middle points of the two opposite sides,
and r is the rotation about the center of the 2n-polygon with an angle
π/2n.

(5) Infinite Dihedral group D∞ = 〈r, s|s2 = 1, srs−1 = r−1〉. We can think of
a regular ∞-polygon as a real line. Consider a group action of D∞ on the
real line.

Definition 1.3. A subset H in a group G is called a subgroup if H endowed with
the group operation is itself a group. Equivalently, H is a subgroup of G if

(1) ∀a, b ∈ H, a · b ∈ H
(2) ∀a ∈ H, ∃a−1 ∈ H: a · a−1 = a−1 · a = 1.

Note that (1) and (2) imply that the identity 1 lies in H.

Given a subset X ⊂ G, the subgroup generated by X, denoted by 〈X〉, is the
minimal subgroup of G containing X. Explicitly, we have

〈X〉 = {xε11 x
ε2
2 · · ·xεnn : n ∈ N, xi ∈ X, εi ∈ {1,−1}}.

A subset X is called a generating set of G if G = 〈X〉. If X is finite, then G is
called finitely generated.

Check Examples 1.2 and find out which are finitely generated, and if yes, write
a generating set.

Exercise 1.4. (1) Prove that (Q,+) is not finitely generated.
(2) Prove that {r, rsr−1} is a generating set for D∞.

Exercise 1.5. (1) Suppose that G is a finitely generated group. If H ⊂ G is
of finite index in G, then H is finitely generated.

(2) Conversely, suppose that H is a finite index subgroup of a group G. If H
is finitely generated, then G is also finitely generated.

Exercise 1.6. Let N be a normal subgroup of a group G. Suppose that N and
G/N are finitely generated. Then G is finitely generated.
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1.2. Group action.

Definition 1.7. Let G be a group and X be set. A group action of G on X is a
function

G×X → X, (g, x)→ g · x
such that the following holds.

(1) ∀x ∈ X, 1 · x = x.
(2) ∀g, h ∈ G, (gh) · x = g · (h · x).

Usually we say that G acts on X. Similarly, we often omit · in g · x, but keep in
mind that gx ∈ X, which is not a group element!

Remark. A group can act trivially on any set X by just setting g · x = x. So we
are mainly interested in nontrivial group actions.

Examples 1.8. (1) Z acts on the real line R: (n, r)→ n+ r.
(2) Z acts on the circle S1 = {eiθ : θ ∈ R}: (n, eθi) → enθi. Here i is the

imaginary unit.
(3) Zn acts on Rn.
(4) GL(n,R) acts on Rn.

Recall that Sym(X) is the permutation group of X. We have the following
equivalent formulation of a group action.

Lemma 1.9. A group G acts on a set X if and only if there exists a group homo-
morphism G→ Sym(X).

Proof. (=>). Define φ : G→ Sym(X) as follows. Given g ∈ G, let φ(g)(x) = g · x
for any x ∈ X. Here g · x is given in definition of the group action of G on X.

It is an exercise to verify that φ(g) is a bijection on X. Moreover, the condition
(2) in definition 1.7 is amount to say that φ is homomorphism.

(<=). Let φ : G → Sym(X) be a group homomorphism. Construct a map
G×X → X: (g, x)→ φ(g)(x). Then it is easy to see that this map gives a group
action of G on X. �

So when we say a group action of G on X, it is same as specifying a group
homomorphism from G to Sym(X).

Remark. (1) A trivial group action is to specify a trivial group homomorphism,
sending every element in G to the identity in Sym(X).

(2) In general, the group homomorphism G → Sym(X) may not injective. If
it is injective, we call the group action is faithful.

(3) In practice, the set X usually comes with extra nice structures, for example,
X is a vector space, a topological space, or a metric space, etc. The homo-
morphic image of G in Sym(X) may preserve these structures. In this case,
we say that G acts on X by linear transformations, by homeomorphisms,
or by isometries ...

We now recall Cayley’s theorem, which essentially says that we should under-
stand groups via group actions on sets with various good structures.

Theorem 1.10. Every group is a subgroup of the permutation group of a set.

Proof. Let X = G. Clearly the group operation G × G → G gives a group action
of G on G. Thus, we obtain a homomorphism G → Sym(G). The injectivity is
clear. �
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For any x ∈ X, the orbit of x under the group action is the set {g · x : g ∈ G}.
We denote it by G · x or even simply by Gx. The stabilizer of x

Gx := {g ∈ G : g · x = x}

is clearly a group.

Lemma 1.11. Suppose that G acts on X. Then for any x, there exists a bijection
between {gGx : g ∈ G} and Gx. In particular, if Gx is finite, then [G : Gx] = |Gx|.

Proof. We define a map φ : gGx → gx. First, we need to show that this map is
well-defined: that is to say, if gGx = g′Gx, then gx = g′x. This follows from the
definition of Gx.

For any gx ∈ Gx, we have φ(gGx) = gx. So φ is surjective.
To see that φ is injective, let gGx, g

′Gx such that gx = g′x. Then g−1g′x = x
and g−1g′ ∈ Gx. Hence gGx = g′Gx. This shows that φ is injective. �

Exercise 1.12. (1) Let H be a subgroup in G. Then ∩g∈G(gHg−1) is a normal
subgroup in G.

(2) Let H be a finite index subgroup of G. Then there exists a normal subgroup
N of G such that N ⊂ H and [G : N ] < ∞. (Hint: construct a group
action)

Theorem 1.13 (M. Hall). Suppose G is a finitely generated group. Then for any
integer n > 1, there are only finitely many subgroups H in G such that [G : H] = n.

Proof. Fix n. Let H be a subgroup of index n. Let X = {H, g1H, · · · , gn−1H}
be the set of all H-cosets. Then G acts on X of by left-multiplication. That is,
(g, giH) → ggiH. Clearly, the stabilizer of H ∈ X is H ⊂ G. Put in other words,
the subgroup H can be recovered from the action of G on X.

For any set X with n elements, a finitely generated G has finitely many different
actions on X. By Lemma 1.2, a group action is the same as a group homomor-
phism. A homomorphism is determined by the image of a generating set. As G
is finitely generated and Sym(X) is finite, there exist only finitely many group
homomorphisms.

Consequently, for any n > 0, there exist only finitely many H of finite index
n. �

1.3. (Free) abelian groups. Recall that a group G is called abelian if ab = ba
for any a, b ∈ G. In this subsection, we study finitely generated abelian group.

Definition 1.14. Let X be a set. The group A(X) :=
⊕

x∈X〈x〉 is called the free
abelian group generated by X. The set X is called a basis of A(X).

By definition, we see that there is an injective map X → A(X) defined by
x→ (0, ...0, x, 0, ...) for x ∈ X. Clearly, A(X) is generated by (the image under the
injective map) of X.

Let m ∈ Z and a = (n1x, ..., nix, ...) ∈ A(X). We define the scalar multiplication

m · a = (mn1x, ...,mnix, ...) ∈ A(X).

A linear combination of elements ai ∈ A(X), 1 ≤ i ≤ n is an element in A(X) of
the form

∑
1≤i≤n ki · ai for some ki ∈ Z, 1 ≤ i ≤ n.
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Exercise 1.15. (1) Let Y be a subset in a free abelian group G of finite rank.
Then Y is basis of G if and only if G = 〈Y 〉 and any element in G can be
written as a unique linear combination of elements in Y .

(2) Prove that the group of rational numbers Q is not free abelian.

Exercise 1.16. Prove that Zm ∼= Zn if and only if m = n.

If |X| is finite, then |X| is called the rank of A(X). In general, a free abelian
group may have different basis. The rank of a free abelian group is well-defined, by
Exercise 1.16.

Every abelian group is a quotient of a free abelian group.

Lemma 1.17. Let X be a subset. For any map of X to an abelian group G, there
exists a unique homomorphism φ such that

X → A(X)
↘ ↓

G

is commutative.

Corollary 1.18. Every abelian group is a quotient of a free abelian group.

A free abelian group is characterized by the following universal mapping property
in the category of abelian groups.

Lemma 1.19. Let X be a subset, A be an abelian group and X → A be a map.
Suppose that for any abelian group G and a map X → G, there exists a unique
homomorphism φ : A→ G such that

X → A
↘ ↓

G

is commutative. Then A ∼= A(X).

Let H × K be a direct product of groups. For any A ⊂ H,B ⊂ K, the direct
product A×B is a subgroup of H×K. But conversely, not every subgroup in H×K
arises in this way. For example, the subgroup generated by (a, a) in 〈a〉

⊕
〈a〉 cannot

be written as a direct product of any subgroup in 〈a〉.
In free abelian groups, the following theorem says that, up to a change of a basis,

every subgroup is a product of subgroups in each summand.

Theorem 1.20. Let A be a free abelian group of finite rank n, and let H be a sub-
group of A. Then there exists a basis a1, ..., an of A, and positive integers k1, ..., kr
with 0 ≤ r ≤ n, k1|k2|...|kr, such that k1a1, ..., krar is a basis for H. In particular,
H is free of rank r ≤ n.

Proof. Use induction on the rank of A. If n = 1, it is trivial. As all subgroups of Z
are of form nZ for n ≥ 1.

Given a basis X = {x1, ..., xn} of A, every element a ∈ A can be written as a
finite linear combination of xi. That is, a =

∑
1≤i≤n kixi, where ki ∈ Z.

Assume now that every subgroup of a free abelian group of rank n− 1 satisfies
the conclusion.

Consider a subset S of integers in Z, which consists of all possible coefficients ki
in linear combinations of any element in H for some basis X. Precisely,
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S = {k1 ∈ Z : ∃ a basis X of A and k2, ..., kn ∈ Z such that
∑

1≤i≤n kixi ∈ H}

Observe that 0 ∈ S and S is in fact a subgroup of Z. Thus, S = k1Z for some
k1 > 0.

By definition of S, there exists a basis X such that y1 = k1x1 + ...+ knxn ∈ H.
As k1|ki, there exists di ∈ Z such that y1 = k1(x1 + d2x2 + ...dnxn). Denote

x̂1 = x1 + d2x2 + ...dnxn. Then X̂ = {x̂1, x2, ..., xn} is also a basis of A.
Clearly, we can write A = A1

⊕
A2, where A1 = 〈x̂1〉 and A2 = 〈x2, ..., xn〉.

For the basis X̂, any element h ∈ H can be written as a linear combination of
x̂1, x2, ..., xn. As y1 = k1x̂1, any h ∈ H is also a linear combination of y1, x2, ..., xn.
(But note that {y1, x2, ..., xn} may not be a basis of A!) Hence,

H = 〈y1〉
⊕

(H ∩A2) = 〈k1x̂1〉
⊕

(H ∩A2).

Note that A2 is a free abelian group of rank n−1. Apply Induction Assumption
to the subgroup H∩A2 of A2. There exists a basis {x̂2, ..., x̂n} of A2 and k2|k3|...|kn
such that {k2x̂2, ..., knx̂n} is a basis of H ∩A2.

Since {x̂1, x̂2, ..., x̂n} is a basis of A, we see k1|k2|...|kn by definition of S = 〈k1〉.
This finishes the proof. �

We can now classify all finitely generated abelian groups.

Theorem 1.21. Any finitely generated abelian group is isomorphic to the following
form

Z
⊕

Z
⊕

...
⊕

Z
⊕

Zk1
⊕

Zk2
⊕

...
⊕

Zkr
where k1|k2|...|kr. They are uniquely determined by the number of summand Z and
integers ki.

The number of summand Z is called the rank of an abelian group.

Proof. By Lemma 1.17, there exists a free abelian group A of finite rank such that
G is a quotient of A. Let N < A be the kernel of the epimorphism. Then by the
group isomorphism theorem, we have that A/N ∼= G.

By Theorem 1.20, there exists a basis {a1, ..., an} of A and positive integers
k1, ..., kr with 0 ≤ r ≤ n, k1|k2|...|kr, such that N = 〈k1a1〉+ ...+ 〈krar〉.

It is known that for any two group G1, G2 and their normal subgroups N1 ⊂
G1, N2 ⊂ H1, we have

(G1 ×G2)/(N1 ×N2) ∼= G1/N1 ×G2/N2.

The proof is completed by applying finitely many times the above result for
A/N . �

Corollary 1.22. Every subgroup in a finitely generated abelian group is finitely
generated.

Recall that an element is called torsion element if it is of finite order.

Corollary 1.23. If a finitely generated abelian group has no torsion, then it is free
abelian.

Remark. The condition “finitely generated” is necessary, as Q has no torsion and
is not free abelian.
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2. Free groups and their subgroups

2.1. Words and their reduced forms. Let X̃ be an alphabet set. A word w
over X̃ is a finite sequence of letters in X̃. We usually write w = x1x2...xn, where
xi ∈ X̃. The empty word is the word with an empty sequence of letters. The length
of a word w is the length of the sequence of letters.

Two words are equal if their sequences of letters are identical. Denote by W(X̃)

the set of all words over X̃. Given two words w,w′ ∈ (X̃), the concatenation of w
and w′ is a new word, denoted by ww′, which is obtained from w followed by w′.

Given a set X, we take another set X−1 such that there exists a bijection X →
X−1 : x→ x−1. Let X̃ = X tX−1 be the disjoint union of X and X−1. Roughly
speaking, the free group F (X) generated by X will be the set of words W endowed
with the operation of word concatenation.

Given a word w, if there exists two consecutive letters of form xx−1 or x−1x
where x, x−1 ∈ X̃, then we call xx−1 or x−1x an inverse pair of w. A word w is
called reduced if w contains no inverse pair. Given a word w, we define an operation
on w called a reduction, by which we mean deleting an inverse pair xx−1 or x−1x
to obtain a new word w′:

w = w1xx
−1w2

reduction−−−−−−→ w′ = w1w2.

After a reduction, the length of a word decreases by 2. A finite sequence of reduc-
tions

w
reduction#1−−−−−−−−→ w1

reduction#2−−−−−−−−→ w2...
reduction#n−−−−−−−−→ wn

will be referred to as a reduction process.
Clearly, any word w admits a reduction process to get a reduced word. This

reduced word is called a reduced form of w. But a word may have different reduction
processes to become reduced. For example, w = xx−1xx−1. However, we will prove
that reduced forms of a word does not depend on the reduction process.

Lemma 2.1. Any word w has a unique reduced form.

Proof. We prove the lemma by induction on the length |w| of w. The base cases
that |w| = 1, 2 are trivial. Now assume that the lemma holds for any word of length
|w| ≤ n.

Let w be a word of length of n. Let

w
reduction#1−−−−−−−−→ w1

reduction#2−−−−−−−−→ w2...
reduction#l−−−−−−−−→ wl

and

w
reduction#1′−−−−−−−−−→ w′1

reduction#2′−−−−−−−−−→ w′2...
reduction#m′−−−−−−−−−→ w′m

be any two reduction processes of w such that wl, w
′
m are reduced. We will show

that wl = w′m.
We have the following claim.

Claim. Suppose that w1 6= w′1. Then there are two reductions

w1
reduction #1−−−−−−−−→ ŵ

and

w′1
reduction #1′−−−−−−−−−→ ŵ′

such that ŵ = ŵ′.
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Proof of Claim. Let xx−1 be the inverse pair for the reduction #1, and yy−1 the
inverse pair for the reduction #1′. We have two cases.

Case 1. The inverse pairs xx−1, yy−1 are disjoint in w. In this case, we let
reduction a be reduction #1′, and reduction b be reduction #1. Thus, ŵ = ŵ′.

Case 2. The inverse pairs xx−1, yy−1 have overlaps. Then either x−1 = y or
y−1 = x. In either cases, we have w1 = w′1. This contradicts the assumption that
w1 6= w′1. �

We are now ready to complete the proof of Lemma. First, if w1 = w′1, then
wl = w′m by applying the induction assumption to w1 = w′1 of length n − 2.
Otherwise, by the claim, there are two reductions applying to w1, w

′
1 respectively

such that the obtained words ŵ = ŵ′ are the same.
Note that ŵ is of length n−4. Applying induction assumption to ŵ, we see that

any reduction process

ŵ
reduction process−−−−−−−−−−−→ w̄

of ŵ gives the same reduced form w̄.

By the claim, the reduction a together any reduction process ŵ
reduction process−−−−−−−−−−−→

w̄ gives a reduction process for w1 to w̄. By induction assumption to w1, we have
wl = w̄. By the same reasoning, we have w′m = w̄. This shows that wl = w′m =
w̄. �

2.2. Construction of free groups by words. Denote by F (X) the set of all

reduced words in W(X̃). By Lemma 2.1, there is a map

W(X̃)→ F (X)

by sending a word to its reduced form.
We now define the group operation on the set F (X). Let w,w′ be two words in

F (X). The product w · w′ is the reduced form of the word ww′.

Theorem 2.2. (F (X), ·) is a group with a generating set X.

Proof. It suffices to prove the associative law for the group operation. Let w1, w2, w3

be words in F (X). We want to show (w1 · w2) · w3 = w1 · (w2 · w3). By Lemma
2.1, the reduced form of a word does not depend on the reduction process. Observe
that (w1 · w2) · w3 and w1 · (w2 · w3) can be viewed as reduced forms of different
reduction processes of the word w1w2w3. The proof is thus completed. �

Let ι : X → F (X) be the inclusion of X in F (X). Usually we will not distinguish
x and ι(x) below, as ι is injective.

Lemma 2.3. For any map of a set X to a group G, there exists a unique homo-
morphism φ : F (X)→ G such that

X → F (X)
↘ ↓

G

is commutative.

Proof. Let w1, w2 be two reduced words in F (X). Without loss of generality, assume

that w1 = x1x2...xnz1z2...zr and w2 = z−1
1 ...z−1

r y1y2...ym, where xi, yj , zk ∈ X̃ =

X tX−1 and xn 6= y−1
1 . Then w1 · w2 = x1x2...xny1y2...ym.
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Denote by j the map X → G. Define φ(x) = j(x) for all x ∈ X and φ(x−1) =
j(x)−1 for x−1 ∈ X−1. Define φ naturally over other elements in F (X). It is
straightforward to verify that φ(w1 · w2) = φ(w1)φ(w2).

Since a homomorphism of F (X) to G is determined by the value of its restriction
over a generating set of F (X), we have that the chosen map j : X → G determines
the uniqueness of φ. �

Corollary 2.4. Every group is a quotient of a free group.

Proof. Let X be a generating set of G. Let F (X) be the free group generated by
X. By Lemma 2.3, we have an epimorphism of F (X)→ G. �

Exercise 2.5. Let X be a set containing only one element. Prove that F (X) ∼= Z.

Analogous to free abelian group, the class of free groups is characterized by the
following universal mapping property in GROUP category.

Lemma 2.6. Let X be a subset, F be a group and i : X → F be a map. Suppose
that for any group G and a map j : X → G, there exists a unique homomorphism
φ : F → G such that

X F

G

i

j
φ

is commutative. Then F ∼= F (X).

Proof. By Lemma 2.3 for free group F (X) and i : X → F , there is a unique
homomorphism ϕ : F (X) → F such that i = ϕι, where ι : X → F (X) is the
inclusion map. ie.

(1)

X F (X)

F

ι

i ϕ

On the other hand, by the assumption to G = F (X) and ι : X → F (X), there
is a unique homomorphism φ : F → F (X) such that we have ι = φi.

(2)

X F

F (X)

i

ι
φ

Thus we obtained ι = φϕι, and the following commutative diagram follows from
the above (1)(2).

(3)

X F (X)

F (X)

ι

ι
φϕ

Note that the identification IdF (X) between F (X) → F (X) also makes the above
diagram (3) commutative. By the uniqueness statement of Lemma 2.3, φϕ =
IdF (X).

It is analogous to prove that ϕφ = IdF . Hence φ or ϕ is an isomorphism. �
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Recall that the commutator subgroup [G,G] of a group G is the subgroup in G
generated by the set of all commutators. That is:

[G,G] = 〈{[f, g] := fgf−1g−1 : f, g ∈ G}〉
Use universal mapping property of free groups and free abelian groups to prove

the following.

Exercise 2.7. Prove that F (X)/[F (X), F (X)] ∼= A(X), where A(X) is the free
abelian group generated by X.

A subset Y is called a basis of F (X) if F (X) ∼= F (Y ). In this case, we often say
that F (X) is freely generated by X. Use Exercise 1.16 to prove the following.

Exercise 2.8. If |X| <∞ and Y is a basis of F (X), then |X| = |Y |.

The rank of F (X) is defined to be the cardinality of X. By Exercise 2.8, the
rank of a free group is well-defined: does not depend on the choice of basis.

When the rank is finite, we usually write Fn = F (X) for n = |X|.

Convention. Since there is a map W(X̃) → F (X) → G for a generating set X

of G, we write w =G g for a word w ∈ W(X̃), g ∈ G, if the image of w under the

map W(X̃)→ G is the element g.

Theorem 2.9. Let G be a group with a generating set X. Then G ∼= F (X) if and

only if any non-empty word w ∈ W(X̃) with w =G 1 ∈ G contains an inverse pair.

Proof. We have first a surjective map W(X̃) → F (X) → G, where F (X) → G is
the epimorphism given by Lemma 2.3.

=>. let w ∈ W(X̃) be a word such that w =G 1. Since F (X) ∼= G, we have w
is mapped to the empty word in F (X). That is to say, the reduced form of W is
the empty word. Thus, w contains an inverse pair.
<=. Suppose that F (X) → G is not injective. Then there exists a non-empty

reduced word w ∈ F (X) such that w =G 1. Then w contains an inverse pair. As
w is reduced, this is a contradiction. Hence F (X)→ G is injective. �

Exercise 2.10. (1) Let Y be a set in the free group F (X) generated by a set X

such that y−1 /∈ Y for any y ∈ Y . If any reduced word w over Ỹ = Y tY −1

is a reduced word over X̃ = X tX−1, then 〈Y 〉 ∼= F (Y ).
(2) Let S = {bnab−n : n ∈ Z} be a set of words in F (X) where X = {a, b}.

Prove that 〈S〉 ∼= F (S).
(3) Prove that for any set X with |X| ≥ 2 any n ≥ 1, F (X) contains a free

subgroup of rank n.

2.3. Ping-Pong Lemma and free groups in linear groups. In this subsection,
we gives some common practice to construct a free subgroup in concrete groups.
We formulate it in Ping-Pong Lemma. Before stating the lemma, we look at the
following example.

Lemma 2.11. The subgroup of SL(2,Z) generated by the following matrices(
1 2
0 1

)
,

(
1 0
2 1

)
is isomorphic to F2.

Proof. See Proposition 3.7, on page 59 in our reference [8]. �
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Exercise 2.12. The subgroup of SL(2,C) generated by the following matrices(
1 a1

0 1

)
,

(
1 0
a2 1

)
, |a1| ≥ 2, |a2| ≥ 2;

is isomorphic to F2.

Lemma 2.13 (Ping-Pong Lemma). Suppose that G is generated by a set S, and G

acts on a set X. Assume, in addition, that for each s ∈ S̃ = S t S−1, there exists
a set Xs ⊂ X with the following properties.

(1) ∀s ∈ S̃, s ·Xt ⊂ Xs, where t ∈ S̃ \ {s−1}.
(2) ∃o ∈ X \ ∪s∈S̃Xs, such that s · o ∈ XS for any s ∈ S̃.

Then G ∼= F (S).

Proof. By Lemma 2.3 and Lemma 1.9, we have the following homomorphism:

ι : F (S)→ G→ Sym(X).

Let w be a reduced non-empty word in F (S). Write w = s1s2...sn for si ∈ S̃. By
Theorem 2.9, it suffices to show that g = ι(s1)ι(s2)...ι(sn) is not an identity in
Sym(X).

We now apply the permutation g to o ∈ X to get

g · o = ι(s1)ι(s2)...ι(sn−1)ι(sn) · o ⊂ ι(s1)ι(s2)...ι(sn−1)Xsn ⊂ ... ⊂ Xs1 .

However, as o ∈ Xs1 , we have g 6= 1 ∈ Sym(X). This shows that F (S) ∼= G. �

Ping-Pong Lemma has a variety of forms, for instance:

Exercise 2.14. Let G be a group generated by two elements a, b of infinite order.
Assume that G acts on a set X with the following properties.

(1) There exists non-empty subsets A,B ⊂ X such that A is not included in B.
(2) an(B) ⊂ A and bn(A) ⊂ B for all n ∈ Z \ {0}.

Prove that G is freely generated by {a, b}.

We now prove that SL(2,R) contains many free subgroups.

Proposition 2.15. Let A ∈ SL(2,R) with two eigenvalues λ, λ−1 for λ > 1, and
corresponding eigenvectors vλ, vλ−1 . Choose B ∈ SL(2,R) such that B〈vλ〉 6= 〈vλ〉,
B〈vλ〉 6= 〈vλ−1〉 and B〈vλ−1〉 6= 〈vλ〉, B〈vλ−1〉 6= 〈vλ−1〉.

Then there exist N,M > 0 depending only on A,B such that

F (a, b) = 〈a, b〉
where a = An, b = BAmB−1 for n,> N,m > M .

Proof. Observe that BAB−1 has the same eigenvalues λ, λ−1, but eigenvectors
Bvλ, Bvλ−1 respectively.

Let θ ∈ (0, 2π) be a (very small) angle. Denote by Xv,θ ⊂ R2 the open sector
around the line 〈vλ〉 with angle θ.

We claim the following fact about the dynamics of A on vectors.

Claim. ∀θ ∈ (0, 2π),∃N > 0 such that the following holds.

For ∀n > N, v ∈ R2 \ 〈v−1
λ 〉, we have Anv ∈ Xvλ,θ.

and
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For ∀n > N, v ∈ R2 \ 〈vλ〉, we have A−nv ∈ Xv−1
λ ,θ.

Proof of Claim. Since {vλ, v−1
λ } is a basis of R2, the conclusion follows by a simple

calculation. �

By the same reasoning, we also have

Claim. ∀θ ∈ (0, 2π),∃M > 0 such that the following holds.

For ∀m > M, v ∈ R2 \ 〈Bv−1
λ 〉, we have BAmB−1v ∈ XBvλ,θ.

and

For ∀m > M, v ∈ R2 \ 〈Bvλ〉, we have BA−mB−1v ∈ XBvλ−1 ,θ.

Denote a = An, b = BAmB−1, Xa = Xvλ,θ, X
−1
a = Xv−1

λ ,θ, Xb = XBvλ,θ, X
−1
b =

XBvλ,θ. Let S = {a, b}. By the above claims, we obtain the following.

∀s ∈ S̃, s ·Xt ⊂ Xs, where t ∈ S̃ \ {s−1}.

Choose θ small enough such that Xa ∪ X−1
a ∪ Xb ∪ X−1

b 6= R2. Choose any
o ∈ R2 \ ∪s∈S̃Xs. By the claims, s · o ∈ Xs. Hence, all conditions of Ping-Pong
Lemma are satisfied. We obtain that F ({a, b}) = 〈a, b〉. �

In fact, Jacques Tits proved the following celebrated result in 1972, which is
usually called Tits alternative.

Theorem 2.16. Let G be a finitely generated linear group. Then either G is
virtually solvable or contains a free subgroup of rank at least 2.

Remark. Note that a virtually solvable group does not contain any free group of
rank at least 2. This explains the name of Tits alternative.

2.4. Subgroups of free groups. We shall give two proofs of the following theorem
of Nielsen.

Theorem 2.17. Any subgroup of a free group is free.

The first proof is to consider group action on trees, and to use Ping-Pong Lemma.
We first introduce a combinatorial formulation of the notion of a graph.

Definition 2.18. A graph G = (V,E) consists of a set V of vertices and a set E
of directed edges. For each directed edge e ∈ E, we associate to e the initial point
e− ∈ V and terminal point e+ ∈ V . There is an orientation-reversing map

¯: E → E, e→ ē

such that e 6= ē, e = ¯̄e and e− = (ē)+, e+ = (ē)−.
An orientation of G picks up exactly one directed edge in {e, ē} for all e ∈ E.

Formally, an orientation is a subset in E such that it contains exactly one element
in {e, ē} for all e ∈ E

Remark. Clearly, such a map ¯ has to be bijective. Moreover, e+ = (ē)− can be
deduced from other conditions: e+ = ¯̄e+ = ē−.

Remark. Every combinatorial graph can be geometrically realized by a common
graph in the sense of CW-complex. We take the set of points V , and for each pair
(e, ē), we take an interval [0, 1] and attach its endpoints to e−, e+ ∈ V respectively.
Then we get a CW-complex.
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Combinatorially, we define a path to be a concatenation of directed edges:

γ = e1e2...en, ei ∈ E
where (ei)+ = (ei+1)− for 1 ≤ i < n. The initial point γ− and terminal point γ+

of γ are defined as follows:

γ− = (e1)−, γ+ = (en)+.

If (en)+ = (e1)−, the path γ is called a circuit at (e1)−. By convention, we think
of a vertex in G as a path (or circuit), where there are no edges.

A backtracking in γ is a subpath of form eiei+1 such that ei = ēi+1. A path
without backtracking is called reduced. If a path γ contains a backtracking, we can
obtain a new path after deleting the backtracking. So any path can be converted
to a reduced path by a reduction process. Similarly as Lemma 2.1, we can prove
the following.

Lemma 2.19. The reduced path is independent of the reduction process, and thus
is unique.

A graph morphism φ : G → G′ between two graphs G,G′ is a vertex-to-vertex,
edge-to-edge map such that φ(e−) = φ(e)−, φ(e+) = φ(e)+ and φ(ē) = φ(e). It is
called a graph isomorphism if φ is bijective.

By definition, a tree is a graph where every reduced circuit is a point. In other
words, there exists a unique reduced path between two points.

Now lets consider the free group F (S) over a set S. We define a tree G for which
the vertex set V is all elements in F (S). Two reduced words W,W ′ ∈ F (S) are

connected by an edge if there exists s ∈ S̃ such that W ′ = Ws. Formally, the
edge set E is defined to be F (S) × S̃. The map ¯ sends (W, s) ∈ F (S) × S̃ to

(Ws, s−1) ∈ F (S) × S̃. Such a graph G is indeed a tree, and F (S) acts on G by
graph isomorphisms.

We shall use Ping-Pong Lemma to prove the following theorem, which implies
Theorem 2.17.

Theorem 2.20. Suppose that G acts on a tree T such that the stabilizer of each
vertex is trivial. In other words, G acts on a tree T freely. Then G is a free group.

Remark. In the proof, we understand the tree T as the geometric realization of the
combinatorial notion of a tree. That is to say, we will not distinguish the edge e
and ē, and in fact identify them to a single edge.

Proof. Step 1. Find a fundamental set. We consider a fundamental set X for
the action of G on T . Roughly, X will be a connected subset such that it contains
exactly one vertex from each orbit Gv for v ∈ T . Precisely, we define such a set in
the following inductive way. Fix a basepoint o ∈ T . Let X0 = {o}.

Suppose Xi is defined. We are going to define Xi+1. Consider a vertex v ∈ T \Xi

which is connected by an edge e to some vertex in Xi. If v is not in the orbit G ·Xi,
then we define Xi+1 to be the union Xi ∪ e. Finally, we define X = ∪i≥0Xi. Then
X is a connected set, and contains exactly one vertex from each G-orbit in T .

However, it is important to note that G×X may not contain all edges in T . In
order that G×X = T , we have to include some edges to X.

We denote by E0 the set of edges e of T such thatX contains exactly one endpoint
of e. We also denote by e− the endpoint of e in X, and e+ the other endpoint of e

outdid X. Define X̄ = X ∪ S̃. Then X̄ is still connected and G× X̄ = T .



NOTES ON GEOMETRIC GROUP THEORY 17

Step 2. Find free basis of G. For each e ∈ E0, we know that e− ∈ X
and e+ /∈ X. Recall that X contains (exactly) one vertex from each G-orbit in
T . Thus, there exist an element ge ∈ G \ 1 and a unique vertex v ∈ X such that
gev = e+. The element ge is unique, otherwise the stabilizer of v is nontrivial. This
is a contradiction, since G acts on T freely.

Observe that g−1
e (e−) ∈ T \X is connected by the edge g−1

e (e) to v ∈ X. Denote
e′ = g−1

e (e). Thus, e 6= e′ and e′ ∈ E0. By the uniqueness of ge′ , we also see that
ge′ = g−1

e .
In conclusion, for each e ∈ E0, there exists a unique e 6= e′ ∈ E0 and a unique

ge ∈ G \ 1 such that g−1
e (e) = e′. Moreover, ge′ = g−1

e .

Denote S̃ = {ge : e ∈ E0}. Note that edges e, e′ in E0 are paired. From
each such pair, we choose exactly one edge and denote them by E1 ⊂ E0. Define
S = {ge : e ∈ E1}. Obviously, S̃ = S ∪ S−1.

Step 3. Verify Ping-Pong Lemma. We now prove that G = F (S) by using
Ping-Pong Lemma.

For each e ∈ E0, we define Xe to be the subgraph of T such that for each vertex
z in Xv, there exists a (unique) reduced path from o to z containing the edge
e. We note that Xe is connected and contains the endpoint e+ of e. Moreover,
Xe1 ∩Xe2 = ∅ for e1 6= e2 ∈ E0, and any path between two points in Xe1 and Xe2

respectively have to intersect X. This follows from the fact that T is a tree. So if
a path γ intersects Xe but γ ∩X = ∅, then γ lies in Xe.

We first verify that ge(o) ∈ Xe, where e ∈ E0. We connect o and g−1
e e+ ∈ X

by a unique reduced path γ in X. Since X is a fundamental set, we have that
gvγ ∩X = ∅. Since geγ contains the endpoint e+ of e and e+ ∈ Xe, we obtain that
geo ∈ geγ ⊂ Xe.

Secondly, we prove that geXt ⊂ Xe for t 6= e′ ∈ E0. Indeed, for any z ∈ Xt,
there exists a unique reduced path α between o, z containing the edge t. We also
connect g′eo and o by a unique reduced path β. Since g′eo ∈ Xe′ , we know that β
contains the edge e′. Consider the path γ = βα. Since e′ 6= t, we obtain that γ is a
reduced path. The endpoints of the path geγ are {o, gez}. Since geγ contains the
edge gee

′ = e, the endpoint gez must lie in Xe by definition of Xe. So we proved
that geXt ⊂ Xe.

Therefore, we have verified the conditions of Ping-Pong Lemma 2.13. So G =
F (S). �

Exercise 2.21. Suppose G acts by graph isomorphisms without inversions on a
connected graph X such that there exists a finite subgraph K with G · K = X.
Assume that the edge stabilizers and the vertex stabilizers are finitely generated.
Then G is finitely generated.

2.5. Fundamental groups of graphs. The second proof of Theorem 2.17 is to
use a combinatorial notion of fundamental groups of a graph.

The concatenation γγ′ of two paths γ, γ′ is defined in the obvious way, if γ+ = γ′−.

Definition 2.22. Let G be a graph and o ∈ G be a basepoint. Then the fundamental
group π1(G, o) of G consists of all reduced circuits based at o, where the group
multiplication is defined by sending two reduced circuits to the reduced form of
their concatenation.

The group identity in π1(G, o) is the just the based point o ∈ G.
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Remark. We can consider an equivalence relation over the set of all circuits based
at o: two circuits are equivalent if they have the same reduced form. By Lemma
2.19, this is indeed an equivalence relation. Then the fundamental group π1(G, o)
can be also defined as the set of equivalent classes [γ] of all circuits based at o,
endowed with the multiplication:

[γ]× [γ′]→ [γγ′].

It is easy to see that these two definitions give the isomorphic fundamental groups.

A particular important graph is the graph of a rose which consists of one vertex
o with all other edges e ∈ E such that e− = e+ = o. Topologically, the rose is
obtained by attaching a collection of circles to one point.

Here we list a few properties about the fundamental group of a graph.

(1) We fix an orientation on a rose. Then the fundamental group of a rose is
isomorphic to the free group over the orientation.

(2) Any graph contains a spanning tree which is a tree with the vertex set of
the graph. We can collapse a spanning tree to get a rose. It is easy to see
that the fundamental group of a graph is isomorphic to that of this rose.

A graph morphism φ : G → G′ naturally defines a homomorphism between the
fundamental group as follows:

φ∗ : π1(G, o)→ π1(G′, φ(o))

by sending a reduced circuit γ in π1(G, o) to the reduced path of φ(γ) in π1(G′, φ(o)).
Given a vertex v in G, consider the star

StarG(v) = {e ∈ E(G) : e− = v}.

A graph morphism φ : G → G′ naturally induces a graph morphism between the
stars of v and φ(v).

A graph morphism φ : G → G′ is called an immersion if for every vertex v, the
induced graph morphism between the stars of v and φ(v)

StarG(v)→ StarG′(φ(v))

is injective. That is, φ is locally injective. If, in addition, it is surjective, then φ is
called a covering.

An important consequence of an immersion is the following result.

Lemma 2.23. An immersion induces an imbedding of fundamental groups. That
is, φ∗ is injective.

Proof. The proof is clear by definition of an immersion. It indeed follows from the
following useful fact. Given any circuit γ′ based at φ(o) in G′, there exists a unique
circuit γ based at o in G such that φ(γ) = γ′. Moreover, if γ′ has no backtracking,
then so is γ.

Hence, if φ∗(γ) is the basepoint φ(o) for a reduced circuit γ based at o in G, then
γ = o. �

Let φ : G → G′ be a graph morphism. We shall make use of an operation called
folding to convert φ to an immersion form a new graph to G′.

A pair of edges e, e′ in G is called foldable if e− = (e′)−, ē 6= e′, and φ(e) = φ(e′).
Given a foldable pair of edges e, e′, we can formulate a graph morphism φe called
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folding and a new graph Ḡ as follows

φe : G → Ḡ := G/{e = e′, ē = ē′}
by identifying the edges e = e′ and ē = ē′ respectively.

Observe that such an operation definitely decreases the number of edges and
vertices. It is also possible that two loops can be identified. In this case, the
fundamental group of new graph Ḡ changes.

Moreover, given a foldable pair of edges e, e′, we can naturally define a new graph
morphism φ̄ : Ḡ → G′ such that the following diagram

G Ḡ

G′

φe

φ
φ̄

is commutative.
We do the above folding process for each foldable pair of edges, and finally obtain

an immersion from a new graph Ḡ to G′. Precisely, we have the following.

Lemma 2.24. Let φ : G → G′ be a graph morphism. Then there exists a sequence
of foldings φi : Gi → Gi+1 for 0 ≤ i < n and an immersion φ̄ : Ḡ → G′ such that
φ = φ̄φn · · ·φ0, where G0 = G,Gn = Ḡ.

An important consequence of the above folding process is that φ∗ and φ̄∗ have
the same image in the fundamental group of G′.

We apply the above theory to subgroups of a free group and to prove Theorem
2.17.

Theorem 2.25 (Nielsen basis). Let H be a subgroup of a free group F (S). Then H
is a free group. Moreover, for any generating set T of H, there exists an algorithm
to find a free basis for H.

Proof. Let H be a subgroup of a free group F (S). Suppose that H is generated by
a set T ⊂ F (S). By the above discussion, there exists a rose G′ with one vertex and
2|S| edges whose fundamental group is F (S). Here in fact, we choose an orientation
on G′ and then identify π1(G′) as F (S).

Note that T are a set of reduced words. For each word W ∈ T , we associate
to W a circuit graph CW of 2|T | edges with a basepoint o and an orientation such
that the clock-wise “label” of CW is the word W . It is obvious that there exists a
graph morphism CW → G′.

We attach all CW at o for W ∈ T to get a graph G. Then we have a graph
morphism φ : G → G′. It is also clear that the image φ∗(π1(G)) is the subgroup
H in F (S). Hence, a consequence of Lemma 2.24 is that any subgroup of a free
group is free. Moreover, since the immersion given by Lemma 2.24 induces an
injective homomorphism, we can easily obtain a free basis of H by writing down
the generating elements of the fundamental group of Ḡ. �

Theorem 2.26 (Hall). Let H be a finitely generated subgroup in a free group F of
finite rank. For any element g ∈ F \H, there exists a finite index subgroup Γ of F
such that H ⊂ Γ and g /∈ Γ.

Remark. A subgroup with the above property is called separable. In other words,
a subgroup H is separable in G if it is the intersection of all finite index subgroups
of G containing H.
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To prove this theorem, we need two additional facts about the covering of a
graph.

Lemma 2.27. Let φ : (G, o)→ (G′, φ(o)) be a covering, and γ be a reduced circuit
in G′ based at φ(o). If γ is not in φ∗(π1(G, o)), then any lift of γ is not a circuit.

Proof. This follows just from the definition of a covering. �

Lemma 2.28. Let φ : (G, o)→ (G′, φ(o)) be a covering. If G and G′ are finite, then
φ∗(π1(G, o)) is of finite index in π1(G′, o).

Proof. Denote by H the subgroup φ∗(π1(G, o)). We count the right coset Hg where
g ∈ π1(G′, o). Then any lift of the circuit in Hg based at o has the same terminal
endpoint. Moreover, if Hg 6= Hg′, then the endpoints of corresponding lifts are
different. Indeed, if not, we get a circuit and finally we see that g′g−1 ∈ H. Since
G is finite, we see that there are only finitely many different right H-cosets. �

We are now in a position to give the Stalling’s proof of Theorem 2.26.

Proof of Theorem 2.26. Let G′ be a rose. We have put an orientation on G′, a
subset E0 of edges, such that π1(G′) is identical to F (E0).

Let H be a finitely generated subgroup in F with a finite generating set T . Given
g 6 inH, we write g as a reduced word Wg over S, and similarly for each t ∈ T a word
Wt. As in the proof of Theorem 2.25, we construct a graph by gluing circuits labeled
by Wt for t ∈ T and use the folding to get an immersion φ : (G, o) → (G′, φ(o)),
where G has the fundamental group H. This naturally induces an orientation E1 on
G. Now we attach a path labeled by Wg at o by following the orientation G. Since
g /∈ H, the endpoint of the path must be different from o, i.e.: the path is not closed.
The new graph is still denoted by G for simplicity. And φ : (G, o) → (G′, φ(o)) is
still an immersion.

Denote by V the vertex set of G. For each e ∈ E0, we have a set of directed edges
φ−1
e (e) in E1. Since φ is an immersion, each edge in φ−1

e (e) defines an ordered pair
of endpoints in V . Thus, each e ∈ E0 defines a bijective map ιe on a subset of the
vertex set V of G. Similarly, we can define ιē for e ∈ E0.

Since V is finite, ιe can be extended to a bijective map of V . (We actually have
many choices). Let’s denote again by ιe one such bijective map of V .

It is easy to use these maps ιe, ιē for e ∈ E0 to complete the immersion φ :
(G, o)→ (G′, φ(o)) to a covering φ̃ : (G̃, o)→ (G′, φ(o)). Precisely,

For each e ∈ E0, we use ιe to connect v and ιe(v) by a directed edge e, if such
an edge was not in φ−1

e (e). We do similarly for each ē where e ∈ E0. It is clear

that the such obtained graph G̃ is a finite covering.
Thus, the fundamental group of G̃ contains H but not g, since the path labeled

by Wg is not closed in G̃. The proof is complete. �

The following two exercises are consequences of Theorem 2.26.

Exercise 2.29. A free group F is residually finite: for any g 6= 1 ∈ F , there exists
a homorphism φ : F → G to a finite group G such that φ(g) 6= 1.

Using the residual finiteness, we can prove the following.

Exercise 2.30. Free groups of finite rank are Hopfian: any epimorphism is an
isomorphism.
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3. Groups presentation and decision problems

3.1. Group Presentation.

Definition 3.1. Let G be a group, and X ⊂ G be a subset. The normal closure of
X, denoted by 〈〈X〉〉, is the minimal normal subgroup containing X. Equivalently,

〈〈X〉〉 = 〈{gxg−1 : x ∈ X, g ∈ G}〉
= {(g1x

ε1
1 g
−1
1 )...(gnx

εn
n g
−1
n ) : n ∈ N, xi ∈ X, gi ∈ G, εi ∈ {1,−1}}.

Definition 3.2. A presentation P = 〈S|R〉 consists of a set S called generators,

and a set of words R in W(S̃) called relators. A presentation is finite, if both S
and R are finite.

A group G is presented by P if

G ∼= F (S)/〈〈R〉〉.
In this case, we write G = 〈S|R〉 for simplicity.

A group is finitely presented if it is presented by a finite presentation.

Remark. (1) By the universal mapping property of free groups, any group has
a presentation.

(2) Suppose X is finite. Then the normal subgroup 〈〈R〉〉 is not finitely gener-
ated, unless the group G is finite.

Theorem 3.3. Let G = 〈S|R〉 and φ : S → H be a function, where H is a
group. Then there exists a unique homomorphism ϕ : G → H with ϕ|S = φ if
and only if φH(r) = 1 ∈ H for all r ∈ R, where φH : F (S) → H is the canonical
homomorphism such that

S F (S)

H

ι

φ
φH

Proof. Let φG : F (S)→ G be the epimorphism such that

S F (S)

G

ι

ιG
φG

where ιG : S → G is the natural inclusion.
=>. Suppose that there exists ϕ : G→ H with ϕ|S = φ. Then ϕφG : F (S)→ H

is a homomorphism. We claim that ϕφG = φH . Indeed, it suffices to verify that
ϕφG and φH are identical on the generating set ι(S): ϕφG(ι(s)) = φH(ι(s)) for any
s ∈ S. Then ϕιG(s) = ϕ(s) = φ(s) = φH(ι(s)). Hence, it follows that ϕφG = φH .
<=. Note that G ∼= F (S)/N , where N = ker(φG) = 〈〈R〉〉. We define a

map ϕ : G → H as follows. Let g = s1s2..snN , where si ∈ S̃. Define ϕ(g) =
φH(s1)φH(s2)...φH(sn).

We verify that this map is well-defined. Assume that g = s1s2..snN = s′1s
′
2..s
′
mN .

There exists w ∈ N such that s1s2..snw = s′1s
′
2..s
′
m. As φH(r) = 1 for all r ∈ R, it

follows that φH(w) = 1. Thus, φH(s1)φH(s2)...φH(sn) = φH(s′1)φH(s′2)...φH(s′m).
We now prove that ϕ(gg′) = ϕ(g)ϕ(g′). As ϕ(g) does not depend on the choice

of representatives of g, we assume that g = s1s2..snN, g
′ = s′1s

′
2..s
′
mN . Then

ϕ(gg′) = φH(s1)φH(s2)...φH(sn)φH(s′1)φH(s′2)...φH(s′m) = ϕ(g)ϕ(g′). �
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Example 3.4. Let G = 〈a, t|t−1at = a2〉. Check the map φ(a) = a2, φ(t) = t extends
to a homomorphism of G→ G.

Exercise 3.5. (1) Let G = 〈S|R〉. Let R′ be a set of words in 〈〈R〉〉. Then

〈S|R〉 ∼= 〈S|R ∪R′〉.
(2) Let G = 〈S|R〉. Choose a set T and for each t ∈ T , we take a word in

wt ∈ W(S̃). Then

〈S|R〉 ∼= 〈S ∪ T |R ∪ {t−1wt}〉.

The modifications given by Exercise 3.5 are called Tietze transformations. They
gives ways to modify(add/delete generators and relators) a presentation of a group,
without changing the group. Moreover, any two presentations of a given group can
be transformed to each other by a sequence of Tietze transformations(Thm 2.8, in
reference [7]).

Exercise 3.6. Finish Exercises 2.4, 2.5, 2.6 and 2.7 in reference [7].

3.2. Decision Problems. We are only interested in decision problems for finitely
presented groups. Let G be a finitely presented group. It should be noted that if one
finite presentation has solvable word problem, then any other finite presentation
does so. So we can speak about the solvability of word problem for a finitely
presented group.

By Theorem 2.9, it is easy to see that a free group has a solvable word problem.
Indeed, given a word w, it is easy to build an algorithm to find an inverse pair in
w and cancel it to get a new word with length |w| − 2. After finitely many steps,
we get a reduced word. If it is an empty word, then w represents the identity and
the algorithm return “yes”. Otherwise, w 6= 1 and the algorithm returns “no”.

Let w ∈ W(X̃) be a word. Write w = x1x2...xn for xi ∈ X̃. Let σ be a
cyclic permutation of the set {1, 2, ..., n}(i.e.: some power of the permutation: 1→
2, ..., i → i + 1, ..., n → 1). A cyclic permutation of w is the new word formed by
xσ(1)xσ(2)...xσ(n). A word w is called cyclically reduced if all permutation of w is
reduced. If w is already reduced, it is amount to saying that the first letter of w is
not the inverse of its last letter.

Exercise 3.7. Prove that in a free group, two cyclically reduced words are conjugate
if and only if each is a cyclic permutation of the other. Therefore, the conjugacy
problem is solvable in free groups.
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4. Groups acting on trees: a brief introduction to Bass-Serre
Theory

4.1. Free products. In this section, we first introduce a free product G of two
given groups H,K. The group G is the biggest one among the groups generated
by H,K with the property that any such groups are the quotient of G.

Precisely, a group G is called a free product of H and K if there exist a pair of
homomorphisms ιH : H → G and ιK : K → G such that they are universal in the
following diagram:

H G K

Γ

ιH

φH
Φ

ιK

φK

By the universal property, it is easy to see that ιH : H → G and ιK : K → G are
both injective. Moreover, G is unique up to isomorphism, so G must be generated
by H and K.

Suppose that H = 〈S|D〉,K = 〈T |E〉 are given by presentations. Then by
Theorem 3.3, the group G given by the presentation 〈S ∪ T |D ∪ E〉 is the free
product of H,K.

Understanding H and K as disjoint alphabet sets, an alternating word w is of
form h1k1 · · ·hmkm, where hi ∈ H, kj ∈ K. The length of w is the number of letters
in word. It is called reduced if hi ∈ H \ 1, kj ∈ K \ 1.

We consider the set Ω of all reduced alternating words h1k1 · · ·hmkm in H and
K. The following result is fundamental in understanding free products.

Theorem 4.1. [Normal form theorem][7, Thm 3.1] Every element of G = H ? K
is equal to a unique alternating expression of the form h1k1 · · ·hmkm ∈ Ω

Sketch of the proof. Since G is genearted by H and K, any element in G can be
written as an alternating expression of the form h1k1 · · ·hmkm. To prove the unique-
ness, we shall construct a free action of G on the set Ω of all alternating expressions.
To that end, we first construct the homomorphisms of H and K into the symme-
try group of Ω and then by the above universal property, the homomorphisms of
G→ Sym(Ω) is defined correspondingly.

For each h ∈ H, the associated bijection φH(h) is given by sending h1k1 · · ·hmkm
to hh1k1 · · ·hmkm with a neccessary modification so that the image is alternating
expression. Note that φH : H → Sym(Ω) is an injective homomorphism. Similarly,
we can define φK : K → Sym(Ω) which is also injective. These define a group
homormorphism G→ Sym(Ω).

Consider the empty word ∅ in Ω. Any alternating expression h1k1 · · ·hmkm
of element g in G maps ∅ to the alternating word h1k1 · · ·hmkm. This word is
nonempty iff g 6= 1 This establishes the uniqueness of the statement. �

Corollary 4.2. If an alternating word w = h1k1 · · ·hmkm reprensents the identity
in G, then it must be not reduced: there exists some i such that hi = 1 or ki = 1.

In particular, if two reduced words represent the same group element, then they
are equal letter by letter.

4.2. Free products acting on trees. Let G = H ? K be a free product. We
define a graph Γ as follows.

(1) The vertex set V consists of two types H and K: V = {gH, gK : g ∈ G}.
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(2) The edge set E consists of all group elements in G.
(3) The edge g ∈ E = G connects gH and gK.

Then G acts on Γ: each element g ∈ G sends xH to gxH and xK to gxK. The
edge relation is preserved. So G acts on Γ by graph isomorphism.

Theorem 4.3 (Bass-Serre Trees for free products). The graph Γ is a tree so that
the degree of vertex of type H (resp. K) equals ]H (resp. ]K).

Moreover, the action of G on Γ has trivial edge stablizers and vertices stablizers
of type H and K conjugated to H and K respectively so that the quotient is an
interval.

Proof. By definition of action of G on the graph, there are two different orbits of
vertices: G ·H and G ·K. The vertex H is adjacent to hK for h ∈ H. That is to
say, the set of edges adjacent to H has one-to-one correspondence with the set of
elements in H. Similarly, the edges adjacent to K correspond to the set K. Since
G is generated by H and K, the graph Γ is connected.

We now prove that Γ is a tree. Let γ be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that γ is based at H; the case at
K is similar. According to the adjacency, there are an even number of edges in γ,
where edges in γ must be of form H ↔ hK for h ∈ H or K ↔ kH for k ∈ K up
to translation. Thus, tracing out the loop γ, we see that the terminal point is the
vertex h1k1 · · ·hnknH for hi ∈ H and ki ∈ K.

Since γ is a loop, we have the equality h1k1 · · ·hnknH = H. We obtain that

(4) h1k1 · · ·hnkn = h

for some h ∈ H. Since there exists no backtracking, we see that ki 6= 1 for i < n
and hi 6= 1 for i > 1. It is possible that kn = 1 or h1 = 1, but they cannot happen
at the same time. So, up to removing h1 or kn from the left side in (4), we obtain
a reduced word of length at least 2. But the right side in (4) is a reduced word of
length 1. This is a contradiction to the normal form theorem 4.1. The graph Γ is
thus a tree. The proof is complete. �

4.3. Free products with amalgamation. Now suppose that each of H and K
contain a subgroup isomorphic to F : there exists monomorphisms σ : F → H and
τ : F → K. We want to formulate a biggest group G generated by H and K so
that H ∩K = F is realized inside G.

Precisely, a group G is called a free product of H and K with malgamation over
F if there exist a pair of homomorphisms ιH : H → G and ιK : K → G such that
they are universal in the following diagram:

F

H G K

Γ

σ
τ

ιH

φH
Φ

ιK

φK

By the universal property, it is easy to see that ιH : H → G and ιK : K → G are
both injective. Moreover, G is unique up to isomorphism, so G is generated by H
and K.
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Let w = h1k1 · · ·hnkn be an alternating word over the alphabet set H and
K such that hi ∈ H and ki ∈ K. If it has length strictly bigger than 1 and
hi ∈ H \ F, ki ∈ K \ F , then w is called a reduced alternating word. Let Ω be the
set of all such that hi ∈ H \ F and ki ∈ K \ F , unless the alternating word is of
length 1.

The following fact is obvious.

Lemma 4.4. Every element of G = H ?F K is equal to a reduced alternating
expression of the form h1k1 · · ·hmkm. It may not be unqiue, but the length of the
alternating word is unique.

However, such an expression will not be unique, due to the nontrivial intersection
F . To obtain a unique normal form, we have to choose a right coset transversal
TH and TK of F in H and K respectively: namely, in each right H-coset, choose
a right coset representative. We then consider the set Ω of words concatenating F
with the alternating words in TH and TK .

Given a reduced alternating form h1k1 · · ·hmkm, we convert the letters from right
to left so that they become to be the corresponding right coset representatives. In
the final form, we will get a normal form fh′1k

′
1 · · ·h′mk′m for some f ∈ F . So, any

element has a normal form which turns out to be unique. Also note that in this
process, the length of a normal form is the same as that of the original one.

Theorem 4.5. [Normal form theorem][7, Thm 3.7] With the choice of the right
coset transversal TH and TK as above, every element of G = H ?F K is equal to
a unique normal form fh1k1 · · ·hmkm with f ∈ F, hi ∈ TH and ki ∈ TK when
present.

Corollary 4.6. If an alternating expression h1k1 · · ·hmkm gives the identity, then
it is not reduced: there exists hi or ki such that hi, ki ∈ F.

Let G = H ?F K. We define a graph Γ as follows.

(1) The vertex set V consists of two types H and K: V = {gH, gK : g ∈ G}.
(2) The edge set E consists of all left F -cosets in G.
(3) The edge gF ∈ E connects gH and gK.

Again, G acts on Γ: each element g ∈ G sends xH to gxH and xK to gxK. The
edge relation is preserved. So G acts on Γ by graph isomorphism.

We have the same result for free product with amalgamation. The only difference
is that the edge stabilizer is a conjugate of F , instead of a trivial group.

Theorem 4.7 (Bass-Serre Tree for amalgamation). The graph Γ is a tree so that
the degree of vertex of type H (resp. K) equals ]H/F (resp. ]K/F ).

Moreover, the action of G on Γ has edge stablizers conjugated to F and vertices
stablizers of type H and K conjugated to H and K respectively so that the quotient
is an interval.

Proof. The proof is similar to that of Theorem 4.3. We emphasize the differences
below.

We now prove that Γ is a tree. Let γ be an immersed loop: there exists no
backtracking. Up to a tranlation, we can assume that γ is based at H; the case at
K is similar. According to the adjacency, there are an even number of edges in γ,
where edges in γ must be of form H ↔ hK for h ∈ H/F or K ↔ kH for k ∈ K/F
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up to translation. Tracing out the loop γ, we see that the terminal point is the
vertex h1k1 · · ·hnknH for hi ∈ H and ki ∈ K.

Since γ is a loop, we have the equality h1k1 · · ·hnknH = H. We obtain that

(5) h1k1 · · ·hnkn = h

for some h ∈ H. Since there exists no backtracking, we see that ki /∈ 1 for i < n
and hi /∈ F for i > 1. It is possible that kn ∈ F or h1 ∈ F , but they cannot happen
at the same time. So, combinning h1 with k1 or kn with hn from the left side in
(5) if necessary, we obtain a reduced word of length at least 2. But the right side
in (5) is a reduced word of length 1. This is a contradiction to the normal form
theorem 4.5. The graph Γ is thus a tree. The proof is complete. �

4.4. HNN extension. Let G be a group with two isomorphic subgroups H and
K. Let τ : H → K be an isomorphism. We want to build a new group G̃ such that
G ⊂ G̃ and H,K become conjugate in G̃. If G is given by a presentation

〈S|R〉.

As usual, we request G̃ to be the biggest one with this property. Then the desired
group G̃ must have presentation as follows

〈S, t|R, tht−1 = τ(h),∀h ∈ H〉,

which is called HNN extension of G over H,K, denote by G?H∼K . The new
generator t is usually called stable letter.

By definition, every element in G̃ can be written as a product of form called
t-expression as follows:

g0t
ε1g1 · · · tεngn

where gi ∈ G or εi ∈ {1,−1}. Any subword tht−1 for h ∈ H and t−1kt for t ∈ K
is called t-pinch in the above form. A t-expression form without t-pinches is called
reduced.

A reduced t-expression of an element may not be unique, though different reduced
t-expressions have equal length. In order to get a normal form, we choose right coset
transversal TH and TK of H and K in G respectively.

Theorem 4.8. [Normal form theorem][7, Thm 3.1] Every element of G̃ = G?H∼K
is equal to a unique reduced t-expression of the form g0t

ε1g1t
ε2g2 · · · tεngn with gi ∈

TH ∪ TK when present. If εi = 1 for i > 0, then gi ∈ TH ; if εi = −1 for i > 0 then
gi ∈ K.

Corollary 4.9 (Briton’s Lemma). If a t-expression in G̃ = G?H∼K represents the
trivial element, then it must contain t-pinches.

Let G̃ = G?H∼K . We define a graph Γ as follows.

(1) The vertex set V consists of all left cosets of G: V = {xG : x ∈ G̃}.
(2) The edge set E is the set of the 2-tuples {x(K, tH) : x ∈ G̃} .
(3) The edge x(K, tH) ∈ E connects xG and xtG, and so xt−1(K, tH) connects

xt−1G and xG accordingly.

We define an action of G̃ on Γ: each element g ∈ G̃ sends xG to gxG. The edge
relation is preserved. Then, G acts on Γ by graph isomorphism. By definition, G
acts transitively on edges so Γ/G is a loop.
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Theorem 4.10 (Bass-Serre Tree for HNN extension). The graph Γ is a tree so that
the degree of every vertex is ]G/H + ]G/K. Moreover, the action of G on Γ has
edge stablizers conjugated to H (or equivalently K) and vertex stablizers G so that
the quotient Γ/G is a loop.

Proof. The proof is similar to that of Theorem 4.3. In this case, there is only one
orbit of vertices and edges.

We now prove that Γ is a tree. According to the adjacency, each edge in Γ issuing
from the vertex G must be of the following form:

(1) G
g(K,tH)←→ gtG for some g ∈ G,

(2) G
gt−1(K,tH)←→ gt−1G for some g ∈ G.

Thus, if a loop γ based at G has the terminal point g1t
ε1g2t

ε2 · · · gntεnG where
gi ∈ G and εi ∈ {1,−1}. Conversely, any t-epression g1t

ε1g2t
ε2 · · · gntεn labels a

connected path between G and g1t
ε1g2t

ε2 · · · gntεnG.
Observe that g1t

ε1g2t
ε2 is given by a backtracking iff tε1g2t

ε2 is t-pinch. Indeed,
for definiteness, let us consider ε1 = 1. Then if the two edge path as follows has
backtracking

G
g1(K,tH)←→ g1tG

g1tg2t
εi (K,tH)←→ g1tg2t

εiG

then the two edges coincide: g1K = g1tg2t
εiK, g1tH = g1tg2t

εi(tH). So we must
have

tg2t
εi ∈ K, g2t

εit ∈ H
which occurs only when εi = −1 and g2 ∈ H. In other words, tg2t

εi is a t-pinch.
The case ε1 = −1 is similar.

Let γ be an immersed loop: there exists no backtracking. Up to a tranlation, we
can assume that γ is based at G. Thus, tracing out the loop γ gives the terminal
point g1t

ε1g2t
ε2 · · · gntεnG where gi ∈ G and εi ∈ {1,−1}. Since γ is a loop, we

have the equality g1t
ε1g2t

ε2 · · · gntεnG = G. We obtain that

(6) g1t
ε1g2t

ε2 · · · gntεn = g

for some g ∈ G.
Since γ has no backtracking, the t-expression g1t

ε1g2t
ε2 · · · gntεn is reduced of

length at least 2. The right side in (6) is a reduced word of length 1. This is a
contradiction to the normal form theorem 4.8. The graph Γ is thus a tree. The
proof is complete. �

Exercise 4.11. Draw a portion of the Cayley graph of the group 〈a, t : ta2t−1 = a3〉.

4.5. Abelianization of free products. Let G = H ? K be a free product. By
the universal property, there exists a natural morphism G → H ×K. We denote
by N the kernel of this morphism.

We start with a classification of isometries on trees. An element is called elliptic
if it fixes a vertex. It is called hyperbolic if it preserves a unique bi-infinite geodesic
and acts by translation.

Lemma 4.12. Let g be an isometry of a tree T . Then either g fixes a point or g
preserves a unique geodesic by translation.

Proof. Suppose that g does not fix any point. Fix a basepoint o ∈ T . Consider
the geodesic segments [o, go] and [o, g−1] both originating from o. Since T is a tree,
let b be the branching point of these two geodesics. We then claim that d(o,m) <
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d(o, go)/2. Otherwise, the middle point m of [o, go] coincides with that of [o, g−1o],
which is gm. So m is fixed by g: a contradiction. Hence, d(o, b) < d(o, go)/2. We
now form a geodesic γ preserved by g. Let γ = ∪i∈Z[g−1m,m]. It is clear by the
the above Claim that γ is a geodesic. The proof is then complete. �

Exercise 4.13. Prove the uniqueness statement in Lemma 4.12.

Exercise 4.14. Any finite group acts on a tree with a global fixed point.

Corollary 4.15. All finite subgroups in a free product must be conjuated into H
or K.

Exercise 4.16. Let G = H ?F K be a free product of non-trivial groups H,K over
F . Using Bass-Serre tree to prove that the center of G is contained in F .

Lemma 4.17. N is a free group generated by S = {[h, k] : h ∈ H \ 1, k ∈ K \ 1}.

Proof. By Theorem 2.20, we only need to show that N acts freely on the Bass-Serre
tree Γ. To prove the freeness of N , any vertex stabilizer of the Bass-Serre Γ is sent
to a non-trivial subgroup under the morphism H ?K → H ×K. This implies that
the kernel N of this morphism acts freely on Γ. Thus the conclusion follows. �

4.6. Graph of groups. Let G = (V,E) be a finite graph. A graph of groups
(G, G?) with the underlying graph G associates to each vertex v ∈ V a vertex group
Gv, each edge e ∈ E an edge group Ge and monomorphisms ∂±e : Ge → Ge± .

Fix a spanning tree Γ and denote by S the set of edges not in Γ. The fundamental
group π1(G, G?) of the graph (G, G?) of groups is the group generated by the union
of ∪v∈VGv with {te : e ∈ S} subject to the following relations:

(1) for each e ∈ Γ1 and each x ∈ Ge, ∂−e (x) = ∂+
e (x).

(2) for each e ∈ S and each x ∈ Ge, te∂−e (x)t−1
e = ∂+

e (x).

Examples 4.18. Using this langauge, a free product H ?F K with amalgamation is
a graph of groups where the graph is one edge with two distinct vertices. The edge
group is F and two vertex groups are H and K respectively. The edge morphisms
are given by subgroup inclusions.

The HNN extension H?K is a graph of groups where the graph is just one loop.
The edge group is K and the vertex group is H. The edge morphism ∂−e : H → K
is given by subgroup inclusion of K into H, and the other ∂+e : H → K is given
by conjugation H → tHt−1, where t is the stable letter.

By a similar consruction, the fundamental group G := π1(G, G?) acts on a tree
T called Bass-Serre tree so that T/G is the underlying graph G. The vertex and
edge stabilier in the tree T are isomorphic to the corrresponding vertex and edge
stabilier of G. This property entails the construction of T to staisfy:

(1) the vertex set V (T ) consists of left cosets of vertex groups in G.
(2) the edge set E(T ) consists of left cosets of edge groups in G.

The details can be found in Chapter I.5.3 [12], see Theorem 14.

4.7. Groups acting on trees. Assume that G acts by graph isomorphisms on a
tree T = (V,E). Without loss of generality, assume that G acts without inversion:
no element g ∈ G sends e to ē, where ē is the directed edge with opposite orientation
of e. If we think of the tree T as a geodesic metric space, then G acts by isometry
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on T and the action without inversion is equivalent to the assumption that no non-
trivial fixes the middle point of some edge.

Furthermore, we can assume that the action of G on T is minimal : there exists
no proper G-invariant subtree.

Exercise 4.19. Let G act without inversion on a tree T . Then there exists a unique
minimal G-invariant subtree in T .

In what follows, to each action without inversion of a group G on a tree T , we
associate a finite graph of groups defined as above.

Let G = (V,E) be the quotient graph T/G. Assume that G is finite. We choose

a spanning tree Γ in G and consider its lift in T denoted by Γ̃. For each v ∈ Γ0

and e ∈ Γ1, let Gv be the vertex stabilizer of (its lift) ṽ in T and Ge be the edge
stabilizer of (its lift) ẽ in T .

Let ∂±e : Ge → Ge± for e ∈ Γ1 be the inclusion of edge stabilizer into vertex
stabilizer.

It remains to define the egde group on the set S of edges not in Γ1 and the
corresponding ∂±e : Ge → Ge± . To that end, we choose a lift ẽ for each e ∈ S

so that ẽ± ∩ Γ0 6= ∅. Assume that ẽ± ∩ Γ̃0 = ẽ−: the initial endpoint of edge ẽ

is contained in Γ̃ (the lift of Γ) in T . Let Ge be the stabilizer of ẽ in G. Define
∂−e : Ge → Ge− be the edge group inclusion. Since Γ is a spanning tree of the

quotient T/G, the vertex set of Γ̃ is a fundamental domain of T 0: GΓ0 = T 0.
Thus, there exists an element te ∈ G such that teẽ+ ∈ Γ0. Define

∂+
e : Ge → Gteẽ+ = teGẽ+t

−1
e

which sends x ∈ Ge to text
−1
e .

Recall that, given a finite graph of groups, we can build a Bass-Serre tree T and
an action of the its fundamental group on T such that T/G = G, and the vertex
and edge stabilier in the tree are isomorphic to the corrresponding vertex and edge
stabilier of G. The bulk of the Bass-Serre theory says that these two operations are
inverse in the following sense.

Theorem 4.20. If G is a graph of groups, then there is a group G, a tree T , and
an action G without inversion on T so that

(1) If Ḡ is the graph of groups associated with the action G on T , then Ḡ and
G are isomorphic.

(2) If G′ y T ′ is another action on a tree satisfying (1), then there is an iso-
morphism G′ ∼ G so that the two actions become simplicially isomorphic.

4.8. End compactifications. Let Γ be an infinite, connected, locally finite graph.
(We shall consider the application to the Cayley graph of a finitely generated group.)
We shall define a compactification of Γ firstly introduced by Freudenthal, called end
compactification.

We start with a few notionsin graph theory.

(1) If S ⊂ Γ0, then the induced spanning graph on S denoted by S̃ has the
vertex set S with all edges in Γ1 of both endpoints in S.

(2) If E is a finite set of edges, we denote by Γ \ E the graph with vertex set
Γ0 and edge set Γ1 \ E.

(3) Let C(E) be the set of connected components of Γ \ E.
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Two points x, y are called separated by E if x, y lie in distinct components
Γ\E. Two components C1, C2 in C(E) are distinct if and only if every path
between any two points x ∈ C1, y ∈ C2 intersects E0.

We can define the end compactification of Γ as follows. Consider the directed
system F(Γ) of all finite set of edges in Γ with E < F iff E ⊂ F . There is a natural
map from C(F ) to C(E) induced by inclusions of infinite components. Let the end
boundary ∂Γ be the inverse limit of the directed system C(E) over all finite set of
edges E in Γ. By definition, each point ξ ∈ ∂Γ called an end is a collection of
infinite components CE(ξ) of Γ \ E for every E ∈ F(Γ) so that CE(ξ) ∩ CE′(ξ) is
infinite for any two E,E′ ∈ F(Γ). For any E, the component C = CE(ξ) of C(E)
is uniquely determined by ξ. By abuse of language, we say that a component C
contains ξ if C = CE(ξ). Any two distinct end ξ 6= ζ are necessarily separated by
some E: CE(ξ) 6= CE(ζ).

The end boundary ∂EΓ compactifies Γ in the following way. A sequence of points
xn ∈ Γ converges to an end ξ ∈ ∂Γ if and only if for any E ∈ F(Γ) we have that
xn lies in all CE(ξ) but finitely many n.

The end boundary is visual boundary : any two distinct points are connected by a
bi-infinite geodesic. It is not hard to see that a quasi-isometry between locally finite
graphs induces a homeomorphism between their ends boundary. In what follows,
we shall put a visual metric on end boundary and shows that a quasi-isometry
actually induces a bi-Hölder homeomorphism.

4.9. Visual metrics on end boundary. Fix a basepoint o ∈ Γ and 0 < λ < 1.
We define a metric ρλ on ∂EΓ as follows. Let Bn be the edge set of the induced
graph on the vertices with distance ≤ n to the identity o. The inverse limit of the
directed system {C(Bn)} is homeomorphic to ∂EΓ.

Visual metric. Let ξ, ζ be two distinct ends. If n is the minimal integer such
that ξ and ζ belongs to different components in C(Bn), then define ρλ(ξ, ζ) = λn.
Equivalently, n is the maximal integer such that ξ and ζ belongs to the same
component in C(Bn).

By definition, the visual metric is ultrametric: for any triple of points x, y, z ∈
∂EΓ,

ρλ(x, y) ≤ max{ρλ(x, z), ρλ(z, y)}
Sublinearly biLipschitz equivalence. By definition, if ρλ(ξ, η) = λn for

n ≥ 1, then every path from ξ and η is within distance n to identity, and some path
from ξ and η is disjoint with Bn−1.

Let u be a strictly sublinear nondecreasing positive function on the half line such
that lim supr u(2r)/u(r) <∞.

A O(u)-sublinearly biLipschitz equivalence (SBE) between metric spaces (X, o)
and (Y, o′) is a map f : X → Y if there exists c > 1 and v = O(u) such that

(1) ∀x1, x2 ∈ X,

1

c
d(x1, x2)− v(sup{d(o, x1), d(o, x2)})

≤ d(f(x1), f(x2)) ≤
cd(x1, x2) + v(sup{d(o, x1), d(o, x2)})

(2) ∀y ∈ Y, ∃x ∈ X, d(y, f(x)) ≤ v(d(x, o)).

Lemma 4.21. Sublinearly biLipschitz equivalences induce bi-Hölder homeomor-
phisms between the end boundaries.
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Proof. Two infinite embedded rays γ, γ′ are equivalent if, up to removal of finite
subpaths, they belong to the same component of Γ1 \B for every ball B. It is easy
to verify that each equivalent class [γ] determines a unique end, and vice versa. We
thus identify the set ∂EΓ1 of ends as the set of infinite embedded rays up to the
equivalence.

Let R be a sublinear function. A sublinear R-neighborhood of a subset S based
at o ∈ X is defined as follows

NR(S) := {x ∈ X : d(x, S) ≤ R(d(o, x)}

Claim. Let γ be an infinite embedded ray. If α is an infinite embedded ray in a
sublinear R-neighborhood of γ, then α is equivalent to γ.

Proof of the Claim. Since γ determines an end, for balls Bn of radius n at identity,
γ eventually lies in a component Cn ∈ C(Bn) and Cn+1 ⊂ Cn. By the definition of
sublinear neighborhood, the distance of points on α \Bn to γ grows sublinearly in
n. Thus, for every sufficiently large n, there exists m < n depending on n and R
so that α \Bm lies in Cn. And m→∞ as n→∞. Thus, [α] = [γ]. �

Let f : Γ1 → Γ2 be a O(u)-SBE between two Cayley graphs of infinitely-ended
groups. Without loss of generality, assume that f(1) = 1 by (pre-/post-)composing
elements in G1 and G2. Then there exists a sublinear function R depending on u
with the following properties:

(1) for any geodesic ray γ, the R-neighborhood of f(γ) contains at least one
infinite embedded ray.

(2) If γ is an infinite path outside Bn between two end p, q ∈ ∂EΓ2, then
there exists a continuous path α between ξ = Π−1(p), η = Π−1(q) so that
d(1, α) > n/c−R(n).

The Claim with the property (1) thus implies that f(γ) determines a unique
end: any two infinite embedded rays in NR(f(γ)) are equivalent. By abuse of
language, we denote the end by [f(γ)]. Hence, we defined a map Φ : ∂EΓ1 → ∂EΓ2

by Φ([γ]) = [f(γ)]. By the definition of O(u)-SBE and the Claim, it is readily
verified that Φ is a bijection from the end of Γ1 to the end of Γ2.

Let ξ, η ∈ ∂EΓ1. Assume that ρλ(ξ, η) = λn where n is the minimal radius of the
ball B centered at 1 so that ξ, η lie in distinct components of Γ1 \B. Let p = Φ(ξ)
and q = Φ(η). Let m be the maximal radius of the ball B′ such that p, q lie in the
same component of Γ2 \ B′. If γ is a path connecting p to q outside B′ but lies in
a distance m − 1 of 1, then by the Property (2), there exists a continuous path α
from ξ to η, and d(1, α) ≥ m/c − R(n). By definition of n, we have d(1, α) ≤ n.
This implies that m/c−R(n) ≤ n. Therefore, ρλ(p, q) ≥ λcn+R(n) ≥ Cρλ(ξ, η)β for
some C, β > 0 and every n. �

Corollary 4.22. A quasi-isometry between locally finite graphs induces a homeo-
morphism between end boundaries.

The end compactification, denoted by ∂EG, of a finitely generated group G is
defined to be the end boundary of any Cayley graph of G with respect to finite
generating set.

Lemma 4.23. Let G be a finitely genearted group. If ]∂EG ≥ 3, then G acts by
homeomorphisms on the end boundary as a convergence group action (see definition
12.1).
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Corollary 4.24 (Hopf). The end boundary of a finitely generated group contains
0, 1, 2,∞ points.

Obviously, a finitely generated group has no end iff it is a finite group.

Exercise 4.25. If a finitely generated group G has two ends, then G is virtually
cyclic.

4.10. Groups with infinitely many ends. It is easy to see that a free product
amalgamated over finite edge groups has infinitely many ends. Similarly, HNN
extension over finite edge groups do so. The converse is also true and proved by J.
Stallings.

Theorem 4.26 (Stalling). If a finitely generated group G has infinitely many ends,
then G is either a free amalgamated product H ?F K or a HNN extension H?F over
a finite group.

By Bass-Serre theory, it admits the following equivalent form using actions on
trees.

Corollary 4.27. A finitely generated group G has infinitely many ends iff it admits
an isometric action on a simplicial tree with finite edge stabilizers. In other words,
G is infinitely-ended iff G is a graph of groups with finite edge groups.

We now introduce a compactification of a possibly locally infinite tree T .
Let ∂GT be the Gromov boundary which consists of asymptotic classes of ge-

odesic rays [γ]. Denote by T 0 by the set of vertices of T . Then the Bowditch
boundary ∂T of T is the union of ∂GT ∪ T 0. The end boundary is then ∂GT ∪ T 0,
where T∞ is the set of vertices of T with infinite degree. Note that any two points
x, y ∈ ∂T is connected by a unique geodesic.

The topology of T̄ = T 0 ∪ ∂T is given by a neighborhood system of each point
x ∈ ∂T ∪ T .

(1) x ∈ ∂GT : each finite set E of eges in T gives a neighborhood U(x,E) of x
which consists of y ∈ ∂ET such that [x, y] ∩ E = ∅.

(2) x ∈ T 0: each finite set E of eges in T adjacent to x gives a neighborhood
U(x,E) of x which consists of y ∈ ∂ET such that [x, y] ∩ E = {x}.

A set S in T̄ is claimed to be open iff S contains a neighborhood of each point in
S. It is clear that

U(x,E1) ∩ U(x,E2) = U(x,E1 ∪ E2)

which implies that the system of open sets indeed defines a topology on T̄ . With
respect to this topology, it is straightforward to verify that {U(x,E)}E is a neigh-
borhood basis of x: each U(x,E) is open.

Lemma 4.28. The following statements hold:

(1) The topology on T̄ is compact and the set T∞ is dense in T̄ .
(2) The subspace topology on ∂GT coincides with the Gromov topology.
(3) The set of vertices in T with finite degree are isolated points in ∂T .
(4) If a group G acts by isometry on T , then the isometry action extends to an

action on T̄ by homeomorphism.

An infinitely-ended group is called accessible if it admits a graph of groups with
finite edge groups and finite or one-ended groups. Equivalently, it acts on a terminal
tree T so that finite edge groups are finite and every vertex groups are either finite
or one-ended.
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Theorem 4.29 (Dunwoody). A finitely presented infinitely-ended group G is ac-
cessible. Moreover, the end boundary of G is homemorphic to the end boundary of
T .
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5. Geometry of finitely generated groups I: Growth of groups

The concept of a Cayley graph of a group is a basic tool to study groups in Geo-
metric Group Theory. We will understand a graph in various ways: as a topological
space, a combinatorial object and a metric space.

5.1. Cayley graphs. Topologically, a graph G is a 1-dimensional CW-complex.
Start with a set V , we glue a set E of intervals [0, 1] to X by boundary maps
fe, e ∈ E. A boundary map fe : ∂e := {0, 1} → X sends two boundary points of e
to X. Then the graph G is the quotient space

V t E/∂e�fe(∂e)
obtained from the disjoint union V t E glued by maps fe.

In this course, it is helpful to take a combinatorial formulation of the notion of
a graph.

Definition 5.1. A graph G consists of a set V of vertices and a set E of directed
edges. For each directed edge e ∈ E, we associate to e the initial point e− ∈ V and
terminal point e+ ∈ V . There is an orientation-reversing map

¯: E → E, e→ ē

such that e 6= ē, e = ¯̄e and e− = (ē)+, e+ = (ē)−.

Remark. Clearly, such a map ¯ has to be bijective. Moreover, e+ = (ē)− can be
deduced from other conditions: e+ = ¯̄e+ = ē−.

In topological terms, a path in a graph can be understand as a continuous map
from [0, 1] to the graph. Combinatorially, we define a path to be a concatenation
of directed edges:

γ = e1e2...en, ei ∈ E
where (ei)+ = (ei+1)− for 1 ≤ i < n. The initial point γ− and terminal point γ+

of γ are defined as follows:

γ− = (e1)−, γ+ = (en)+.

A path γ is called a cycle if (en)+ = (e1)−. A backtracking in γ is a subpath of
form eiei+1 such that ei = ēi+1.

The concatenation γγ′ of two paths γ, γ′ is defined in the obvious way, if γ+ = γ′−.
Recall that a set S in a group G is said to be symmetric, if s−1 ∈ S for any

s ∈ S. Here, we do allow s = s−1, that is, s is of order 2.

Definition 5.2. Let G be a group and S be a symmetric generating set without
identity. The Cayley graph G (G,S) of G with respect to S is a graph with the
vertex set G and edge set G× S. Define (g, s)− = g, (g, s)+ = gs, and the map

¯: G× S → G× S, (g, s)→ (gs, s−1).

It is clear to see that ¯ satisfies the conditions in definition of a graph.

With S being understood as an alphabet set, we can attach every edge/path a
label in S in G (G,S). Define the label function

Lab : G× S → S, (g, s)→ s.

The label of a path is defined as the natural concatenation of labels of each edge in
the path. Thus, there is a natural bijection:



NOTES ON GEOMETRIC GROUP THEORY 35

{ paths originating from identity } ↔ { all words over S },
in particular, where the set of paths without backtracking issuing from any fixed
point is bijective to the set of all reduced words over S.

A graph morphism φ : G → G′ between two graphs G,G′ is a vertex-to-vertex,
edge-to-edge map such that φ(e−) = φ(e)−, φ(e+) = φ(e)+ and φ(ē) = φ(e). Left-
multiplication of an element g ∈ G induces a graph automorphism of G (G,S) :

V → V : x→ gx,
E → E : (x, s)→ (gx, s).

Note that the automorphism also preserves the labels.

Lemma 5.3. Let G be a group with a generating set S. Assume that 1 /∈ S and
S = S−1. The Cayley graph G (G,S) is a connected graph: there is a path between
any two vertices.

Proof. It suffices to show that any vertex g ∈ G can be connected by a path to the
identity 1. We can write g as a product of generators g = s1s2...sn, where si ∈ S.
Clearly, the path γ = (1, s1)(s1, s2)(s1s2, s3)...(s1s2...sn−1, sn) is a path between 1
and g. �

Recall that a tree is a graph such that any nontrivial cycle has no backtracking.

Lemma 5.4. The Cayley graph of a free group F (S) with respect to the generating

set S̃ is a tree.

Proof. Let G (G,S) be the Cayley graph. Let γ be a nontrivial cycle in G (G,S).
Applying a graph automorphism induced by the element γ−1

− in G, we can assume
that γ− = γ+ = 1. Tracing out the path, we obtain a non-empty word w ∈ S. By
definition of a Cayley graph, the word w represents the identity - the empty word.
Thus by Theorem 2.9, w is not reduced, and has to contain an inverse pair. So, γ
has a backtracking. We conclude that G (G,S) is a tree. �

A graph is called locally finite, if for every vertex, there are only finitely many
vertices adjacent to it. In this course, we are mainly interested in finitely generated
groups. If a group is finitely generated, then there are exactly |S| edges originating
from each vertex. It is clear that the Cayley graph as a topological space is locally
compact if and only if it is locally finite. Thus, for a finitely generated group, the
Cayley graph has a good topology to handle with.
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5.2. Word metrics and Growth function. In this subsection, we put a natural
metric called word metric on a group, of which we give two definitions below.

Let G be a group with a generating set S. We first define a norm on a group G.

Definition 5.5. The word norm |g|S of an element g ∈ G is the shortest length of
a word w such that w =G g. Formally,

|g|S = inf{|w| : φ(w) = g, φ : F (S)→ G}.
We define the word metric dS on G: dS(g, h) = |g−1h|S for any g, h ∈ G.

Remark. dS is indeed a metric, as |gh| ≤ |g|+ |h|, and |g| = 0 iff g = 1 ∈ G

The word metric can also be obtained by metrizing the Cayley graph G (G,S).
For each edge e ∈ G (G,S), we assign the unit length 1 to it. The length of a path is
the number of edges in it. We define a distance dS on G (G,S): for any two vertices
x, y, the distance dS(x, y) is the infimum of lengths of all paths between x, y. It
is easy to see that this definition of word metric dS is equal to the one defined as
above.

A metric d on G is called proper if the ball around the identity of any finite
radius contains only finitely many elements. That is, |{g ∈ G : d(1, g) ≤ n}| is
finite for any n > 0.

A metric d on G is called left-invariant if the left multiplication on G is an
isometry: d(gx, gy) = d(x, y) for any g, x, y ∈ G.

Lemma 5.6. (1) Word metric dS is a left-invariant metric on G. In other
words, G acts on itself by isometries.

(2) Word metric on the Cayley graph is a geodesic metric: the distance of any
two vertices can be realized as the length of a path between them.

(3) If |S| <∞, dS is proper.

It should be noted that word metric depends on the choice of a generating set.
However, word metrics with respect to different generating sets are bi-Lipschitz.

Lemma 5.7. Let S, T be two finite generating sets of G. Then thee exists a constant
C ≥ 1 such that

C−1dT (., .) ≤ dS(., .) ≤ CdT (., .).

Proof. For any generator s ∈ S, there is a word ws over T̃ such that w =G s. Set

C1 = max{|ws| : s ∈ S}.

Observe that any word over S̃ can be written as a word over T̃ . Thus, for any
element g ∈ G, we have |g|T ≤ C1|g|S .

The other inequality can be obtained in the same way. �

From now on, we assume that G is a group with a finite generating set. As shown
above, word metric is a proper metric. So the first information that we want to
know about a Cayley graph is to see how the number of elements in a ball increases.

We prepare some notations first. Let BS(g, n) = {h ∈ G : dS(g, h) ≤ n} denote
the ball at g of radius n, and S(g, n) = {h ∈ G : dS(g, h) = n} denote the sphere
around g of radius n. We now define a growth function

φS : N→ N, φ(n) = |BS(1, n)|
for all n ≥ 0.
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Exercise 5.8. |S(1, n+m)| ≤ |S(1, n)| · |S(1,m)| for any n,m ∈ N.

Let φ, ϕ : N → N be two monotonically non-discreasing functions. We say that
φ dominates ϕ if there exists C ≥ 1 such that

ϕ(n) ≤ Cφ(Cn)

for n > 0. Denote ϕ ≺ φ.
Two functions φ, ϕ are equivalent if they dominate each other. Note that a0 +

a1n+ ...+ ain
i is equivalent to ni. All exponential functions like λn for λ > 1 are

equivalent to the the standard one en. But en dominates any polynomial function.

Lemma 5.9. Let S, T be two finite generating sets of G. Then φS(n) and φT (n)
are equivalent.

Thus, if a group has a polynomial growth function for one generating set, then it
has a polynomial growth function for any other generating set (with same degree).

In the sequel, we will not distinguish growth functions that are equivalent. In
other words, we are only interested in the equivalent classes of a growth function.

Lemma 5.10. Let A be an abelian group with finite rank d. Then the growth
function of A is equivalent to nd.

Proof. By the classification theorem 1.21 of abelian groups, any abelian group of
rank d is isomorphism to a direct product of a free abelian group of rank d and a
finite group.

Observe that the growth function of G× F for a finite group F is equivalent to
that of G. Thus, it suffices to prove that the growth function of Zd with respect to
the standard generating set is polynomial.

The growth function of Z2 is 2n2+2n+1, which is equivalent to n2. Use induction
on the rank. Assume that Zd−1 has growth function nd−1. Let S = {s1, s2, ...sd}
be the standard generating of Zd. Any element g of length n can be written as
g = sn1

1 sn1
1 ...sndd , where si ∈ S and

∑
1≤i≤n ni = n. Denote h = sn1

1 sn1
1 ...s

nd−1

d−1 .

Then h is an element of length n− 1 in Zd−1. Then |B(1, n)| ≺ n · nd−1 = nd. �

Lemma 5.11. Free groups of rank at least 2 has exponential growth function.

Proof. We calculate the growth function of F2 with respect to the standard generat-
ing set. Let bn = |S(1, n)|. Then b0 = 1, b1 = 4. Observe that we have bn+1 = 3bn
for n > 0. Then φ(n) = 1 +

∑
1≤i≤n bn = 1 + 4(1 + 3 + ...+ 3n−1) = 2 · 3n − 1. �

5.3. Nilpotent groups and Polynomial growth. Let G be a group. Define
inductively the following groups, called lower central series of G.

G0 = G,G1 = [G,G0], G2 = [G,G1], ...Gn = [G,Gn−1], ...

The group G is called nilpotent of degree n ≥ 1 if Gn = {1}, but Gn−1 6= {1} if
n ≥ 2.

Example 5.12. The following group in GL(2,R)

G =


 1 a c

0 1 b
0 0 1

 : a, b, c ∈ R


is a nilpotent group of degree 2.



38 WENYUAN YANG

Exercise 5.13. Let G be a nilpotent group. Prove that Gi/Gi+1 is an abelian
group.

We collect some useful results about nilpotent groups.

Lemma 5.14. A group G is a nilpotent group of degree (at most in the “<=”) n
if and only if any n-fold commutator is trivial:

[[...[[g0, g1], g2], ...], gn] = 1,∀gi ∈ G

Proof. The direction “=>” is clear. The direction “<=” is given by the following
general fact for any group G.

For any n ≥ 1, the Gn is generated by the set of all possible n-fold commutators.
This is proved by an induction on n. When n = 1, it is clear. The induction is
completed by using the following identity.

[ab, c] = a[b, c]a−1[a, c].

Note that the inverse of a i-fold commutator is i-fold commutator. Indeed, we write

[[...[[g0, g1], g2], ...], gn]−1 = [gn, [b, gn−1]]

where b := [[...[[g0, g1], g2], ...], gn−2] is a (n−2)-fold commutator. Note the identity
[a, [b, c]] = [a[b, c]a−1, a−1] = [[aba−1, aca−1], a−1]. So we obtain that

[gn, [b, gn−1]] = [gn[b, gn−1]g−1
n , g−1

n ]

is n-fold commutator.
In conclusion, if a, b are i-fold commutators and c ∈ G, then [ab, c] is a product

of (i+ 1)-fold commutators. �

Lemma 5.15. Let G be a nilpotent group of degree n.

(1) Any subgroup in G is nilpotent of degree at most n.
(2) If G is finitely generated, then [G,G] is a finitely generated nilpotent group

of degree at most n− 1.
(3) If G is finitely generated, then any subgroup in G is finitely generated.

Proof. (1): The statement (1) is clear.
(2):Assume that G is generated by a finite set S. Let X be the set of all m-fold

commutator over S ∪ S−1

[[...[[s0, s2], s3], ...], sm],∀si ∈ S ∪ S−1

where m < n. Then X is a finite set. We claim that X is a generating set for [G,G].
Recall that [G,G] is the group generated by all commutators {[f, g], f, g ∈ G}. It
suffices to show that every [f, g] can be written as a word over S.

Assume that f = s1s2...sk and g = t1t2...tl for si, tj ∈ S ∪ S−1. We apply the
identity

st = [s, t]ts

to [f, g] to get

[f, g] = s1s2...(sk)t1t2...tls
−1
k ...s−1

2 s−1
1 t−1

l ...t−1
2 t−1

l

= s1s2...[sk, t1]t1(sk)t2...tls
−1
k ...s−1

2 s−1
1 t−1

l ...t−1
2 t−1

l

= s1s2...[sk, t1]t1[sk, t2]t2(sk)...tls
−1
k ...s−1

2 s−1
1 t−1

l ...t−1
2 t−1

l

= s1s2...[sk, t1]t1[sk, t2]t2...tl(sk)s−1
k ...s−1

2 s−1
1 t−1

l ...t−1
2 t−1

l .

After finitely times, sk and s−1
k are cancelled in [f, g]. We do the same procedure

to cancel si and s−1
i , tj and t−1

j in [f, g]. In the final form, we have that [f, g] is a
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product of m-fold commutators where m < n, as any i-fold commutator for i ≥ n
is trivial. This proves that [G,G] is generated by X.

(3). Let H be a subgroup of G. Note that H ∩G1 is normal in H, and we have
an injective homomorphism

H/(H ∩G1)→ G/G1.

As G/G1 is abelian and finitely generated, any subgroup in G/G1 is abelian and
finitely generated by Corollary 1.22. Thus, H/(H ∩ G1) is also finitely generated
and abelian.

We use induction on the degree n of a nilpotent group. If n = 1, then G is
abelian. The conclusion follows from Corollary 1.22. Assume now that the (3)
holds for every finitely generated nilpotent group of degree d < n.

Let G be of degree n. Observe that G1 = [G,G] is of degree at most n − 1.
Thus, (H ∩ G1) is finitely generated. By Exercise 1.5, we see that H is finitely
generated. �

Theorem 5.16 (J. Wolf, 1968). A finitely generated nilpotent group has a polyno-
mial growth function.

Proof. Let G be a nilpotent group of degree d generated by a finite symmetric set
1 /∈ S. We use induction on n. When d = 1, it is true by Lemma 5.10. By Lemma
5.15, [G,G] is of degree at most d − 1 and is generated by a finite set X of i-fold
commutators for i < d− 1.

Denote S = {s1, s2, · · · , sm}. We estimate the growth function φ of G with
respect to S.

Let g ∈ S(1, n) and write g = si1si2 · · · sin , where si∗ ∈ S. We apply the identity

st = ts[s−1, t−1]

to the product presentation of g and turn it into a “standard” presentation as
follows:

g = sε11 · · · sεmm h

where |ε1|+ · · ·+ |εm| = n and h ∈ [G,G].
We now show the following claim.

Claim. There exists a constant C > 1 such that h is a word of length at most Cnd

over X. That is, h can be written as a product of at most Cnd generators in X.

Proof of Claim. Let’s see the process of si1si2 ...sin to sε11 ...s
εm
m h. We first move s1

to the left. Suppose, in the worst case, that sin = s1. To move sin to the left, we
need at most n swaps of sin with other generators si∗ . However, in the process, we
produce at most n commutators. We then move s2 to left. In this step, we have to
make at most 2n swaps with either si∗ or 1-fold commutators produced in previous
step.

Observe that after moving n ≥ l ≥ 1 letters to the left, there are at most n · C0
l

letters, n ·C1
l 1-fold commutators, ..., n ·Cil i-fold commutators, ... and n ·Cll l-fold

commutators.
However, for any l ≥ d, every l-fold commutator is trivial. Hence, after moving

all n ≥ 1 letters to the left, we actually have a constant C > 1 such that there are
at most

n · C0
n + n · C1

n + ...+ n · Cd−1
n ≤ Cnd.
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i-fold commutators for i < d in the whole process. In conclusion, we transformed
g = si1si2 ...sin to

g = sε11 ...s
εm
m h

where h is a word of length at most Cnd over X. �

As shown above, G1 = [G,G] is of degree at most d−1. By induction assumption,
the growth function ϕ of G1 with respect to X is polynomial, say ϕ(n) = nk for
some k > 0.

By the claim, h ∈ G1 is a word of length at most Cnd. There are at most
ϕ(Cnd) = Cndk such elements in G1.

On the other hand, there are at most nm elements of form sε11 ...s
εm
m . In fact,

such type of elements can be seen as elements in a free abelian group of rank m,
and thus, the number of such elements of length n is at most nm.

As a consequence, |S(1, n)| contains at most ndk+m elements. It follows that
φ(n) = |B(1, n)| < ndk+m+1. �

Remark. The degree m + dk + 1 in the proof is nevertheless optimal. The Bass-
Guivarc’h formula by Guivarc’h(1971) and Bass(1972) states that the minimal de-
gree of a growth function of G is

d(G) =
∑
k≥0

(k + 1) rank(Gk/Gk+1)

where G = G0 ⊇ G1 ⊇ . . . is the lower central series of G. The rank denotes the
rank of an abelian group Gk/Gk+1.

In 1981, Gromov proves the converse of Theorem 5.16. Given a property P , we
say a group G has virtually property P if G contains a finite index subgroup which
has property P .

Theorem 5.17 (Gromov, 1981). Let G be a finitely generated group of polynomial
growth, then G is virtually nilpotent: G contains a finite index subgroup which is
nilpotent.

Exercise 5.18. Find a non-abelian group but which is virtually abelian, and a
non-nilpotent group but which is virtually nilpotent.

Thus, Theorem 5.17 could not be strengthened to get that G is nilpotent.

5.4. Growth types of groups. Let G be a group with a finite symmetric gener-
ating set 1 /∈ S. Denote Bn = |B(1, n)| the number of elements in the ball B(1, n).
Denote bn = |S(1, n)| the number of elements in the sphere S(1, n).

Definition 5.19. The growth rate of G with respect to S is the following limit

δG = lim
n→∞

n−1 lnBn

Remark. The limit exists because of the sub-multiplicative inequality:

bn+m ≤ bnbm.

Clearly, δG = 0 if G has polynomial growth function. Thus, δG = 0 for any nilpotent
group. On the other hand, δG > 0 for any free group of rank at least 2.
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Exercise 5.20. (1) (Fekete Lemma)Let an be a sequence of positive numbers
such that an+m ≤ an + am. Then

lim sup
n→∞

n−1an = inf{an/n : n ≥ 1}.

(2) Consider the following growth series

θ(z) = b0 + b1z + ...+ bnz
n + ..., z ≥ 0

and
Θ(z) = B0 +B1z + ...+Bnz

n + ..., z ≥ 0

Prove that θ(z) and Θ(z) have the same nature of convergence: θ(z) is
convergent iff Θ(z) is convergent. Their convergence radius is e−δG , and
θ(z) and Θ(z) both diverge at e−δG .

Exercise 5.21. (1) The growth function of a finitely generated group always
dominates that of any finitely generated subgroup.

(2) The growth function of a finitely generated group always dominates that of
any quotient group.

Thus, maximal growth functions that a finitely generated group could have are
exponential functions.

Definition 5.22. Let G be a finitely generated group. Let φ(n) be the growth
function of G.

(1) (Polynomial growth) G has polynomial growth if there exists d ∈ N such
that φ(n) ≺ nd.

(2) (Exponential growth) G has exponential growth if en ≺ φ(n).
(3) (Intermediate growth) G has intermediate growth if G does not belong to

the polynomial and exponential growth types.

Remark. Many classes of groups have either polynomial or exponential growth.
For example, there are no groups of intermediate growth in linear groups (Tits
alternative), in solvable groups (Milnor, Wolf)... However, Grigorchuk constructed
the first group of intermediate growth in 1983, answering a long-standing open
question of Milnor about whether there exist groups of intermediate growth.

Exercise 5.23. A finitely generated group is of exponential growth if and only if
the growth rate with respect to some (or any) generating set is positive.

By Theorem 5.16, virtually nilpotent groups can not contain a free subgroup of
rank at least two. On the other hand, since there exists no relation in a free group,
a free group of rank at least two can not contain a non-cyclic nilpotent group. In a
word, the common intersection of the class of free groups and the class of nilpotent
groups are cyclic groups.

The equivalent class of growth function is a quasi-isometric invariant, cf. Lemma
5.9. However, the growth rate depends on the choice of generating sets.

Define the minimal growth rate δG of a finitely generated group G as follows

δG = inf{δG,S}
where the infimum is taken over all finite generating set S of G.

Exercise 5.24. Let F be a free group of rank n.

(1) Let S be the standard generating set of F . Prove that δF,S = log(2n− 1).
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(2) Let T be a finite generating set of F . Prove that δF,T ≥ log(2n − 1).
Therefore, we see that δF is realized by some generating set: δF = δF,S =
log(2n− 1).

(3) By the second statement, explain that the value of the growth rate is not
invariant under quasi-isometries.

(Tips: Use the epimorphism F → F/[F, F ] to prove that T contains a subset T1

such that |T1| = n and T1 freely generates a subgroup. Here you may want to use
Exercise 2.30.)

Exercise 5.25. Let H,K be two groups with finite generating sets S, T respectively.
Denote by θH and θK be the corresponding growth series of H and K. Then with
respect to S ∪ T , the growth function of the free product Γ = H ?K is given by

θΓ(z) =
θH(z)θK(z)

1− (θH(z)− 1)(θK(z)− 1)
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6. Geometry of finitely generated groups II: Svarc-Milnor Lemma

6.1. Length metric spaces. Let (X, d) be a metric space. Let p : [a, b] → X be
a parameterized continuous path, where a, b ≥ 0. It is called rectifiable if

(7) sup
∑

0≤i≤n

d(p(ti), p(ti+1)) <∞

over all finite partitions {t0 = a, ..., tn = b} of [a, b]. The length Len(p) of p is
defined to be the supremum of the above sum (7) over all possible partitions of
[a, b].

Definition 6.1. Let (X, d) be a metric space. We define an induced metric d̄ called
length metric as follows. Let x, y ∈ X be two points. Then d̄(x, y) is the infimum
of lengths of all possible rectifiable paths between x, y.

If d = d̄, then (X, d) is called a length metric space.

Definition 6.2. A metric space (X, d) is called proper if any closed ball B̄(x, r) at
x ∈ X with radius r ≥ 0 is compact.

Remark. The terminology of a “proper” metric space comes from the continuous
map X → R,

x ∈ X → d(o, x) ∈ R.
A metric space is proper if and only if the above map is proper in the topological
sense: the preimage of a compact set is compact.

Theorem 6.3 (Hopf-Rinow). Let (X, d) be a length metric space. Then (X, d) is
proper if and only if it is a locally compact and complete space.

Remark. The assumption that X is a length metric space is necessary in the direc-
tion “<=”. For example, consider a metric space where the distance between two
distinct points is 1. This metric space is complete and locally compact (every point
is closed and open). But the ball of of radius 1 is not compact, unless it consists of
finitely many points.

Proof. The direction => follows by definition. We prove the other direction.
Fix x ∈ X, we define the real number in [0,∞]

R = sup{r ≥ 0 : B̄(x, r) is compact}.
As X is locally compact, we have R > 0. We argue by way of contradiction. Assume
that R <∞.

We first show that B = B̄(x,R) is compact. We use the following criterion of
compactness: A metric space is compact if and only if it is complete and totally
bounded.

As B is closed in a complete space, it is complete. We now prove that B is totally
bounded. For any ε > 0, we need find a finite set S in B such that B ⊂ Nε(S).

Note that B̄(x,R− ε/3) is compact by definition of R. By totally boundedness,
there exists a finite set S in B̄(x,R− ε/3) such that

B̄(x,R− ε/3) ⊂ Nε/3(S)

Since X is a length metric space, we have

B = B̄(x,R) ⊂ Nε/2(B̄(x,R− ε/3) ⊂ Nε(S).

Thus, B is totally bounded and then compact.
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For any y ∈ B̄, there exists an open ball Uy at y such that Ūy is compact.
By compactness of B, we can find finitely many Uy to cover B, and denote by U
the finite union of Uy. Then there exists ε > 0 such that Nε(B) ⊂ U . Indeed,
consider the continuous function f(x) = d(x,X \ U). By compactness of B̄, ε =
infx∈B{f(x)} > 0 gives the desired constant.

As Ū is closed, we have N̄ε(B) = B̄(x,R + ε) is compact. This gives a contra-
diction to the definition of R. This proves that R =∞. �

6.2. Geodesics. Let p1 : [a, b] → X, p2 : [c, d] → X be two paths. We say p1 and
p2 are equivalent if there exists a continuous and monotonically increasing function
φ : [a, b]→ [c, d] such that p2(φ(t)) = p1(t). Clearly, the length of a path does not
depend on its parameterization.

Define φ : [a, b] → [0,Len(p)] by φ(t) = Len(p[a, t]). Then φ is continuous and
monotonically increasing. We define the length parameterization p̄ : [0,Len(p)] →
X of p as follows. Let s ∈ [0,Len(p)]. There exists t ∈ [a, b] such that Len(p[a, t]) =
s. Set p̄(s) = p(t). Clearly, p̄(s) does not depend on the choice of t. It is also easy
to check that p̄ is continuous.

Note that
Len(p̄[0, s]) = s

where 0 ≤ s ≤ Len(p).
We often use the linear parameterization of p which is defined as

p̂ : [0, 1]→ X, p̂(t) = p̄(Len(p) · t)

Definition 6.4. A path p is called a geodesic if Len(p) = d(p−, p+). Equivalently,
a path is a geodesic if its length parametrization p̄ : [0,Len(p)]→ X is an isometric
map.

A metric space is called a geodesic metric space if there exists a geodesic between
any two points.

We shall prove that a proper length metric space is a geodesic space. In order to
do so, we need the following result, which is a special case of Arzela-Ascoli Theorem.

Lemma 6.5. Let (X, d) be a compact metric space, and pn : [0, 1]→ X a sequence
of linearly parameterized paths with uniformly bounded length. Then

(1) There exists a subsequence pni of pn which uniformly converges to a path
p∞ : [0, 1]→ X.

(2) For any ε > 0, there exists N = N(ε) > 0 such that

Len(p∞) ≤ Len(pni) + ε

for all ni > N .

Proof. (1). Since pn are linearly parameterized paths with uniformly bounded
lengths. Thus, there exists C > 1 (=supermum of lengths) such that

(8) d(pn(t), pn(s)) ≤ C|t− s|
for all n > 0.

We choose a countable dense subset A, for example, the rational numbers, in
[0, 1]. Using a diagonal argument, we obtain a subsequence of {pn}, still denoted
by {pn}, which are convergent on A.

We next show that pn are convergent at any t ∈ [0, 1]. As X is complete, it
suffices to show that {pn(t)} is a Cauchy sequence. Let ε > 0. Choose a ∈ A such
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that |a − t| ≤ ε/4C. As {pn(a)} is convergent, there exists N = N(ε) such that
|pn(a)− pm(a)| ≤ ε/2 for n,m > N . Thus,

(9)
d(pn(t), pm(t)) ≤ d(pn(t), pn(a)) + d(pn(a), pm(a)) + d(pm(a), pm(t))

≤ ε/4 + ε/2 + ε/2 ≤ ε

for n,m > N .
Assume that pn converges pointwise to p∞ : [0, 1]→ X. Thus, by (8), we obtain

(10) d(p∞(t), p∞(s)) ≤ C|t− s|

for t, s ∈ [0, 1].
We now show that pn → p∞ uniformly. Let ε > 0. We want to find N = N(ε)

such that d(pn(t), p∞(t)) ≤ ε for any t ∈ [0, 1] and n > N .
Let M = 4C/ε. We consider the pointwise convergence of pn(t), where t =

i/M, 0 ≤ i ≤M . There exists N > 0 such that

d(pn(i/M), p∞(i/M)) ≤ ε/2, 0 ≤ i ≤M

for n > N .
Thus for each t ∈ [0, 1], there exists |t− i/M | ≤ ε/4C. Hence,

(11)
d(pn(t), p∞(t)) ≤ d(pn(t), pn(i/M)) + d(pn(i/M), p∞(i/M)) + d(p∞(i/M), p∞(t))

≤ ε/4 + ε/2 + ε/2 ≤ ε

for n > N . This proves that pn → p∞ uniformly.
(2). Let {0 = t0, t1, ..., tm = 1} be a finite subdivision of [0, 1] such that

Len(p∞) ≤ ε/2 +
∑

0≤i<m

d(p∞(ti), p∞(ti+1)).

As pn → p∞ uniformly, there exists N = N(ε/(4m)) > 0 such that

d(pn(t), p∞(t)) ≤ ε/(4m)

for any t ∈ [0, 1].
Thus, we have the following

Len(p∞) ≤ ε/2 +
∑

0≤i<m d(p∞(ti), p∞(ti+1))

≤ ε/2 + ε/(4m) · (2m) +
∑

0≤i<m d(pn(ti), pn(ti+1))

≤ ε+ Len(pn).

for any n > N . �

We now prove the following.

Theorem 6.6. A proper length metric space is a geodesic metric space.

Proof. Let x, y ∈ X. As X is a length metric space, there exists a sequence of
rectifiable curves pn between x, y such that Len(pn)→ d(x, y).

Since X is proper, we can assume that pn are contained in a closed ball in X. By
Lemma 6.5, there exists a subsequence of pn uniformly converging to a path p∞.
Then by the second statement of Lemma 6.5, p∞ is a geodesic between x, y. �

Remark. The “proper” assumption is necessary: consider the Euclidean plane minus
the origin with induced length metric. Here, it is not a geodesic space, because it
is not complete. See Theorem 6.3.
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On the other hand, there are non-proper length metric space which are geodesic.
For instance, any (non-locally finite) graph with each edge length 1 is a geodesic
metric space. See [4, Part I] for more examples.

Let fn : X → Y be a sequence of functions. Recall that fn converges locally
uniformly to f∞ if fn|K → f∞|K uniformly on every compact set K ⊂ X. Another
useful result is the following.

Theorem 6.7. Let (X, d) be a proper length metric space. Given o ∈ X, let
pn : [0,∞) be a sequence of length parameterized geodesic rays with the same origin
(pn)− = o. Then there exists a subsequence of pn which converges locally uniformly
to a geodesic ray p∞ : [0,∞) with p∞(0) = o.

Proof. Consider the sequence of compact balls B̄(o, n), n ∈ N. We apply Lemma 6.5
to B̄(o, n). By a diagonal argument, we obtain a subsequence of pn which converges
locally uniformly to a geodesic ray p∞. �

Exercise 6.8. Complete the proof of Theorem 6.7.

6.3. Quasi-isometries.

Definition 6.9. Let φ : (X, dX) → (Y, dY ) be a map between two metric spaces.
Given constants λ ≥ 1, c > 0, φ is called a (λ, c)-quasi-isometric embedding map if
the following inequality holds

(12) λ−1dX(x, x′)− c ≤ dY (φ(x), φ(x′)) ≤ λdX(x, x′) + c,

for all x, x′ ∈ X.
If, in addition, there exists R > 0 such that Y ⊂ NR(φ(X)), then φ is called a

(λ, c)-quasi-isometry. In this case, we also say that X is quasi-isometric to Y .

Remark. When λ, c are clear in context or do not matter, we omit them and just say
φ is a quasi-isometric embedding or a quasi-isometry. In general, a quasi-isometric
embedding φ is not continuous.

We see a few simple examples first.

Examples 6.10. (1) Any two metric spaces of bounded diameter are quasi-
isometric.

(2) The inclusion Zn → Rn is a (1, 0)-quasi-isometric embedding map, where
Zn is equipped with the word metric, and Rn is equipped the usual metric.
In fact, this is a quasi-isometry.

A quasi-isometric embedding map is generally not an injective map or even a
continuous map! However, it is injective on a large scale.

Exercise 6.11. Let φ : X → Y be a (λ, c)-quasi-isometric embedding map. Then
there exists a constant C = C(λ, c) > 0 such that if dX(x, x′) > C, then

dY (f(x), f(x′)) > 0.

Hence, the quasi-isometry can (only) capture the large scale, coarse geometry of
metric spaces.

Let φ : X → Y be a quasi-isometric embedding. A map ψ : Y → X is called a
quasi-inverse of φ if the following hold

dX(φ · ψ(y), y) ≤ R, ∀y ∈ Y.
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for some finite R > 0. It is obvious that if a quasi-isometric embedding admits a
quasi-inverse, then it must be a quasi-isometry. On the other hand, by definition,
a quasi-isometry always admits a quasi-inverse, and any two quasi-inverses are
uniformly bounded.

We prove some useful properties about quasi-isometries.

Lemma 6.12. (1) Let φ : X → Y and ψ : Y → Z be two quasi-isometric
embeddings. Then ψ · φ : X → Z is a quasi-isometric embedding.

(2) Let φ : X → Y be a quasi-isometry. Then any quasi-inverse of φ is a quasi-
isometry ψ : Y → X. So a quasi-isometric embedding is a quasi-isometry
if and only if it has a quasi-inverse.

Proof. We only prove the (2). As φ : X → Y is a quasi-isometry, there exists R > 0
such that

Y ⊂ NR(φ(X)).

That is to say, for any y ∈ Y , there exists x ∈ X such that d(y, φ(x)) < R. By
definition of a quasi-isometric map, we have

(13) Diam(φ−1(y)) ≤ λc.

This gives a (non-canonical) way to define a map ψ : Y → X by ψ(y) = x, where
d(φ(x), y) ≤ R. By definition, ψ is a quasi-inverse of φ. We claim that ψ : Y → X
is a quasi-isometry. By (13), we see that X ⊂ Ncλ(ψ(Y )). Hence, it suffices to
verify that ψ satisfies the inequality (12).

By definition of ψ, we have the following

(14) dY (φ(ψ(y)), y) = dY (φ(x), y) ≤ R

for any y ∈ Y .
As φ is a (λ, c)-quasi-isometric map, we have

dX(ψ(y), ψ(y′)) ≤ λdY (φ(ψ(y)), φ(ψ(y′))) + c ≤ λdY (y, y′) + 2λR+ c.

Similarly, we now verify the other inequality:

dX(ψ(y), ψ(y′)) ≥ λ−1dY (φ(ψ(y)), φ(ψ(y′)))− c ≥ λ−1dY (y, y′)− 2λ−1R− c.

Hence, we proved that ψ : Y → X is a (λ, 2λR+ c)-quasi-isometry. �

We consider the set of all quasi-isometries of X. Two quasi-isometries φ, ψ :
X → X are called equivalent if they differ by a bounded constant: ||φ−ψ||∞ <∞.
Denote by QI(X) the set of equivalent classes of quasi-isometries of X.

Exercise 6.13. The set QI(X) with the composition operation is a group. More-
over, there exists a homomorphism from the isometry group Isom(X) of X into
the group QI(X).

Exercise 6.14. Suppose two metric spaces X,Y are quasi-isometric. Then QI(X)
is isomorphic to QI(Y ) (given by conjugating the isometric actions on X).

As proven in Lemma 5.7, word metrics with respect to two finite generating sets
are bi-Lipichitz. Clearly, a group with word metric is quasi-isometric to its Cayley
graph with induced length metric. So two Cayley graphs with respect to different
generating sets are quasi-isometric. Here, we can actually construct an equivariant
quasi-isometry between them.
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Lemma 6.15. Let G be a finitely generated group with two finite generating sets
S, T . Then there exists a quasi-isometry φ : G (G,S)→ G (G,T ) such that φ(gx) =
gφ(x) for any x ∈ G (G,S).

Proof. Let φ be the identity map on the vertex set: φ(x) = x for x ∈ G. We now
define the value of φ on edges. Each edge e in G (G,S) can be translated by an
element g to an edge adjacent to the identity. We first define the values of φ on the
set Z = {(1, s) : s ∈ S̃} of all edges adjacent to 1. Note that |E| = 2|S|.

For each e = (1, s) ∈ E, we choose a geodesic pe in G (G,T ) such that

(pe)− = 1, (pe)+ = s.

Then φ is defined to map e linearly to pe.
For other edge e′ ∈ G × S̃, there exists g ∈ G such that ge = e′ for e ∈ Z. We

define φ(e′) = gφ(e).
Such defined map φ clearly satisfies φ(gx) = gφ(x) for any x ∈ G (G,S). �

About growth functions, we see that quasi-isometric groups have equivalent
growth functions. In other words, the growth function is a quasi-isometric invariant.

Exercise 6.16. Let G,H be two finitely generated groups with finite generating sets
S, T respectively. Assume that there exists a quasi-isometric map φ : (G, dS) →
(H, dT ). Then the growth function φH of H dominates the growth function φG of
G. In particular, if φ is a quasi-isometry, then φG � φH .

6.4. Svarc-Milnor Lemma. In this subsection, we prove a useful lemma, due to
Svarc and independently Milnor, which gives lots of interesting quasi-isometries
in practice. In some literatures, Svarc-Milnor Lemma is also referred to as the
fundamental lemma of GGT. Before stating the lemma, we need prepare several
notions.

Let G be a group acting by isometries on a metric space (X, d). That is, there
is a homomorphism G→ Isom(X).

Definition 6.17. The action of G on X is called a proper action if the following
set

{g : gK ∩K 6= ∅}
is finite for any compact set K in X. We also say that G acts properly on X.

Remark. The action of G on X is proper if and only if the continuous map

G×X → X ×X, (g, x)→ (gx, x)

is proper in a topological sense. Here, G is equipped with the discrete topology.

Examples 6.18. (1) Zn acts properly on Rn.
(2) Let M be a topological manifold. Then its fundamental group acts properly

on its universal space.
(3) Let G act properly on X. Then any subgroup acts properly on X.

Recall that in a proper metric space, any closed ball is compact. Then G acts
properly on a proper metric space (X, d) iff the set {g : d(x, gx) ≤ n} is finite for
all n ≥ 0, x ∈ X.

Lemma 6.19. Suppose G acts properly on a proper metric space X. Fix x ∈ X.

(1) The point stabilizer Gx = {g : gx = x} is finite.
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(2) The orbit Gx with induced subspace topology is a discrete space.

Remark. The converse is also true, see [11, Theorem 5.3.4] and other characteriza-
tion of proper actions there.

If Gx = {1}, then we say G acts freely on X.

Proof. It is clear that there exists r > 0 such that B(x, r) ∩ B(gx, r) = ∅ for any
g ∈ G. Thus, Gx is a discrete space. �

Definition 6.20. The action of G on X is called co-compact if there exists a
compact subset K in X such that X = G ·K.

Given two group actions of G on metric spaces X,Y , a map φ : X → Y between
X and Y is called G-equivariant if the following holds

φ(g · x) = g · φ(x),∀g ∈ G, x ∈ X.

Lemma 6.21 (Svarc-Milnor Lemma). Suppose G acts properly and co-compactly
on a proper length space (X, d). Then

(1) G is finitely generated by a set S.
(2) Fix a basepoint o ∈ X. Then the map

(G, dS)→ (Go, d), g → go,

is a G-equivariant quasi-isometric map.

The same proof of Svarc-Milnor Lemma can prove the following result. Note that
the assumption of the proper action is only required to obtain a finite generating
set. We call an action of G on a metric space X is co-bounded if there exists a
bounded set K such that G ·K = X.

Exercise 6.22. Suppose G acts by co-boundedly on a proper length space (X, d).
Fix a basepoint o ∈ X. Then there exists a (possibly infinite) generating set S of G
such that the map

(G, dS)→ (Go, d), g → go,

is a G-equivariant quasi-isometric map.

Corollary 6.23. Let G be a finitely generated group. Then any finite index sub-
group is finitely generated and quasi-isometric to G.

By the above corollary, G is quasi-isometric to G×F , where F is finite. Here is
another way to get quasi-isometric groups.

Exercise 6.24. Let

1→ N → G→ Γ→ 1

be a group extension, where G is finitely generated. Assume that N is finite. Then
G is quasi-isometric to Γ.

Examples 6.25. (1) If n 6= m, then Rn is not quasi-isometric to Rm.
(2) All free groups of finite rank at least two are quasi-isometric.

Exercise 6.26. Let n ≥ 3 be an integer. Prove that any two trees with vertices of
degree between 3 and n are quasi-isometric.



50 WENYUAN YANG

6.5. Quasi-isometry classification of groups. Gromov’s Theorem 5.17 implies
that virtually nilpotent groups are preserved by quasi-isometries. In the class of
abelian groups, we have the following result.

Theorem 6.27. Let G be a group quasi-isometric to an abelian group of finite
rank. Then G is virtually abelian.

Proof. The case of rank two can be proven by Bass-Guivarc’h formula (see the
remark after Theorem 5.16) and Gromov’s Theorem 5.17. The general case is
much harder, and out of our scope. �

Let P be a group property. It is called geometric if it is preserved by quasi-
isometries. That is to say, any group quasi-isometric to a group with property P
also has the property P .

For example, the property of being virtual nilpotent, virtual abelian is geometric.
In the next section, we will see more quasi-isometric invariant properties of groups.
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7. Hyperbolic spaces

Let (X, d) be a proper length space. By Lemma 6.6, it is a geodesic space. For
any two points a, b ∈ X, there is at least one geodesic between them. We often
denote by [a, b] a choice of a geodesic between a, b, if there is no ambiguity in
context.

Let p be a path in (X, d). For any two points a, b on p, we denote by [a, b]p the
subpath of p between a, b.

7.1. Thin-triangle property. In (X, d), a geodesic triangle ∆ = ∆(abc) consists
of three geodesics [a, b], [b, c], [c, a]. For δ ≥ 0, a point o ∈ X is called a δ-center of
∆, if d(o, [a, b]) ≤ δ, d(o, [b, c]) ≤ δ, d(o, [a, c]) ≤ δ

Definition 7.1. We say that (X, d) is a δ-hyperbolic space for some δ ≥ 0 if every
geodesic triangle has a δ-center.

Examples 7.2. (1) Bounded metric spaces are δ-hyperbolic, where δ can be the
diameter.

(2) Trees are 0-δ-hyperbolic.
(3) Real hyperbolic spaces are δ-hyperbolic for δ = (log 3)/2.

Definition 7.3. Let a, b, c ∈ X be three points. The Gromov product of a, c with
respect to b is defined as follows:

(a, c)b = (d(a, b) + d(c, b)− d(a, c))/2.

It is straightforward to verify the following:

d(a, b) = (a, c)b + (b, c)a
d(a, c) = (b, c)a + (a, b)c
d(b, c) = (a, b)c + (a, c)b

In a hyperbolic space, the Gromov product obtains the following geometric mean-
ing, which roughly measures the distance of the basepoint b to any geodesic between
a, c.

Lemma 7.4. Let a, b, c be three points in a δ-hyperbolic space. Then the following
holds

d(b, [a, c])− 4δ ≤ (a, c)b ≤ d(b, [a, c])

where [a, b] denotes some geodesic with endpoints a, b.

Proof. See Bowditch’s book [2], Lemma 6.1 and Lemma 6.2. �

Exercise 7.5. Let ∆ = ∆(abc) be a geodesic triangle and o be a k-center for k > 0.
Let x ∈ [a, c] such that d(x, c) = (a, b)c. Then d(x, o) ≤ 6k.

A direct consequence is the stability of geodesics: any two geodesics between
same endpoints are uniformly close.

Corollary 7.6. Let p, q be two geodesics in a δ-hyperbolic space with same end-
points. Then p ⊂ N4δ(q), q ⊂ N4δ(p).

Lemma 7.4 allows us to obtain the stability of a slight general path called taut
path. A path p is called t-taut for some t ≥ 0 if Len(p) ≤ d(p−, p+) + t.
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Lemma 7.7. Let p be a t-taut path for t ≥ 0, and q be a geodesic with same
endpoints as p. Then there exists D = D(t, δ) such that

p ⊂ ND(q), q ⊂ ND(p).

Proof. See Bowditch’s book [2], Lemma 6.4. �

Definition 7.8 (Thin-triangle property). A geodesic triangle has δ-thin property
for some δ ≥ 0 if each side lies in the δ-neighbourhood of the other two sides.

Note that any δ-thin triangle has a δ-center. In fact, a hyperbolic space can also
be characterized by all geodesic triangles being δ-thin.

Lemma 7.9. In a δ-hyperbolic space, any geodesic triangle has the 6δ-thin property.

Proof. See Bowditch’s book [2], Lemma 6.5. �

7.2. Stability of quasi-geodesics. We first derive the exponential growth of a
path outside a ball, which is a consequence of the thin triangle property.

Lemma 7.10 (Exponential divergence). Let p be a rectifiable path between a, b,
and [a, b] denote some geodesic between a, b. Then we have

[a, b] ⊂ ND(p)

where D = 6δ(log2 Len(p) + 1) + 2.

Proof. Let c0 be the middle point of p dividing p in half. We then divide in half the
subpaths [a, c0]p, and [c0, b]p and denote by c1, c2 the corresponding middle points.
We continue to divide until all subpaths are just of length less than 1. So there are
at most log2 Len(p) + 1 divisions.

Let x ∈ [a, b]. By Lemma 7.9, we only need at most log2Len(p) + 1 “6δ-jumps”
from x to a point on a geodesic, which has same endpoints as a subpath in p of
length at most 1. Thus, we obtain d(x, p) ≤ 6δ(log2 Len(p) + 1) + 2. �

Corollary 7.11. There exist constants C1, C2 > 0 with the following property.
Let [a, b] be a geodesic between a and b, and c be a point in [a, b]. Denote r =

min{d(c, a), d(c, b)}. Then any rectifiable path p with p− = a, p+ = b outside the
open ball B(c, r) has length bigger than C1e

C2r.

Proof. Let D = 6δ(log2 Len(p)+1)+2 is given by Lemma 7.10. Then [a, b] ⊂ ND(p).
By assumption, r < D. Thus, the conclusion follows. �

Definition 7.12. A path p in (X, d) is called a (λ, c)-quasi-geodesic for λ ≥ 1, c ≥ 0
if the following holds

Len(q) ≤ λd(q−, q+) + c

for any (connected) subpath q of p.

Remark. The length parametrization of p gives a (λ, c)-quasi-isometric embedding
of the interval [0,Len(p)] in X.

Lemma 7.13 (Stability of quasi-geodesics). For any λ ≥ 1, c ≥ 0, there exists
D = D(δ, λ, c) > 0 with the following property. Let p, q be two (λ, c)-quasi-geodesics
in a δ-hyperbolic space (X, d). Then p ⊂ ND(q).
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Proof. Without loss generality, assume that q is a geodesic. Let x ∈ q such that
d(x, p) is maximal. Denote R = d(x, q). It suffices to give a bound on R.

Since d(x, p) is maximal, it follows that p∩B(x,R) = ∅. If d(q−, x) ≥ 2R, choose
y1 ∈ [q−, x]q such that d(y1, x) = 2R. Otherwise, let y1 = q+(which we call as a
degenerated case). Similarly, choose y2 ∈ [x, q+]q with the same property.

As d(y1, p) ≤ d(x, p), there exists a point z1 ∈ p such that d(y1, z1) ≤ R. In the
degenerated case, we just take z1 = y1 = q−. Similarly, there exists z2 ∈ p such
that d(y2, z2) ≤ R.

We now compose a path connecting y1 and y2: p̄ = [y1, z1][z1, z2]p[z2, y2]. Note
that [yi, zi] intersects trivially B(x,R). Indeed, if not, we arrive a contradiction
with d(yi, x) = 2R. In the degenerated case, we have that [yi, zi] are trivial paths.
Thus, we see that p̄ ∩ B(x,R) = ∅. Then by Lemma 7.10, Len(p̄) ≥ C1e

C2R for
some constants Ci > 0.

On the other hand, Len(p̄) ≤ 2R + Len([z1, z2]p) ≤ 2R + 6Rλ + c. As Ci, λ, c
are fixed, we see that R has to be bounded by an uniform constant D = D(δ, λ, c).
The proof is complete. �

Exercise 7.14. Let p be a path in a hyperbolic space. Given a non-discreasing
function f : R>0 → R>0, let p be a path such that Len(q) ≤ f(d(q−, q+)) for any
subpath q of p. Assume that f is sub-exponential (i.e.: limn→∞ log f(n)/n = 0).
Then p is a quasi-geodesic path.

7.3. Boundedness of δ-centers. A projection of a point a to a path p is a point z
in p such that d(a, z) = d(a, p). Note that a projection point is usually not unique,
but different projection points are uniformly close. This is a useful result we shall
prove now.

Lemma 7.15 (Bounded centers). Let X be a δ-hyperbolic space. For any k > 0,
there exists a constant D = D(δ, k) > 0 with the following property. Let ∆ be a
geodesic triangle with vertices a, b, c, and z be a projection of c to the opposite side.
Then d(o, z) ≤ D for any k-center o.

Proof. We first show the following.

Claim. such a projection point z is a D0-center of ∆ for some uniform constant
D0 > 0.

Proof. Connect c to z, and then z to b by geodesics. We have a path p = [c, z][z, a].
It is a general result without the hyperbolic assumption that p is a (3, 0) quasi-
geodesic. Indeed, it suffices to consider a subpath q with q− ∈ [c, z], q+ ∈ [z, a]. As
d(c, [a, z]) = d(a, z), we have that d(q−, q+) ≥ d(q−, z). Thus, d(q+, z) ≤ 2d(q−, q+).
It follows that Len(q) = d(q+, z) + d(q−, z) ≤ 3d(q−, q+).

By Lemma 7.13, there exists a constantD0 = D(δ, 3, 0) > 0 such that d(z, [a, c]) ≤
D and d(z, [b, c]) ≤ D. That is, z is a D0-center of ∆. �

Let o be a k-center of ∆. Let x ∈ [a, c] such that d(x, c) = (a, b)c. By Exercise
7.5, we have that d(x, o) ≤ 6k. As z is a D0-center of ∆, we have d(x, z) ≤ 6D0.
Hence, d(o, z) ≤ 6(k +D0). �

Corollary 7.16. Let p be a geodesic and x ∈ X a point. Then there exists an
uniform constant D > 0 such that

Diam({z ∈ p : d(x, p) = d(x, z)}) ≤ D.
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7.4. Comparison of triangles. We consider a refined thin-triangle property, which
is based on the idea of comparing triangles in various model spaces.

Let ∆ be a geodesic triangle with sides p, q, r in a proper length space (X, dX).
Two points x, y in ∆ are called congruent if they have the same distance to the
common endpoint of the two sides where lie x, y respectively.

Assume that (Y, dY ) is another proper length space such that there exists a
geodesic triangle ∆′ with sides p′, q′, r′ such that Len(r) = Len(r′),Len(p) =
Len(p′),Len(q) = Len(q′). Such a geodesic triangle will be referred to as a compan-
ion triangle of ∆.

Many proper length spaces have this property that every numbers a, b, c with
a ≤ b + c can be realized by lengths of a geodesic triangle, such as Euclidean
spaces, classical hyperbolic spaces and trees.

There is a natural bijective map φ : ∆→ ∆′ which sends sides of ∆ isometrically
to those of ∆′. We say that ∆ is δ-thinner than ∆′ for some δ ≥ 0 if for any two
congruent points x′, y′ ∈ ∆′, we have dX(φ−1(x′), φ−1(y)) ≤ dY (x′, y′) + δ.

Thus, it is easy to prove the following characterization of δ-hyperbolicity.

Exercise 7.17. Let (X, d) be a δ-hyperbolic space. Then there exists a constant
δ′ > 0 such that every geodesic triangle is δ′-thinner than a companion geodesic
triangle in a tree.

A proper length space is called CAT(0) (resp. CAT(-1)) if every geodesic triangle
is 0-thinner than its companion triangle in Euclidean (resp. classical hyperbolic)
plane. They are important metric spaces in GGT. We refer the reader to [4] for a
through discussion about these spaces.

7.5. Hyperbolicity is a quasi-isometric invariant. We give another definition
of a quasi-geodesic. A parameterized quasi-geodesic is a quasi-isometric embedding
map of a finite or infinite interval of R in (X, d).

The following lemma implies that a parameterized quasi-geodesic can be con-
verted to a continuous quasi-geodeisc without essensal lose.

Lemma 7.18. Let φ : I → X be a (λ, c)-quasi-isometric embedding map, where I
is a finite or infinite interval in R. Then there exist a (λ′, c′)-quasi-geodesic p and
a constant D > 0 such that the following holds

φ(I) ⊂ ND(p), p ⊂ ND(φ(I)).

Proof. Consider the set φ(Z∩ I) of points in X. We connect consecutive points by
geodesic segments and obtain a path p. Then it is straightforward to verify that p
is a quasi-geodesic and satisfies the conclusion. �

Then we obtain that hyperbolicity is a quasi-isometric invariant.

Theorem 7.19. Let X,Y be two proper length spaces. Assume that φ : X → Y is
a quasi-isometry. If X is hyperbolic, then Y is also hyperbolic.

So we can see that for n ≥ 2, Rn cannot be quasi-isometric to a tree or any other
hyperbolic space.

7.6. Approximation trees in hyperbolic spaces. In this section, we prove a
very useful result, which gives a tree-like picture of any finite set in a hyerbolic
space.
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Lemma 7.20. Let X be a hyperbolic space, and F be a finite set. There exists
a constant c = c(|F |) and an embedded tree T ⊂ X with F ⊂ T 0 such that the
following holds

dT (x, y) ≤ dX(x, y) + c.

In other words, there exists an injective (1, c)-quasi-isometric map ι : T → X with
F ⊂ ι(T 0).

Proof. See Lemma 6.7 in Bowditch’s book [2]. The key step is the following.

Claim. For t > 0, let p be a t-taut path and project a point o ∈ X to x ∈ p. Then
q = [o, x][x, p−]p is a t′-taut path for some t′ depending only on t.

Proof. We also project o to y ∈ [p−, p+]. By Lemma 7.13 and δ-thin property, we
can show that d(x, y) ≤ D for some constant D = D(t).

Then Len(q) = d(o, x)+Len([x, p−]p) ≤ d(o, x)+d(p−, x)+t ≤ t+2D+d(o, y)+
d(y, p−).

By the Claim of Lemma 7.15, y is δ-center of the triangle ∆(o, y, p−). Thus
d(o, y) + d(y, p−) ≤ 2δ + d(o, p−). Then we obtain that Len(q) ≤ d(o, p−) + t +
2D + 2δ. This completes the proof. �

The embedded tree T is constructed as follows. List F = {x0, x1, ..., xn−1}. Let
T1 be a geodesic segment between x0, x1. Inductively, the tree Ti is defined by
adding a new branch, which is obtained by connecting xi and a projection point of
xi to Ti−1. In each step, every path in Ti is a t-taut path for some t = t(i) given
by the Claim. Thus, T = Tn is the tree we wanted. �

The proof of the above Claim generalizes in the following exercise.

Exercise 7.21. Let p be a (λ, c)-quasi-geodesic in a geodesic metric space X. For
a point x ∈ X, let z be a projection point of x to p. Then [x, z][z, p+]p is a (λ′, c′)-
quasi-geodesic for λ′ ≥ 1, c′ ≥ 0 depending on λ, c.

We now come to the original definition of a hyperbolic space due to Gromov.

Lemma 7.22. Suppose (X, d) is a hyperbolic space. Then there exists δ > 0 such
that the following holds

(15) d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}+ δ

for any four points x, y, z, w ∈ X.
Equivalently, (15) is amount to saying that

(16) (x, y)w ≥ min{(x, z)w, (y, z)w} − δ/2.

Proof. The proof is clear by considering the approximation tree of four points. �

Exercise 7.23. Try to prove the converse of Lemma 7.22: Suppose (X, d) satisfies
the (15), then (X, d) is δ-hyperbolic.
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8. Boundary of hyperbolic spaces

In this section, we introduce a visual boundary of a proper hyperbolic space
which as a set consists of all (equivalent) geodesic rays. We shall put a compact
topology and also a visual metric on this boundary.

8.1. Asymptotic classes of geodesic rays.

Definition 8.1. Let p, q : [0,∞) → X be two geodesic rays. We say that p, q are
asymptotic if there exists D > 0 such that p ⊂ ND(q).

Clearly, the asymptotic relation is an equivalent relation over all geodesic rays.
In what follows, we use the following estimates:

(1) δ-thin triangle property: any side of a triangle is contained in the δ-
neighborhood of the union of the other two sides.

(2) Let p, q are two geodesic segments originating from the same point p− =
q− = o. If x ∈ p and y ∈ q have the same distance to o and d(x, p+) >
d(p+, q+) then d(x, y) ≤ 2δ.

Lemma 8.2 (Uniformity of asymptotic rays). Let p, q be two asymptotic geodesic
rays. Then there exist t0, s0 > 0 such that

p([t0,∞)) ⊂ N4δ(q([s0,∞)))

and
q([s0,∞)) ⊂ N4δ(p([t0,∞)))

If p, q has the same initial point p− = q−, then we can choose s0 = t0 = 0:
p ⊂ N4δ(q) and q ⊂ N4δ(p).

Proof. Since p, q are asymptotic, we have p ⊂ ND(q) for some D > 0. Set

t0 = d(p−, q−) +D + 4δ.

First of all, we observe that for any t ≥ t0, p(t) ∈ N2δ(q). Since p ⊂ ND(q),
there exists s ∈ [0,∞) such that d(p(2t), q(s)) ≤ D. We consider the quadrangle

[p−, q−] · [q−, q(s)]q · [q(s), p(2t)] · [p(2t), p−]p.

Since a quadrangle has 2δ-thin property, we have

p(t) ∈ N2δ([p−, q−] · [q−, q(s)]q · [q(s), p(2t)]).
As d(p(t), p−), d(p(t), p(2t)) ≥ t ≥ t1, we see that p(t) ∈ N2δ([q−, q(s)]q). The
observation follows.

By the observation, we can choose a sequence of increasing numbers t0 < t1 <
· · · tn →∞ and s0 < s1 < · · · sn →∞ such that

d(p(tn), q(sn)) ≤ 2δ

for any n ≥ 0.
Using again 2δ-thin quadrangles, we conclude that

[p(tn), p(tn+1)] ⊂ N4δ([q(sn), q(sn+1)])

thus p([t0,∞)) ⊂ N2δ(q([s0,∞))) is proved. The other inclusion is analogous. �

Fix a basepoint o ∈ X, let ∂oX be the set of all equivalent classes of asymptotic
geodesic rays issuing at o. We can also think of every point x ∈ X as the set of all
geodesic segments between o and x. Denote X̄o = X ∪ ∂oX.
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8.2. Topological boundary: Gromov boundary. We shall describe two euiva-
lent topologies on X̄o such that X̄o is a compactification of X: X is an open dense
subset in X̄o.

1. The first topology defined by neighbourhood base. For every point x
in X̄o, we assign a countable neighbourhood base Vx.

For x ∈ X, we let Vx be the neighbourhood base under the original topology of
X. For example, Vx = {B(x, n−1) : n ∈ N}.

Let x ∈ ∂∞o X be an equivalent class of geodesic rays. Fix a big integer k > 12δ.
Define

Ux,n = {y ∈ X̄o : ∃c′ ∈ y,∃c ∈ x, d(c(kn), c′(kn)) < 4δ}
for every n ∈ N.

Let Vx = {Ux,n : n ∈ N}. Given a neighborhood base Vx, we denote by Ṽx the
generated neighborhood system of x, which consists of all sets of X containing an
element in Vx.

We are verifying the following properties of the neighborhood system Ṽx.

Lemma 8.3. (1) Let U, V ∈ Ṽx. Then U ∩ V ∈ Ṽx.

(2) Let U ∈ Ṽx. Then there exists V ∈ Ṽx such that V ⊂ U and U ∈ Ṽy for
any y ∈ V .

Proof. Note first that Ux,n+1 ⊂ Ux,n. Indeed, if y ∈ Ux,n+1 there exists c′ ∈ y and
c ∈ x such that

d(c(kn+ n), c′(kn+ n)) ≤ 4δ.

Consider the geodesic triangle with vertices o, c(kn+n), c′(kn+n). Since d(c(kn+
n), c(kn)) = k ≥ 8δ, we have d(c(kn), c′(kn)) ≤ 2δ by δ-thin triangle. Thus,
y ∈ Ux,n. The first statement is then obvious.

Assume that U = Ux,n. We shall prove that V = Ux,n+1 is the desired set. If
y ∈ V , then there exist c ∈ x and γ ∈ y such that

d(c(kn+ k), γ(kn+ k)) ≤ 4δ.

If z ∈ Uy,n+1, then there exist β ∈ z and γ′ ∈ y such that

d(γ′(kn+ k), β(kn+ k)) < 4δ.

By Lemma 8.2, we have d(γ′(kn+ k), γ(kn+ k)) < 4δ for [γ] = [γ′], so

d(γ(kn+ k), β(kn+ k)) < 8δ.

Then d(c(kn + k), β(kn + k)) ≤ 12δ. We now apply the thin-triangle property to
triangle (o, c(kn + k), β(kn + k)). Since k ≥ 12δ ≥ d(γ(kn + k), β(kn + k)), we

obtain d(c(kn), β(kn)) ≤ 2δ. So Uy,n+1 ⊂ Ux,n. Hence, Ux,n ∈ Ṽy. �

We define a set S in X̄o to be open if S ∈ Ṽx for every x ∈ S. The first statement
of Lemma 8.3 implies that such a topology is well-defined. The second statement
implies that

Corollary 8.4. Vx is a neighborhood base of the topology we constructed.

Proof. It suffices to prove that every U ∈ Vx contains an open subset x ∈ Z. Let
Z be the set of z ∈ X such that U ∈ Ṽz. Clearly, x ∈ Z, and in fact, Z ⊂ U . We
now prove that Z is open: Z is a neighborhood of every point in it.

Let z ∈ Z. As U ∈ Ṽz, by Lemma 8.3, there exists V ∈ Ṽz such that V ⊂ U
and U ∈ Ṽy for any y ∈ V . Thus, V ⊂ Z by definition of Z. Since V ∈ Ṽz, we

have Z ∈ Ṽz. Hence, Z is an open set. �
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2. The second topology defined by sequence convergence. Alternatively,
we can define the topology on X̄o by the following convergence of sequences:
xn → x ∈ X̄o iff there exists a sequence of geodesic rays (or segments) cn in (the

equivalent class of) xn originating from o so that cn converges locally uniformly to
a geodesic ray or segment c in (the equivalent class of) x.

Thus, a set S is closed iff S contains the limit point of every convergence sequence
in S.

Lemma 8.5. The two topologies on X̄o coincide.

Proof. Assume that X̄o is equipped with the first topology generated by neighbor-
hood systems Ṽx. We have to verify that xn → x ∈ X̄o in the first topology is
equivalent to the following statement:

there exists a sequence of geodesic rays (or segments) cn in (the equivalent class
of) xn originating from o so that cn converges locally uniformly to a geodesic ray
or segment c in (the equivalent class of) x.

This equivalence follows easily from the definition of Ux,n. Thus, (open sets of )
the first topology contains (open sets of) the second topology.

Conversely, assume that X̄o is equipped with the topology generated by conver-
gence xn → x ∈ X̄o. Note that the complement U cx,n consists of y ∈ X̄o such that
for any c′ ∈ y and any c ∈ x, we have d(c(kn), c′(kn)) ≥ 4δ. Thus, any conver-
gence sequence yn ∈ U cx,n converges locally uniformly to a geodesic ray c′ so that
d(c(kn), c′(kn)) ≥ 4δ for any c ∈ x. As a consequence, U cx,n is closed, and Ux,n is
open in this topology. Thus, (open sets of ) the second topology contains (open
sets of) the first topology. �

Lemma 8.6. Let X̄o be endowed with the first or second topology. Then X̄o is a
compactification of X.

Proof. The topology on X̄o is first countable by definition: every point has a count-
able neighbourhood base. Clearly, X is an open subset in X̄o, and the induced
topology on X agrees with the original topology of X. It is also dense: for any
point x ∈ ∂oX, the sequence of points c(n) converges to x.

We now prove that X̄o is compact. It suffices to prove that ∂oX is compact.
Indeed, let U be an open cover of X̄o. If ∂oX is proven to be compact, there exists
a finite open sub-cover V of ∂oX. Note that X \ ∪V is a bounded set. Indeed, if
not, there exists a sequence of points xi ∈ X \∪V such that d(o, xi)→∞. Consider
the geodesics [o, xi]. By Arzela-Ascoli Lemma 6.5, there exists a subsequence still
denoted by xi, which converges to a geodesic ray c with c(0) = o. Thus, xi → c ∈
∂oX. This gives a contradiction, as xi lies in the closed set X \ ∪V.

As X is a proper space, X \ ∪V is a compact set. Thus, we see that there exists
finite a sub-cover of X̄o. Thus, we proved that X̄o is compact, provided that ∂oX
is compact. We show below that ∂oX is compact.

Recall that for a first countable metrizable space, compactness is equivalent to
sequentially compactness.

By Arzela-Ascoli Lemma 6.5, it is easy to see that ∂oX is sequentially compact.
Since ∂oX is metrizable (a result proven in Lemma 8.15 below), we see that ∂oX
is compact. �

Let o, o′ be two basepoints in X. Define a bijection ι between X̄o and X̄o′ as
follows. Let ι be the identification on X. For any x ∈ ∂oX, let c : [0,∞) → X
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be a geodesic ray in X. Consider the sequence of geodesics pn = [o′, c(n)]. By
Arzela-Ascoli Lemma 6.5, there exists a subsequence of pn which converges to a
geodesic ray c′ with c′(0) = o′. Define ι(x) = [c′] ∈ ∂o′X.

Exercise 8.7. Verify that ι : X̄o → X̄o′ is well-defined and bijective, and prove
that ι is a homeomorphism.

Therefore, the topology on X̄o does not depend on the choice of the basepoint
o ∈ X. In the sequel, we will omit the index o for simplicity. We call ∂X the
Gromov boundary of the hyperbolic space.

Let x ∈ X, y ∈ ∂X. If a geodesic p with p− = x is asymptotic to a geodesic
ray in y, we say that p ends at y and write p+ = y. A geodesic with endpoints
x, y ∈ ∂X is defined similarly.

The following property is usually referred as visual property of boundary. It is
of a particular feature in a hyperbolic space.

Lemma 8.8 (Visibility of boundary). In a hyperbolic space X, there exists a geo-
desic between any two distinct x, y ∈ X̄.

Proof. If both x, y are in X, the conclusion follows as X is a proper length space.
Consider x ∈ X, y ∈ ∂X. There exists a geodesic p in y. We connect x and

p(n) by a geodesic qn. By Arzela-Ascoli Lemma 6.5, there exists a subsequence of
qn converging to a geodesic ray q∞. By thin triangle property, we see that q∞ is
equivalent to p.

Now assume that x, y ∈ ∂X. Fix a basepoint o. By the above argument, there
exist geodesic rays p, q with p− = q− = o and p+ = x, q+ = y. Connect p(n) and
q(n) by a geodesic segment rn.

We now prove the following claim.

Claim. There exists a constant D = D(x, y) > 0 such that

d(o, rn) ≤ D

for all n > 0.

Proof. Suppose to the contrary that there exists ni → ∞ such that d(o, rni) > i.
By the thin-triangle property, we obtain that d(p(i), q(i)) ≤ δ for all i ≥ 0. This
gives a contradiction, as x 6= y. �

By Arzela-Ascoli Lemma 6.5 and the Claim, we see that a subsequence of rn
converges to r∞ with d(o, r∞) ≤ D. It is also clear that each half-ray of r∞ is
asymptotic to either x or y. �

We can now consider a geodesic triangle with vertices at boundary. It is easy to
verify the following.

Exercise 8.9. Let X be a hyperbolic space. There exists δ > 0 such that any
geodesic triangle with vertices x, y, z ∈ X̄ has δ-thin triangle property.

8.3. Gromov boundary of any hyperbolic metric spaces. Using sequences,
we are able to define Gromov boundary for (possibly non-geodesic, non-proper)
hyperbolic metric space.

Let X be a hyperbolic metric space defined by using the four-points condition.



60 WENYUAN YANG

Definition 8.10. A sequence (xn) in X converges at infinity if (xi, xj)o → ∞ as
i, j → ∞. Two such sequences (xn), (yn) are called equiavlent if (xi, yj)o → ∞ as
i, j → ∞. The Gromov boundary ∂sX of X is the set of all equiavlent classes of
sequences converging at infinity.

See also [4, Chapiter III.H.3] for a discussion about the details.

Exercise 8.11. [4, Ch. III, Lemma 3.13] If X is a proper geodesic hyperbolic space,
there exists a natural bijection from ∂sX to ∂X.

8.4. Visual metric on the boundary. In this subsection, we shall put a metric
on ∂X = ∂oX to metrize the topology introduced in the previous subsection.

For two distinct x, y ∈ ∂X, we define d(o, [x, y]) = d(o,A), where A is the union
of all geodesics between x, y. The following exercise certifies this definition.

Exercise 8.12. Let A be the union of all geodesics between x, y. Then A ⊂ N10δ(p)
for any geodesic p = [x, y].

So the inequality (16) in Lemma 7.22 proves the following.

Lemma 8.13. There exists δ > 0 such that the following holds

(17) d(o, [x, y]) ≥ min{d(o, [x, z]), d(o, [y, z])} − δ
for any distinct x, y, z ∈ X̄ and o ∈ X.

We first define a “quasi-metric” on X̄ = X ∪ ∂oX as follows. Fix a ∈ (0, 1] and
a basepoint o ∈ X. For any two distinct x, y ∈ X̄, set

ρ̄a(x, y) = e−ad(o,[x,y])

for λ ∈ (0, 1). Then by Lemma 8.13, we have

(18) ρ̄a(x, y) = ρ̄a(y, x)

(19) ρ̄a(x, y) ≤ K max{ρ̄a(y, z), ρ̄a(x, z)}
for x, y, z ∈ X̄ and K = eaδ. If x = y, we define ρ̄a(x, y) = 0.

It is useful to cite the following general result which holds for any quasi-metric
satisfying the condition (18, 19). The proof is elementary and elegant.

Lemma 8.14. Let ρ̄ : M ×M → R≥0 a function satisfying (18, 19) with 1 ≤ K ≤√
2. Then there exists a metric ρ on M such that

ρ̄(x, y)

K
≤ ρ(x, y) ≤ ρ̄(x, y)

for any x, y ∈M .

Proof. Define

ρ(x, y) = inf{
n∑
i=1

ρ̄(xi, xi+1)}

over all finite sequences (x0 = x, x1, · · · , xn+1 = y) in M . Thus, ρ(x, y) is a metric
on M satsifying triangle inequality etc. Note that ρ̄(x, y) ≤ ρ(x, y). It remains to
prove ρ̄(x, y) ≤ Kρ(x, y). We shall prove that

ρ̄(x, y) ≤ K
n∑
i=1

ρ̄(xi, xi+1)
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for every finite sequences. We proceed by induction on the length of sequences.
The case n = 1 follows from (19): ρ̄(x, y) ≤ K max{ρ̄(y, z), ρ̄(x, z)}.

Assume that the case n is verified:

(20) ρ̄(x, y) ≤ K
n∑
i=1

ρ̄(xi, xi+1)

Now let us prove the case for sequences (x0 = x, x1, · · · , xn+1, xn+2 = y) of length

n+ 1. Let R =
∑n+1
i=1 ρ̄(xi, xi+1). The goal is to prove ρ̄(x, y) ≤ KR.

Let p be the maximal index such that

p∑
i=1

ρ̄(xi, xi+1) ≤ R/2

It is possible that ρ̄(xp, xp+1) ≤ R, but we have

n+1∑
i=p+1

ρ̄(xi, xi+1) ≤ R/2

Now we have

ρ̄(x, y) ≤ K max{ρ̄(x, xp), ρ̄(xp, y)}
≤ K max{ρ̄(x, xp),Kρ̄(xp, xp+1),Kρ̄(xp+1, y)}
≤ K max{KR/2, R,K2R/2}
≤ KR

where the first two inequalities follow from (19), the third one uses indution (20)
on n to ρ̄(x, xp) and ρ̄(xp, y), and the last one follows by K2 ≤ 2. The proof is
complete. �

Thus, we choose a ∈ (0, 1] small enough such that eaδ ≤
√

2 (there is a critical
value a0 such that any a ∈ (0, a0] works). Then we get a metric ρa on X̄ by Lemma
8.14 such that

(21) ρ̄a(x, y)/2 ≤ ρa(x, y) ≤ ρ̄a(x, y)

Lemma 8.15. The induced topology on ∂X by ρ is the same as the topology defined
in previous subsection.

Proof. It can be verified by showing that every U ∈ Vx contains an open ball B at
x, and each open ball B at x contains some U ∈ Vx. �

Remark. The induced topology on X from the metric ρ is discrete, so it may not
be same as the original one on X. However, we can choose a maximal net of X,
for instance, the vertex set if X is a Cayley graph. Then this construction of visual
metric works for the restricted metric on the net. In this situation, the metric
topology on the net coincides with discrete topology.

8.5. Boundary maps induced by quasi-isometries on boundaries. We shall
first prove that a quasi-isometry induces a homeomorphism called boundary map
between Gromov boundaries of two hyperbolic spaces. With respect to visual met-
ric, the boundary map satisfy very good properties called quasi-symmetric map.

We start with a few useful facts about how Gromov products transform under
quasi-isometries.
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Let X be a metric complete space and A be a closed subset. Let πA : X → A
be the projection map sending a point to the closest point on A:

d(πA(x), A) = d(x,A).

If γ is a geodesic (more generally any quasi-convex subset), then the closest
projection map πγ commutes with quasi-isometry up to finite additive error:

Exercise 8.16. Let φ : X → Y be a (λ, c)-quasi-isometry between two proper
geodesic δ-hyperbolic spaces X,Y . Let γ be a geodesic. Prove that there exists a
constant D = D(λ, c, δ) such that for any point x ∈ X,

dH(φ(πγ(x)), πφγ(φ(x))) ≤ D
where dH denotes the Hausdorff distance.

Let F be a finite set of points in a δ-hyperbolic space X. An embedded tree
T ⊂ X is called approximation tree of F if F ⊂ T 0 are leaves of T (vertices of
valence 1) and

dT (x, y) ≤ dX(x, y) + c

where c depends only on |F |, δ. The approximation tree exists by Lemma 7.20.
The following result says that quasi-isometries preserves the structure of approx-

imation trees.

Proposition 8.17. Let φ : X → Y be a (λ, c)-quasi-isometry between two proper
geodesic δ-hyperbolic spaces X,Y . Let F be a finite set in X. There exist a constant
D depending on λ, c, δ, |F | and two combinatorially isomorphic approximation trees
T1 ⊂ X for F and T2 ⊂ Y with φF ⊂ Y such that φ coarsely preserves their
combinatorial structures of T1, T2:

(1) φ sends the leaves F of T1 to leaves φF of T2

(2) φ sends vertices T 0
1 into the D-neighborhood of the corresponding vertices

T 0
2 .

Proof. We follow the proof of Lemma 7.20 to construct approximation trees T1, T2

for F and φ(F ).
Recall that approximation tree for F = {x0, x1, · · · , xn} is obtained as follows:

starting with a geodesic segment between two points x0, x1 in F , drop inductively
an orthogonal from xi to the existing subtree Ti. We do the construction for
φF = {φx0, φx1, · · · , φxn} simutaneously by dropping orthogonals from φxi to the
existing subtree T ′i .

By Exercise 8.16, the projections from xi to Ti is sent by φ into a D-neighborhood
of the projection of φxi to T ′i . The proof is thus complete. �

By examining the triangles (three points) and quadrangles (four points), we
obtain the following corollay from Proposition ??.

Lemma 8.18. Let f : X → Y be a (λ, c)-quasi-isometric embedding between two δ-
hyperbolic spaces. Then there exists C = C(λ, c, δ) > 0 such that for any x, y, z, w ∈
X and their images x′ = f(x), y′ = f(y), z′ = f(z), w′ = f(w) ∈ Y :

(1) λ−1〈x, y〉z − C ≤ 〈x′, y′〉z′ ≤ λ〈x, y〉z + C
(2) Let Sw(x, y, z) = 〈x, y〉w−〈x, z〉w and Sw′(x

′, y′, z′) = 〈x′, y′〉w′−〈x′, z′〉w′ .
Then

λ−1|Sw(x, y, z)| − C ≤ |Sw′(x′, y′, z′)| ≤ λ|Sw(x, y, z)|+ C
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(3) If Sw(x, y, z) > 0, then

λ−1Sw(x, y, z)− C ≤ Sw′(x′, y′, z′) ≤ λSw(x, y, z) + C

Theorem 8.19. Let X,Y be two hyperbolic spaces. Assume that there exists a
quasi-isometry between X and Y . Then the Gromov boundary of X is homeomor-
phic to that of Y .

Proof. Let φ be a quasi-isometry between X and Y . Fix a basepoint o ∈ X. Let
∂X be the set of all equivalent classes of geodesic rays issuing at o, and ∂Y be the
set of all equivalent classes of geodesic rays issuing at φ(o).

First we see that there exists a bijection Φ := ∂φ between ∂X and ∂Y . Let p
be a geodesic ray ending at p∞ ∈ ∂X. Then φ(p) is a quasi-geodesic ray. Apply
Arzela-Ascoli Lemma 6.5 to [φ(o), φ(p(n))]. We obtain a geodesic ray q ending
at q∞ ∈ Y∞. Note that q ⊂ ND(φ(p)), φ(p) ⊂ ND(q) for some uniform constant
D > 0. Define Φ(p∞) = q∞.

Clearly, Φ is well-defined. Moreover, it is bijective. Let Φ(p∞) = Φ(p′∞) for
p∞, p

′
∞ ∈ ∂X. Then q, q′ are asymptotic in Y . Since φ(p) ⊂ ND(q), φ(p′) ⊂ ND(q′),

we see that each of φ(p) and φ(p′) lies in a uniform neighborhood of the other one.
By the quasi-isometry, it follows that p, q are asymptotic. This proves that Φ is
injective. Surjectivity is similar by using quasi-inverse of φ.

Using visual metrics, it is also easy to see it is a homeomorphism. It suffices
to verify that Φ is continuous. We use sequences. Let xn → x ∈ ∂X. Then
d(o, [xn, x]) → ∞. Suppose that Φ(xn) does not converge to Φ(x). Then there
exists a subsequence of xn such that d(φ(o), [Φ(xn),Φ(x)]) ≤ L for an uniform
constant L. This leads to a contradiction with the first statement of Lemma 8.18.
So Φ(xn) converges to Φ(x), proving that Φ is a homeomorphism. �

We now procced to prove the boundary maps are quasi-conformal and quasi-
symmetric maps.

Definition 8.20. An embedding f : X → Y is called quasi-symmetric if there
exists a homeomorphism η : [0,∞)→ [0,∞) so that

|x− a| ≤ t|x− b| ⇐ |f(x)− f(a)| ≤ η(t)|f(x)− f(b)|

for all triples (a, b, x) of points in X and for all t > 0.

Remark. If

f(t) =

{
λt1/α, ∀t ∈ (0, 1);

λtα, ∀t ≥ 1

then f is called (λ, α)-power quasi-symmetric .

Theorem 8.21. Let φ : X → X be a quasi-isometry between hyperbolic spaces.
Then the induced map ∂φ : ∂X → ∂X is a quasi-symmetric map with respect to
visual metric.

Proof. Let t = ρa(x,y)
ρa(x,z) . Since 1/2e−a〈x,y〉w ≤ ρa(x, y) ≤ e−a〈x,y〉w by (21) we have

t/2 ≤ e−a〈x,y〉w/e−a〈x,z〉w ≤ 2t.

Recall that Sw(x, y, z) = 〈x, y〉w − 〈x, z〉w. Thus,

(22) − log 2t ≤ aSw(x, y, z) ≤ − log t/2.
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Case 1. t ≤ 1/2. Then aSw(x, y, z) ≥ − log 2t ≥ 0 by (22). By Lemma 8.18,
there exists C = C(λ, c, δ) such that

aSw′(x
′, y′, z′) ≥ aλ−1Sw(x, y, z)− Ca ≥ λ−1(− log 2t)− Ca.

Hence,

ρa(x′, y′)

ρa(x′, z′)
≤ 2e−a〈x

′,y′〉w′

e−a〈x′,z′〉w′
≤ 2e−aSw′ (x

′,y′,z′) ≤ 2eCa(2t)1/λ.

Case 2. t ≥ 1/2. Note that{
log 2t ≤ | log t/2| : 1/2 ≤ t ≤ 1

log 2t > | log t/2| : t ≥ 1
.

Thus, (22) implies

|aSw(x, y, z)| ≤

{
| log t/2| : 1/2 ≤ t ≤ 1

log 2t : t ≥ 1
.

By Lemma 8.18, we have

a|Sw′(x′, y′, z′)| ≤ aλ|Sw(x, y, z)|+ Ca ≤ λmax{log 2t, | log t/2|}+ Ca

for t ≥ 1/2. Hence,

ρa(x′, y′)

ρa(x′, z′)
≤ 2e−a〈x

′,y′〉w′

e−a〈x′,z′〉w′
≤ 2e−aSw′ (x

′,y′,z′) ≤

{
2eCa(2/t)λ : 1/2 ≤ t ≤ 1

2eCa(2t)λ : t ≥ 1
.

Therefore, ∂φ is η-quasi-symmetric, where

η(t) =


2eCa(2t)1/λ : t ≤ 1/2

2eCa(2/t)λ : 1/2 ≤ t ≤ 1

2eCa(2t)λ : t ≥ 1

Since the term 2eCa(2/t)λ is bounded by a constant C0 for t ∈ [1/2, 1], we can
choose

η(t) =

{
C0t

1/α : t ≤ 1

C0t
α : t ≥ 1

so that ∂φ is power quasi-symmetric. �

Definition 8.22. A homeomorphism f : X → Y is called quasi-conformal if there
exists a constant H so that

lim sup
r→0

supd(x,y)=r d(f(x), f(y))

infd(x,y)=r d(f(x), f(y))
≤ H <∞

forall x in X.

Remark. A homeomorphism f : R → R is quasi-conformal if it is everywhere
differentiable with nonzero derivative.

However, for X = Y = Rn with n ≥ 2, it is a fundamental fact in the the-
ory of quasiconformal maps that quasi-conformal maps are quasi-symmetric, which
appears to be a global condition.

It is much easier to prove quasi-conformality of the boundary map.
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Theorem 8.23. Let φ : X → X be a quasi-isometry between hyperbolic spaces.
Then the induced map ∂φ : ∂X → ∂X is a quasi-conformal map with respect to
visual metric.

8.6. Gromov boundary of free groups. Let F be a free group generated by
a finite set X. The Gromov boundary of F consists of all infinite reduced words
over X̃. This is a susbet of the product X̃N. We equip X with discrete topology.
Then the product X̃N is a compact space by Tychonoff’s theorem. Then Gromov
boundary of F is a closed subset and thus compact.

We can also define a metric on ∂F . Let w1, w2 be two infinite words. Define
ρ(w1, w2) = e−n, where n is the maximal length of a common initial subword u of
w,w′, i.e.: w1 = uw′1 and w2 = uw′2.

It is easy to verify that ρ is a metric and the induced topology agrees with the
subspace topology from X̃N.

It can be verified that ∂F is totally disconnected, and has no isolated points.
Such a space is homeomorphic to a Cantor set.
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9. Hyperbolic groups

9.1. Finite order elements.

Definition 9.1. A finitely generated group G is called hyperbolic if there exists a
finite generating set S such that the Cayley graph G (G,S) is δ-hyperbolic for some
δ ≥ 0.

Remark. Since hyperbolicity is a quasi-isometric invariant (see Theorem 7.19), we
see that the definition of a hyperbolic group does not depend on the choice of a
generating set.

Definition 9.2. Let L, λ, c > 0. A path p in X is called a L-local (λ, c)-quasi-
geodesic if every subpath of p with length L is a (λ, c)-quasi-geodesic.

In hyperbolic spaces, a local quasi-geodesic turns out to be a global quasi-
geodesic in the following sense. Its proof is not easy, we refer to [4, Page 405]
for a proof.

Lemma 9.3 (Local=>Global). For any λ, c > 0, there exist L0 > 0 and λ′, c′ > 0
with the following property.

Fix any L > L0. Let γ be a L-local (λ, c)-quasi-geodesic. Then γ is a (λ′, c′)-
quasi-geodesic.

A particular interesting case in what follows is that a L-local geodesic path will
be a global quasi-geodesic for large L.

Corollary 9.4. There exists L0, λ, c > 0 such that for any L > L0, any L-local
geodesic path is a (λ, c)-quasi-geodesic.

Theorem 9.5. In a hyperbolic group, there are only finitely many conjugacy classes
of finite order elements.

Proof. Assume that G is a hyperbolic group. Then there exists a finite generating
set S such that G (G,S) is a δ-hyperbolic space for δ > 0.

Let g be an element in G. We consider all the elements H of G which is conjugate
to g. Choose h ∈ H such that d(1, h) = d(1, H). Then h is a shortest element in
H to 1. Let p be a geodesic path between 1, h. Denote by w the label of p, which
is a word in F (S) representing h.

We consider a path q labeled by the word wn for some n. We can write q =
p1p2...pn, where each pi is labeled by a word w, in other words, is a translated copy
of p.

We have the following general fact

Claim. q is a |w|-local geodesic.

Proof. Indeed, if not, there exists x, y ∈ q such that Len([x, y]q) = |w| and d(x, y) <
|w|. Without loss of generality, we assume that x ∈ p1, y ∈ p2. Let w1 be the label
of the subsegment of p1 from x to (p1)+, w2 the label of the subsegment of p2 from
(p1)+ to y. Since |w1|+|w2| = |w|, we see that w = w2w1. Then w = w−1

1 (w1w2)w1

is conjugate to w1w2. Note that w1w2 represents an element of length d(x, y) < |w|.
This gives a contradiction to the choice of w, which has the minimal length among
all the words representing elements in H. �

Let L0 be the constant given by applying Corollary 9.3 to a local geodesic path.



NOTES ON GEOMETRIC GROUP THEORY 67

Now assume that g has finite order n. Then by the claim, q is a |w|-local geodesic.
By Lemma 9.3, we see |w| < L0. If not, q is a global quasi-geodesic by Lemma 9.3.
In particular, this implies that q− 6= q+. But q starts as 1 and ends at gn = 1. So
this is a contradiction.

Thus, we have proved that some conjugate h of g lies in the ball B(1, L0). Since
G (G,S) is proper, this claim implies that any finite order element can be conjugated
into a finite ball. This clearly proves the theorem. �

Remark. The conclusion can be strengthened that there are only finitely many
conjugacy classes of finite subgroups in a hyperbolic group.

9.2. Cone types and finite state automaton. Assume that G is generated by
a finite set S. Denote by G (G,S) the Cayley graph of G with respect to S.

Definition 9.6. For any g ∈ G, the cone Π(g) at g is the set of elements u ∈ G
such that there exists SOME geodesic [1, gu] in G (G,S) containing g.

Two cones Π(g),Π(g′) are of same type if Π(g) = Π(g′).

Theorem 9.7 (Cannon). Let G be a hyperbolic group with S a finite generating
set. Then there are only finitely many cone types in G (G,S).

Proof. For any g ∈ G, consider the set

Sg = {h : d(g, gh) ≤ δ + 1, d(1, gh) ≤ d(1, g)}.

Then Sg has uniform finite cardinality for any g ∈ G. We shall prove that Sg
determines the cone type of g. In other words, we will prove that if Sg = Sg′ , then
Π(g) = Π(g′).

Let u ∈ Π(g). Denote n = d(1, u). We prove u ∈ Π(g′) by induction on n. Let
n = 1 and then u ∈ S. Since u /∈ Sg = Sg′ , we have u ∈ Π(g′).

We assume now that if an element u with d(1, u) ≤ n lies in Π(g), then u ∈ Π(g′).
Let v ∈ Π(g) such that d(1, v) = n + 1. Write v = us for some generator

s ∈ S̃ and u ∈ Π(g) with d(1, u) = n. By inductive assumption, u ∈ Π(g′). Then
d(1, g′u) = d(1, g′) + n.

We claim that us ∈ Π(g′). Suppose not. Then d(1, g′us) < d(1, g′u) + 1. Choose
a geodesic γ between 1, g′us. Apply the thin-triangle property to ∆(1, g′u, g′us).
Since d(g′u, g′us) = 1, there exists a vertex x ∈ γ such that d(x, g′us) = n and
d(x, g′) ≤ δ. Then d(1, g′−1x) ≤ δ. Denote h = g′−1x. Then d(h, us) = n.

Observe that h ∈ Sg′ = Sg. Since gus ∈ Π(g), we have d(1, g)+n+1 = d(1, gus).
On the other hand, d(1, gus) = d(1, gh(h−1us)) ≤ d(1, gh) + d(h, us) ≤ d(1, g) + n.
This gives a contradiction. Thus, us ∈ Π(g′). This finishes the proof. �

Definition 9.8. A finite state automatonM is a finite oriented graph G with edges
labeled by an alphabet set S. The vertices V are called states. There exists a start
state ι ∈ V and a set T ⊂ V of accept states.

A language is a subset ofW(S). Every finite state automaton defines a language
L(M) which consists of the set of words which labels a path starting at ι and
terminating at a state in T . A language L is called regular if it is defined by some
finite state automaton.

Let G be a group with a finite generating set S. We define a natural language
called geodesic language which consists of all words labelling geodesics originating
at 1 in G (G,S).
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We want to know whether a geodesic language is regular. It is clear that if a
geodesic language is regular, then there are finitely many cone types. In fact, the
converse is also true.

Lemma 9.9. Let G be a group with a finite generating set S such that there are
finitely many cone types in G (G,S). Then the set of all words labelling geodesics
in G (G,S) is regular.

Proof. We define a finite state automaton M. Let G be a graph such that the
vertex set is all cone types Π(g) of G (G,S). Let S̃ = S ∪ S−1 be the alphabet set.

There exists an oriented edge labeled by s ∈ S̃ from the cone type Π(g) to Π(h) if

s ∈ Π(g) ∩ S̃ and Π(gs) has the same cone type as Π(h), i.e.: Π(gs) = Π(h).
We need verify that edges are well-defined. Let Π(g) = Π(g′). We need show

that Π(gs) = Π(g′s) for any s ∈ S̃ ∩ Π(g). Assume that Π(g) is connected to

Π(h) by edge labeled by s ∈ S̃. Then by definition of edges, Π(gs) = Π(h). Let
Π(g) = Π(g′). We need show that Π(g′s) = Π(h).

Let u ∈ Π(gs). Then there exists SOME geodesic p = [1, gsu] containing gs. As
s ∈ Π(g), there exists a geodesic q = [1, gs] contains g. Thus, we can assume that p
also contains g, up to a replacement of the segment [1, gs]p of p with q. This implies
that su ∈ Π(g). As Π(g) = Π(g′), there exists a geodesic [1, g′su] containing g′.
Similarly, we can assume that [1, g′su] contains g′s. This implies that u ∈ Π(g′s).
Thus, Π(gs) ⊂ Π(g′s).

The case that Π(g′s) ⊂ Π(gs) is symmetric. Hence, we have proved that Π(gs) =
Π(g′s). So the edge relation is well-defined. �

By the above lemma, a direct consequence of Theorem 9.7 is the following result.

Theorem 9.10. Let G be a hyperbolic group with a finite generating set S. Then
the geodesic language is regular.

We now deduce from the finite state automaton that an infinite hyperbolic group
contains an infinite order element.

Lemma 9.11 (Existence of infinite order elements). Let G be an infinite hyperbolic
group. Then there exists an infinite order element in G.

Proof. Let N be the number of cone types in G (G,S). By Theorem 9.7, N < ∞.
Choose g ∈ G such that d(1, g) = N + 1. Such g exists as G is infinite. Connect
1, g by a geodesic p. By Theorem 9.10, the word labeling p is a geodesic word that
corresponds to a path in the graph G. Since G has N vertices and p contains N + 2
vertices, there exists a subpath q of p that corresponds to a loop in G. In other
words, we can write p = r1qr2, where q−, q+ have the same cone type.

Clearly, any path r1q
nr2 gives a path in G and defines a geodesic word in G (G,S).

Then qn is a geodesic. Let w be the label of q. So the element given by w is of
infinite order. �

Corollary 9.12. An infinite torsion group is not hyperbolic.

In a hyperbolic group, an infinite order element is also called hyperbolic, whereas
a finite order element is called elliptic.
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9.3. Growth rate of a hyperbolic group.

Definition 9.13. The growth function φ(n) of a language counts the number of
words with length equal to n. The growth series is defined as follows

Θ(z) =
∑
i≥0

φ(i)zi, z ∈ R>0.

Remark. The convergence radius of Θ(z) is the following limit

δ = (lim sup
n→∞

φ(n)1/n)−1.

Lemma 9.14. The growth series Θ(z) of a regular language L is rational for t < δ.

Proof. LetM be the finite state automaton which produces L. Let n be the number
of vertices in G, which are indexed by {1, 2, ..., n}. We assume that 1 is the start
state, and the others 2, ...n are accept states.

Define a matrix A = (aij)1≤i,j≤n, where aij is the number of edges of G which
starts at i and ends at j.

Let v = (1, 0...0), w = (1, 1, ..., 1) be row vectors. Observe that vAiwT is the
number of words of length i. Then

Θ(z) =
∑
i≥0

vAiwT zi, z ∈ R>0.

By Cayley-Hamilton theorem, there exists a polynomial f(z) = c0 + c1z + ... +
cmz

m such that f(A) = 0. Define f̄(z) = cm + cm−1z + ... + c0z
m. We calculate

the coefficient of zn in f̄(z)Θ(z) as follows. Observe that for any n ≥ m,∑
0≤i≤m

v(ciA
n−m+i)wT zn = v(An−m

∑
0≤i≤m

(ciA
i))wT zn = 0.

Thus, f̄(z)Θ(z) is a polynomial of degree at most m. So Θ(z) is a rational function,
i.e. the ratio of two polynomials. �

Corollary 9.15. The convergence radius of Θ(z) is an algebraic number.

Proof. Since Θ(z) is rational, its convergence radius is a root of a polynomial. �

Recall that the growth rate of G with respect to S is the following limit

δG = lim
n→∞

n−1 ln bn,

where bn is the number of elements with length n. By Exercise 5.20, we have e−δG

is the convergence radius of the growth series Θ(z) . Thus, we have the following.

Corollary 9.16. The growth rate of a hyperbolic group with respect a finite gener-
ating set is log(g), where g is an algebraic number.
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10. Word and conjugacy problems of hyperbolic groups

In this section, we consider some algorithms problems in hyperbolic groups. In
particular, we shall prove that word problems and conjugacy problems are solvable
in hyperbolic groups.

10.1. Hyperbolic groups are finitely presentable.

Theorem 10.1. Let G be a hyperbolic group with a finite generating set S. Then
there exists a finite set R of words in W(S̃) such that G ∼= 〈S|R〉.

Proof. Let φ : F (S)→ G be the natural epimorphism. Let R be the set of all loops
in G (G,S) with length upper bounded by 4D + 2, where D is constant given by
Lemma 7.13[Stability of quasigeodesics]. Since G (G,S) is locally finite, we see R is
a finite set.

For any w ∈ ker(φ), let p = e1e2...en be a loop based at 1 in G (G,S) such that
Lab(p) = w, where n = Len(p).

We list all vertices of p as follows: v0 = 1, v1, v2, ..., vn = 1, where n = Len(p).
For each 0 < i < n, we connect vi and 1 by a geodesic segment qi with (qi)− =
1, (qi)+ = vi. Then we decompose p as a product of n loops qieiq

−1
i+1 as follows:

Lab(p) = Lab(e1)Lab(e2) · · ·Lab(en)
= (Lab(e1)Lab(q1)−1)(Lab(q1)Lab(e2)Lab(q2)−1)
· · · (Lab(qi)Lab(ei)Lab(qi+1)−1 · · ·Lab(qn−1)Lab(en).

Note that qi and qi+1 are two geodesics such that d((pi)+, (pi+1)+) ≤ 1. By
Lemma 7.13[Stability of quasigeodesics], for each vertex wij of qi with 0 < j <
Len(qi), there exists w′i,j ∈ qi+1 such that d(wij , w

′
ij) ≤ D for an uniform constant

D > 0. Similarly, we see that the loop qiei(qi+1)−1 can be decomposed as a product
of loops cij for 1 ≤ j ≤ Len(pi), where

cij := [wij , wij+1]qi [wij+1, w
′
ij+1][w′ij+1, w

′
ij ]qi+1

[w′ij , wij ].

Note that cij are of length upper bounded by 4D + 2. Thus, cij ∈ R.
Therefore, any word w ∈ ker(φ) can be written as a finite product of conjugates

of relators in R. This implies by Lemma 3.3 that there exists a homomorphism G =
〈S| ker(φ)〉 → 〈S|R〉. By the choice of R as loops in G (G,S), we have R ⊂ ker(φ).
By Lemma 3.3, the homomorphism is an isomorphism. Hence, G = 〈S|R〉. �

10.2. Solving word problem. We shall prove that word problems of hyperbolic
groups can be solved. In order to do so, we shall prove that there is a special
presentation called Dehn presentation for a hyperbolic group. A Dehn presentation
by definition can allow to solve word problems in linear time.

Definition 10.2 (Dehn presentation). Let G ∼= 〈S|R〉 be a group presentation.
Assume that R contains all cyclic permutations of every r ∈ R.

The 〈S|R〉 is called a Dehn presentation if any w ∈ 〈〈R〉〉, there exists a subword
u of w and a relator r ∈ R such that r = uv−1 and Len(u) > Len(v).

Remark. Groups with a Dehn presentation have solvable word problems:

(1) Step 1: Given a reduced word w ∈ F (S), compare subwords of w with
relators in R. Then there exists a subword u of w and a relator r ∈ R such
that r = uv and Len(u) > Len(v).



NOTES ON GEOMETRIC GROUP THEORY 71

(2) Step 2: We obtain a new word w1 by replacing u with v, which has length
strictly less than |w|.

(3) Step 3: Go to the Step 1.

Theorem 10.3 (Dehn presentation for hyperbolic groups). A hyperbolic group has
a Dehn presentation. Thus, word problem is solvable in hyperbolic groups.

Proof. Let φ : F (S)→ G be the natural epimorphism. Let L0 > 2 be the constant
given by applying Corollary 9.3 to a local geodesic path.

Let R be the set of words in W(S̃) labeling loops p such that p = t−1q, where
t is a geodesic and Len(q) ≤ L0. Thus, every p is of length at most 2L0. So R is
a finite set. Moreover, it must be non-empty. Indeed, we shall show now that any
loop in G (G,S) can be decomposed as a product of loops labeled by words in R.

Let w ∈ ker(φ) be a reduced word in F (S). Then in G (G,S), there is an
embedded loop p such that Lab(p) = w. We argue by induction on length n of w.
The case n = 2 is trivial as L0 ≥ 2: w ∈ R. Now assume that ant word w of length
at most n − 1 can be written as a finite product of conjugates of words in R. We
prove below the case Len(w) = n.

First we observe that p is not a L0-local geodesic, otherwise by Corollary 9.3,
the loop p would be a quasi-geodesic. Thus, there exists a subpath q of p such
that Len(q) ≤ L0 and q is not a geodesic in G (G,S). We connect q−, q+ by a
geodesic segment t. This gives a loop t−1q of length less than 2L0, which lies in R
by definition.

We write p = [1, q−]pq[q+, 1]p. Thus, w = uLab(q)v, where u = Lab([1, q−]p), v =
Lab([q+, 1]p). Note that uLab(t)v is of length at most n−1 and φ(uLab(t)v) = φ(w).
Thus, uLab(t)v can be written as a finite product of conjugates of r ∈ R. Thus
w = uLab(t)vv−1Lab(t)−1Lab(q)v = (uLab(t)v)(v−1Lab(t−1q)v). This proves that
w is a finite product of conjugates of r ∈ R. Thus, 〈S|R〉 is a finite presentation of
G.

Moreover, it is a Dehn presentation by the arguments above: any word w contains
a subword Lab(p), which is a subword of a loop pt−1 ∈ R. �

10.3. Solving conjugacy problem. Solving conjugacy problem depends on the
following result.

Lemma 10.4 (Bounding conjugators). Assume that g = fhf−1 for some g, h, f ∈
G. Then there exist a constant D = D(|g|, |h|) and f ′ ∈ G such that d(1, f ′) ≤ D
and g = f ′hf ′−1.

Remark. Here D, as shown in the proof, is a linear function of |g| and |h|.
Proof. We draw a quadrangle rptq for the points 1, g, f, fh = gf , where r =
[1, g], p = [g, gf ], t = [fh, f ], q = [1, f ]. Note that p, q are of same length, and
has same label representing f .

Let x ∈ p such that d(g, x) ≥ |g|+ |h|+2δ and d(x, gf) ≥ |g|+ |h|+2δ. Note that
rptq has 2δ-thin property. Then there exists z ∈ q such that d(x, z) ≤ 2δ. We obtain
by triangle inequality that d(g, x) + 2δ+ |g| ≥ d(1, z) ≥ d(g, x)− 2δ− |g| ≥ d(1, z).

Let y ∈ q such that d(1, y) = d(g, x). Thus, d(1, y)+2δ+ |g| ≥ d(1, z) ≥ d(1, y)−
2δ − |g| ≥ d(1, z). It follows that d(y, z) ≤ 2δ + |g|. This gives d(x, y) ≤ 4δ + |g|.

We consider the vertices {x0, x1, ..., xn} on p such that d(g, xi) ≥ |g| + |h| + 2δ
and d(xi, gf) ≥ |g|+ |h|+ 2δ, where

n = |f | − 2|g| − 2|h| − 4δ.
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By the above argument, for each xi ∈ p, there exists yi ∈ q such that d(xi, yi) ≤
4δ + |g| and d(1, yi) = d(g, xi).

Let N = |B(1, 4δ + |g|)|. Assume that |f | > 2|g| + 2|h| + 4δ + N + 1. Then
n > N+1. There exists 1 ≤ i < j ≤ n such that x−1

i yi = x−1
j yj = k ∈ B(1, 4δ+|g|).

Clearly, we have gf1 = f1k and kf2 = f2h for f1 = Lab([1, yi]q), f2 = Lab([yj , f ]q).
Thus, gf1f2 = f1f2h.

Denote f ′ = f1f2. Note that |f ′| ≤ |f1|+ |f2| < |f |. So we find a new element f ′

with smaller length than f such that gf ′ = f ′h. Inductively, the length of f ′ gets
decreased until |f ′| ≤ 2|g|+2|h|+4δ+N+1. Thus, we set D = 2|g|+2|h|+4δ+N+1.
This gives the desired constant. �

Let g, h ∈ G. By Lemma 10.4, if g, h are conjugate, then there exists f ∈ G with
length bounded by a linear function D = D(|g|, |h|) such that g = fhf−1 for some
f ∈ G. So to solve conjugacy problem, it suffices to list a finite number of f with
length bounded by D, and use word algorithm to check whether fhf−1g−1 is the
identity.
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11. Subgroups in hyperbolic groups

11.1. Quasi-convex subgroups. In a metric space, a (quasi-)convex subspace
usually share good properties of the ambient space. We start with a quasi-convexity
notion in the Cayley graph of a group.

Definition 11.1. Let G be a group with a finite generating set S. A subgroup H is
called σ-quasi-convex with respect to S in G if for any geodesic p with p−, p+ ∈ H,
we have p ⊂ Nσ(H) in G (G,S).

Remark. Quasi-convexity depends on the choice of a generating set. For example,
Z = 〈ab〉 in Z × Z = 〈a, b : ab = ba〉 is quasi-convex with respect to {a, b, ab}, but
not quasi-convex with respect to {a, b}.

Lemma 11.2 (Quasi-convex subgroups are finitely generated). Let G be a group
with a finite generating set S. Then a quasi-convex subgroup is finitely generated.

Proof. Let H be a σ-quasi-convex subgroup in G with respect to S. For any h ∈ H,
let p be a geodesic between 1, h in G (G,S). Write p = e1e2...en, where n = Len(p)

and ei are edges labeled by si ∈ S. Then Lab(p) = s1s2...sn is a word over S̃
representing h.

Since H is σ-quasi-convex, there exists hi ∈ H such that dS((ei)+, hi) < σ for
all 1 ≤ i ≤ n. Here we choose hn = h. Thus, dS(hi, hi+1) ≤ 2σ + 1 and then
h−1
i hi+1 ∈ B(1, 2σ + 1). Observe that h = hn = h1(h−1

1 h2)...(h−1
n−1hn). Denote

T = H ∩B(1, 2σ + 1), which is a finite set. Thus H is generated by T . �

The main result in this subsection is the following lemma, saying that quasi-
convexity is stable under taking intersection.

Lemma 11.3 (Stability of quasi-convexity under intersection). Let H,K be quasi-
convex subgroups in a group G. Then H ∩ K is quasi-convex and thus finitely
generated.

Proof. Assume that H,K are σ-quasi-convex for σ > 0. Let c ∈ H ∩K and p be
a geodesic between 1, c in G (G,S). Then p ⊂ Nσ(H) ∩Nσ(K). We aim to find a
constant σ′ > 0 such that p ⊂ Nσ′(H ∩K).

Let x ∈ p. We consider the set Q of paths q in G (G,S) such that q− = x, q+ ∈
H ∩K and q ⊂ Nσ(H) ∩Nσ(K). The set Q is non-empty, as [x, c]p lies in Q.

Denote σ′ = |B(1, 2σ)|2 + 1. We claim that there exists some path q in Q such
that Len(q) ≤ δ′. This clearly implies that x ∈ Nσ′(H ∩K).

Let q ∈ Q such that Len(q) ≥ σ′. We are going to make a “shortcut” on q to
get a new q′ ∈ Q such that Len(q′) ≤ Len(q)− 1. This will finish the proof of our
claim.

Let v1, v2, ...vn be the set of vertices of q, where n > σ′. Since q ⊂ Nσ(H) ∩
Nσ(K), there exists hi, ki such that d(vi, hi), d(vi, ki) ≤ σ for 1 ≤ i ≤ n. Note that
n > σ′ > |B(1, 2σ)|2. By pigeonhole principle, there exist some 1 ≤ i < j ≤ n such
that v−1

i hi = v−1
j hj and v−1

i ki = v−1
j kj . It also follows that k−1

i hi = k−1
j hj . Note

that t := kik
−1
j = hih

−1
j ∈ H ∩K.

We define q′ = [x, vi]q(t · [vj , q−]q), where t · [vj , q−]q is a translated copy by t of
subsegment [vj , q−]q in q. Thus, every vertex on q′ lies in Nσ(H) ∩Nσ(K). Since
t ∈ H ∩K, the segment t[vj , q−]q starts at vi and ends at tq+ ∈ H ∩K. This shows
that q′ ∈ Q. As j > i, we have Len(q′) < Len(q). �
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The idea of the proof of Lemma 11.3 can be used to prove the following stronger
lemma.

Lemma 11.4. Let H,K be two subgroups in a finitely generated group G. Then
for any σ > 0 there exists σ′ > 0 such that Nσ(H) ∩Nσ(K) ⊂ Nσ′(H ∩K).

Sketch of Proof. For a pair of a, b ∈ B(1, σ), we define Ga,b = {g ∈ G : ga ∈
H, gb ∈ K}. For each Ga,b, we choose an element gab ∈ Ga,b such that d(1, gab) =
d(1, Ga,b). Let F be the union of finitely many gab, where a, b ∈ B(1, σ). Define σ′ =
max{d(f,H ∩K) : f ∈ F}. It can be verified that σ′ is the desired constant. �

Form now on, we are interested in understanding quasi-convex subgroups in hy-
perbolic groups. As remarked above, the quasi-convexity of a subgroup, in general,
depends on the choice of the generating set. However, the notion of quasi-convexity
in hyperbolic groups is independent of the choice of generating sets in the following
sense.

Lemma 11.5. Let H be a subgroup in a hyperbolic group G. Let S, T be any two
finite generating sets of G. Then H is σS-quasi-convex with respect to S if and only
if H is σT -quasi-convex with respect to T

Proof. Clearly, it is a consequence of the stability of quasi-geodesics, see Lemma
7.13. �

Hence, in what follows, we can speak of the quasi-convexity of a subgroup in a
hyperbolic group without ambiguity.

We introduce another class of subgroups called undistorted subgroups, which
turns out to be equivalent to the class of quasi-convex subgroups in hyperbolic
groups.

Definition 11.6. Let H be a finitely generated group in a finitely generated group.
We say that H is undistorted in G if there exist finite generating sets S, T for G,H
respectively such that the inclusion (H, dT )→ (G, dS) is a quasi-isometric map.

We now prove that quasi-convex subgroups in a hyperbolic group are the same
as undistorted groups.

Lemma 11.7 (Quasi-convexity ⇔ Undistortedness). Let G be a hyperbolic group
with a finite generating set S. Then a subgroup H is quasi-convex if and only if for
some (or any) finite generating set T of H, the inclusion (H, dT ) → (G, dG) is a
quasi-isometric map.

Proof. =>. We continue to use the notions in the proof of Lemma 11.2. By
construction, we have

dT (1, h) ≤ n ≤ dS(1, h).

We consider the finite generating set S ∪ T for G. Then clearly dS∪T (1, h) ≤
dT (1, h). Since dS∪T is bi-Lipchitz to dS , there exists λ > 1 such that dS(1, h) ≤
λdT (1, h). This proves that (H, dT )→ (G, dS) is a (λ, 0)-quasi-isometric embedding
map.
<=. Without loss of generality, assume that T ⊂ S. Then the Cayley graph

of H with respect to T is a subgraph of G (G,S). And the natural inclusion ι :
(H, dT )→ (G, dS) is a quasi-isometric embedding map.

Let h ∈ H and a geodesic p between 1, h in the Cayley graph of H with respect
to T . Then p is a quasi-geodesic in G (G,S). By Lemma 7.13, any geodesic q in
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G (G,S) between 1, h is contained in a σ-neighbourhood of p for some uniform σ.
Since the vertex set of p lies in H, this implies that q ⊂ Nσ+1(H). The proof is
complete. �

Remark. The => direction does not need the assumption that G is hyperbolic,
but which is necessary in the <= direction: the inclusion of Z into Z × Z is a
quasi-isometric map (no matter which generating sets of Z,Z ×Z are chosen), but
Z may not be quasi-convex with respect to some generating set of Z × Z.

Corollary 11.8. Let H be a quasi-convex subgroup in a hyperbolic group. Then H
is a hyperbolic group.

Proof. The proof is same as the proof of Theorem 7.19. Let T, S be generating
sets of H and G respectively. Without loss of generality, assume that T ⊂ S. Let
ι : H → G be the inclusion. By Lemma 11.7, ι is a quasi-isometric map.

Let ∆ = ∆(a, b, c) be a geodesic triangle in (H,T ), where a, b, c ∈ H. As
G (H,T ) is a subgraph of G (G,S) and ι is a quasi-isometric map, ∆ is a quasi-
geodesic triangle in G (G,S). By the δ-thin triangle property in G (G,S), there
exists o ∈ G such that o is a δ-center of ∆. Without loss of generality, we can
assume that o ∈ ∆. Again since ι is a quasi-isometric map, o ∈ H is δ′-center of ∆
for some δ′ in G (H,T ). �

Exercise 11.9. Let H be a finitely generated subgroup in an abelian group G of
finite rank. Then H is undistorted in G.

In free groups, the quasi-convexity of a subgroup is equivalent to the finitely
generatedness.

Exercise 11.10. Prove that any finitely generated subgroup in a free group of finite
rank is quasi-convex. Thus, the intersection of any two finitely generated subgroups
is finitely generated.

11.2. Hyperbolic elements in a hyperbolic group. Recall that an infinite
order element in a hyperbolic group is called hyperbolic. In this subsection, we
study hyperbolic elements in details.

Theorem 11.11. Let g be an arbitrary element in a hyperbolic group G. Then the
centralizer C(g) = {c ∈ G : cg = gc} is σ-quasi-convex for some σ depending on g.

Proof. Let c ∈ C(g). Then gc = cg. We draw a quadrangle rptq for the points
1, g, gc = cg, c, where r = [1, g], p = [g, gc], t = [cg, c], q = [1, c]. For any x ∈ q, we
want to bound the distance d(x,C(g)) by a uniform constant.

Let y ∈ p such that d(p−, y) = d(1, x). By the thin-triangle property, there exists
a constant D1 = D(|g|) such that d(x, y) ≤ D1. Observe that [p−, y]p and [1, x]q
have the same label representing the element x ∈ G.

Let h = x−1y be the element represented by the label on [x, y]. Thus, we have g, h
are conjugate: g = xhx−1. By Lemma 10.4, there exists a constant D2 = D(|g|, |h|)
and an element u ∈ G such that d(1, u) ≤ D2 and g = u−1hu. This implies that
gxu = xug and then xu ∈ C(g). Moreover, d(x, xu) ≤ D2, where D2 is an uniform
constant depending only on g. �

Before going on, we need the following useful result about quasi-convex subsets.
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Lemma 11.12. Let Q be a σ-quasi-convex subset in a δ-hyperbolic space X. There
exists a constant λ = λ(σ, δ), c = c(σ, δ) > 0 with the following property.

Let x ∈ X and y ∈ Q a projection point of x. Then for any z ∈ Q, the path
p = [x, y][y, z] is a (λ, c)-quasi-geodesic.

Proof. This can be proven similarly as Exercise 7.21, which is a special case: a
quasi-geodesic is a quasi-convex subspace.

Let w ∈ [y, z] be a shortest point to x. Then d(x,w) ≤ d(x, y). On the other
hand, since Q is σ-quasi-convex, [y, z] ⊂ Nσ(Q). Then there exists w′ ∈ Q such
that d(w,w′) ≤ σ. Since d(x, y) = d(x,Q), it follows that d(x, y) ≤ d(x,w) + σ.
Thus, d(x,w) ≤ d(x, y) ≤ d(x,w) + σ.

Since w is a δ-center of ∆(x, y, w), we have d(x,w) + d(y, w) ≤ d(x, y) + 2δ.
Then d(y, w) ≤ 2δ+σ. Note that w is also a δ-center of ∆(x,w, z). Then d(z, w) +
d(w, z) ≤ d(x, z) + 2δ.

We calculate the length of p = [x, y][y, z]: d(x, y)+d(y, z) ≤ d(x,w)+2d(y, w)+
d(w, z) ≤ 6δ + 2σ + d(x, z). This shows that p is a (1, 6δ + 2σ)-quasi-geodesic. �

We are now ready to prove the following result.

Theorem 11.13. Let H be an infinite quasi-convex subgroup in a hyperbolic group
G. Then H is of finite index in its normalizer N(H) = {g ∈ G : gH = Hg}. In
particular, N(H) is also quasi-convex.

Proof. We want to find an uniform constant D > 0 such that for any g ∈ N(H),
d(H,Hg) ≤ D. If this is proven, we see that any coset Hg in N(H) contains a
representative element g′ ∈ Hg such that d(1, g′) ≤ D. This will complete the
proof.

Let σ be the quasi-convexity constant for H. Note that gH is also σ-quasi-convex
for any g ∈ G. For any x, y ∈ G, we project x, y to z, w ∈ gH respectively. We
claim that

Claim. If d(z, w) is sufficiently large, then the concatenated path p = [x, z][z, w][w, y]
is a quasi-geodesic.

Proof. By Lemma 11.12: p is a L-local (λ, c)-quasi-geodesic, where L = d(u, v)
and λ, c depends only on σ. Thus, by Lemma 9.3, p is a quasi-geodesic, if L is
sufficiently large. �

For any g ∈ N(H), we consider the σ-quasi-convex subset Hg = gH. Let y ∈ H.
Then d(y,Hg) ≤ d(1, g). Let z, w ∈ gH be projections points of 1, y respectively.
Note that d(z, w) > d(1, y)− 2d(1, g). Since H is infinite, we can choose d(1, y) to
be sufficiently large such that d(z, w) is also very large. It follows by the Claim that
p = [1, z][z, w][w, y] is a quasi-geodesic. By Lemma 7.13, there exists an uniform
constant D such that p ⊂ ND([1, y]). Since H is σ-quasi-convex, p ⊂ ND+σ(H).

Since z, w ∈ gH and gH is σ-quasi-convex, we see that [z, w] ⊂ Nσ(gH). It
follows that Hg = gH contains an element g′ such that d(g′, H) ≤ D + 2σ. �

Remark. The infiniteness of H cannot be dropped: consider a hyperbolic group
which is the direct product of a hyperbolic group G with a finite group F .

An important fact about hyperbolic elements is that the subgroup generated by
a hyperbolic group is quasi-convex or quasi-isometrically embedded.
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Lemma 11.14. Let g be a hyperbolic element in a hyperbolic group G. Then
n ∈ Z → gn ∈ G is a quasi-isometric embedding map of Z → G. Moreover, 〈g〉 is
of finite index in C(g).

Proof. Denote H = 〈g〉. We consider the centralizer C(g) of g. By Lemma 11.11,
C(g) is quasi-convex and thus finitely generated by a finite set T . Observe that the
center K of C(g) is the intersection of centralizers of all t ∈ T in C(g). Since it is
a finite intersection of quasi-convex subgroups, the center K is finitely generated
and abelian.

Note that H ⊂ K. By Exercise 11.9, the natural inclusion of H into K is a
quasi-isometric map. And K → G is also a quasi-isometric map. This implies that
the inclusion of H into G is a quasi-isometric map also.

Since C(g) ⊂ N(H), it follows by Lemma 11.13 that H is of finite index in
C(g). �

A direct corollary is the following result, saying that existence of abelian groups
of rank at least two is an obstruction to hyperbolicity.

Corollary 11.15. A hyperbolic group cannot contain a subgroup isomorphic to
Z × Z.

Exercise 11.16. Prove that SL(n,Z) for n ≥ 3 is not a hyperbolic group.

Furthermore, we can give another obstruction result to hyperbolicity of a group.

Corollary 11.17. A hyperbolic group cannot contain Baumslag-Solitar groups

B(m,n) = 〈a, t|an = tamt−1〉
for m,n ∈ Z \ 0 and |m| 6= |n|.

Proof. Without loss of generality |m| < |n|. We first note that the following identity
holds

tlam
l

t−l = an
l

for any l ∈ N. By Lemma 11.14, we have |n|λ + c > d(1, gn) > λ−1|n| − c for any

n ∈ Z and some λ, c > 0. Thus 2l · d(1, t) + λ|m|l + c > d(1, tlam
l

t−l) = d(1, an
l

) >
λ−1|n|l − c holds for all l > 0. This gives a contradiction, as |m| < |n|. The proof
is complete. �

Definition 11.18. Let G be a group with a finite generating set S. The translation
length of an element g ∈ G is the following limit

τ(g) = lim
n→∞

dS(1, gn)/n.

Exercise 11.19. Verify the following properties of translation length.

(1) Prove that the limit τ(g) exists.
(2) τ(g) = τ(hgh−1) for any h ∈ G.
(3) τ(gn) = nτ(g) for any n ∈ N.

We prove now that every hyperbolic element almost leaves invariant an uniform
quasi-geodesic (called quasi-axe).

Lemma 11.20 (Quasi-axe). There exist constants λ, c, C ≥ 0 with the following
property. For any hyperbolic element g in G, there exists a (λ, c)-quasi-geodesic p
in such that p ⊂ ND(gnp) for any n ∈ Z.
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Proof. Let L0, λ, c be given by Corollary 9.3. Denote by h an element of minimal
length in the conjugacy class of g. First note that the conclusion holds under
conjugation of g ∈ G. We will prove the lemma for h.

Assume that d(1, h) > L0. Fix a geodesic q = [1, h]. As in proof of Theorem 9.5,
the concatenated bi-infinite path p = ...(h−nq)...(h−1q)q(hq)...(hnq)... is a Len(q)-
local geodesic. By Lemma 9.3, p is a (λ, c)-quasi-geodesic.

We now consider the case that d(1, h) ≤ L0, for which by Lemma 11.14, the path
p = [h−n−1, h−n]...[h−1, 1][1, h]...[hn, hn+1] is a quasi-geodesic. Note that there are
only finitely many such elements h with d(1, h) ≤ L0. By increasing by finite times
the above λ, c, we see that p in the both cases are (λ, c)-quasi-geodesics.

By construction of p, it follows that p ⊂ ND(hnp) for any n ∈ Z and some
finite D > 0. Similarly as Lemma 8.2, we can argue by thin-triangle property to
get an uniform constant C depending only on λ, c such that p ⊂ ND(gnp) for any
n ∈ Z. �

Finally, we consider the spectrum of translation lengths of all hyperbolic elements
in a hyperbolic group.

Theorem 11.21 (Discrete Rational Translation Lengths). Let G be a hyperbolic
group. Then the set of translation lengths of hyperbolic elements is a discrete set
of positive rational numbers in R. Moreover, the denominator of each translation
length is uniformly bounded by a constant.

Proof. Let Q = {τg : g ∈ G}. We prove the following statements.
(1). The set Q is a discrete set in R. Since the translation length is a conjugacy

invariant, without loss of generality, we assume that g is a minimal element in its
conjugacy class. By Lemma 11.20, n|g| ≤ λd(1, gn) + c for some uniform constant
λ, c > 0. This implies that |g| ≤ λτ(g). Hence, {τ(g) ≤ r} for any r > 0 is a finite
set.

(2). Each τ ∈ Q is a rational number of form a/b, where b is less than an
uniform constant. We consider the path p = [1, g][g, g2]...[gn−1, gn].... By Lemma
11.20, p is a (λ, c)-quasi-geodesic for some uniform constant λ, c > 0.

We fix some N very large, which will be computed below. Connect 1, gN by a
geodesic q. By Lemma 7.13, there are an uniform constant D and vi ∈ q such that
d(gi, vi) ≤ D for 1 ≤ i ≤ N . Denote by ti = v−1

i gi ∈ B(1, D).
Let M be the number of cone types in G (G,S). By Theorem 9.7, M <∞. We

choose N > M · |B(1, D)| + 1. By pigonhole principle, there are 1 ≤ i < j ≤ N
such that t = ti = tj and vi, vj has the same cone types.

Let h be the element represented by [vi, vj ]q. Then h = tgj−it−1. Since vi, vj
has the same cone type, we see that [1, h][h, h2]...[hn, hn+1] is a geodesic. Thus,
τ(h) = |h| and then τ(gj−i) = |h|. This implies that τ(g) = |h|/(j − i), where
j − i ≤ N . Hence, τ(g) is a rational number, whose denominator is uniformly
upper bounded. �
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12. Convergence groups: Tits alternative in hyperbolic groups

In this section, we study hyperbolic groups and their subgroups using the group
action on Gromov boundary called convergence group action.

12.1. Convergence group actions and classification of elements. We intro-
duce now a notion of a convergence group action. We refer the reader to [1] for
more details about convergence group actions.

Definition 12.1. Assume that a (discrete) group G acts by homeomorphisms on a
compact metrizable space M . Assume that |M | ≥ 3. Then G is called a convergence
group on M if the induced action of G on the space of distinct triples

Θ3(M) := {(x, y, z) ∈M3 : x 6= y 6= z 6= x}
is proper: the following set

{g ∈ G : gK ∩K 6= ∅}
is finite for any compact set K in Θ3(M).

Corollary 12.2. Assume that G acts as a convergence group on M . Then every
element of infinite order in G has at most two fixed points in M .

Proof. Let g be an infinite order element with distinct fixed points a, b, c. Consider
the compact set K = {(a, b, c)} ⊂ Θ3(M). Since gn(a, b, c) = (a, b, c) for all n ∈ Z,
this contradicts to the properness of G on Θ3(M). �

Let g ∈ G be an element in a convergence group action of G on M . It is called

(1) elliptic if g is of finite order,
(2) parabolic if it has infinite order and a unique fixed point in M ,
(3) hyperbolic if it has infinite order and two fixed points in M .

By Corollary 12.2, any element in a convergence group can be classified into mutu-
ally exclusive classes of elliptic, parabolic and hyperbolic elements.

The convergence group action has the following convergence property for infinite
sequences.

Definition 12.3. A group G is said to have the convergence property if for any
sequence {gn} of G, there exists a subsequence {gni} (called collasping sequence)
and two points a, b ∈M such that gni converges to b locally uniformly on M \ {a}.
Theorem 12.4 (Convergence property of sequences). Let G be acting on a compact
metrizable space M as a convergence group. Then any infinite set {gn : n ∈ N} has
convergence property.

Remark. The converse of Theorem 12.4 is also true and much eaiser (Exercise 12.9):
the convergence property characterizes the convergence group action.

Lemma 12.5 (Collapsing property). Assume that there exists a sequence gn with
the following property. Let xn → x, yn → y, zn → z for distinct x, y, z, and
gn(xn, yn, zn)→ (a, b, c). Then at least two of a, b, c are the same.

Proof. Suppose, to the contrary, that a, b, c are distinct. We can then choose dis-
joint compact neighbourhoods Ua, Ub, Uc, Ux, Uy, Uz of a, b, c, x, y, z respectively.
Then K = Ua × Ub × Uc and L = Ux × Uy × Uz are compact in θ3(M). Since
gn(xn, yn, zn)→ (a, b, c), the set

{g : gL ∩K 6= ∅}
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is infinite. This is a contraction, as G acts properly on Θ3(M). Thus, at least two
of a, b, c are the same. �

Lemma 12.6 (Democracy 2:1). Let gn ∈ G such that for some (xn, yn, zn) →
(x, y, z) ∈ Θ3(M), we have gn(xn, yn, zn) → (a, b, b) where a 6= b. If wn → w 6= x,
then gnwn → b.

In particular, gn converges to b locally uniformly in M \ x.

Proof. Since w 6= x, either (xn, yn, wn) → (x, y, w) ∈ Θ3(M) or (xn, zn, wn) →
(x, z, w) ∈ Θ3(M). In both cases, we can apply Lemma 12.5 and see that gnwn →
{a, b}. If gnwn → b, then the proof is done. We assume that gnwn → a and deduce
a contradcition.

Since |M | ≥ 3, there exists c ∈ M such that c /∈ {a, b}. Consider un = g−1
n (c).

Since M is compact, assume that un → u, up to a passenage of a subsequence of un.
Using Lemma 12.5 with gn(xn, yn, un) → (a, b, c), we have u ∈ {x, y}. Similarly,
gn(xn, zn, un)→ (a, b, c) implies u ∈ {x, z}. Thus, u = x.

So (un, wn) → (x,w) and (gnun, gnwn) → (c, a). Since (yn, zn) → (y, z) and
(gnyn, gnzn) → (b, b), we would obtain contradiction with Lemma 12.5 for y 6= z,
and a, b, c are distinct. Therefore, we proved that gnwn → b.

It remains to show that gn converges to b locally uniformly in M \ x. Let K
be a compact set in M \ x. Suppose that gn does not converge uniformly to b in
K. We put a metric d on M . Then there exist ε > 0, a sequence wi ∈ K and
a subsequence gni such that d(gni(wi), b) ≥ ε. That is to say, gni(wi) does not
converge to b. Without loss of generality, assume that wi → w ∈ K. Then this
gives a contradiction. Thus, gn converges to b over K. �

The second and third paragraph of the above proof proves the following. A

Corollary 12.7. Assume that for (xn, yn)→ (x, y) for x 6= y, gn(xn, yn)→ (a, a)
and for (un, vn)→ (u, v), gn(un, vn)→ (b, b). If {x, y} ∩ {u, v} = ∅, then a = b.

Proof. Since |M | ≥ 3, take c /∈ {a, b} and consider wn = g−1
n (c). Apply Lemma

12.5 to ({xn, yn}, {un, vn}, wn) for the contradiction. �

Remark. Fix {gn}. A point a is voted by a pair of distinct points (x, y) for x 6= y
if for some (xn, yn) → (x, y) we have gn(xn, yn) → (a, a). This corollary could be
reformulated as follows: if a point is voted by two pairs of distinct points (x, y)
and (u, v), then {x, y} ∩ {u, v} 6= ∅. Equivalently, a point cannot be voted by two
disjoint pairs of points.

Lemma 12.8 (Democracy 3:0). Let gn ∈ G such that for some (xn, yn, zn) →
(x, y, z) ∈ Θ3(M), we have gn(xn, yn, zn)→ (b, b, b). If g−1

n c→ a for some c 6= b ∈
M , then gn converges to b locally uniformly in M \ a.

Proof. Apply Lemma 12.6 to (g−1
n c, un, vn) → (c, u, v) ∈ Θ3(M), where un, vn are

chosen from (xn, yn, zn). �

We are now ready to give the proof of Theorem 12.4.

Proof of Theorem 12.4. Since M is compact and contains at least 3 points, there
exists a subsequence gni and (x, y, z) ∈ Θ3(M) such that gni(x, y, z)→ (a, b, c).

By Lemma 12.5, without loss of generality, at least two of {a, b, c} are the same.
We are thus lead to consider the following two cases:
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Case 1. a 6= b = c. By Lemma 12.6, gni converges to b locally uniformly in
M \ x.

Case 2. a = b = c. Choose d 6= b and pass to a subsequence gni so that
the sequence uni = g−1

ni d → x ∈ M . By Lemma 12.8, gni converges to b locally
uniformly in M \ x.

Renaming a := x finishes the proof. �

Exercise 12.9. Prove the converse of Theorem 12.4 holds: If any infinite set
{gn : n ∈ N} in G has the convergence property, then G is a convergence group
action.

Exercise 12.10. Let G be acting on a compact metrizable space M as a convergence
group. Then any infinite set {gn : n ∈ N} in G contains a subsequence gni and
points a, b ∈M so that

(1) gni converges to b locally uniformly in M \ a, and
(2) g−1

ni converges to a locally uniformly in M \ b.

12.2. Proper actions on hyperbolic spaces induce convergence actions.
Let (X, d) be a proper length hyperbolic space. For any fixed point o ∈ X, the
Gromov boundary Xo,∞ gives a compact topology to the set of asymptotic classes
of geodesic rays originating at o.

Moreover, we can put a visual metric ρo on Xo,∞. It should be noted that the
topology of Xo,∞ does not depend on the choice of o ∈ X (cf. Exercise 8.7), but
the visual metric ρo does depend on o. Recall that for any two x, y ∈ X∞,

ρo(x, y) � λd(o,[x,y]),

for some 0 < λ < 1.
We consider a group action of G on X by isometries. By Theorem 8.19, every

isometry induces a homeomorphism of X∞. So we have the following.

Lemma 12.11. Assume that G acts by isometries on a proper length hyperbolic
space (X, d). Then G acts by homeomorphisms on X∞.

Theorem 12.12. Assume that G acts properly on a proper length hyperbolic space
(X, d). If X∞ contains at least 3 points, then G acts on X∞ as a convergence
group.

Proof. Denote M = X∞. Fix a basepoint o ∈ X. We consider the visual metric ρo
on M . Let K be a compact set in Θ3(M). Define

ε = inf
(x,y,z)∈K

{min{ρo(x, y), ρo(y, z), ρo(z, x)}}.

Since K is compact, we have ε > 0.
Recall that for visual metric, we have

ρo(x, y) � λd(o,[x,y])

for some 0 < λ < 1. Thus, there exists some uniform constant L = L(ε) such that

d(o, [x, y]), d(o, [y, z]), d(o, [z, x]) ≤ L

for any (x, y, z) ∈ K. In other words, o is a L-center for any geodesic triangle
∆(x, y, z) with (x, y, z) ∈ K. Clearly, go is a L-center for any geodesic triangle
∆(gx, gy, gz) with (x, y, z) ∈ K.
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Recall that for any L > 0 there exists D = D(L) such that any two L-centers of
a geodesic triangle ∆(x, y, z) have bounded distance by D. Here x, y, x ∈ X ∪X∞.

We now argue by way of contradiction to prove that G acts properly on θ3(M).
Assume that there exists infinitely many gn such that gnK ∩ K 6= ∅. Thus, we
can choose (xn, yn, zn) ∈ K and (gnxn, gnyn, gnzn) ∈ K. By the above argu-
ment, o is a L-center for all ∆(xn, yn, zn). It follows that gno is a L-center for all
∆(gnxn, gnyn, gnzn).

Note that o is also a L-center for every ∆(gnxn, gnyn, gnzn), as (gnxn, gnyn, gnzn) ∈
K. Thus, d(o, gno) ≤ D for all n. This is a contradiction, as G acts properly on X.
The proof is complete. �

12.3. Dynamics of hyperbolic elements. We prove that a hyperbolic element
g has the following simple dynamics on M . Denote by a, b the two distinct fixed
points of g in M . We shall call g+ := b the attracting point of g if there exists a
sequence of elements gn in {gn : n ≥ 0} such that gnx→ b for some x ∈M \ {a, b}.
The other fixed point g− := a is called repelling.

Lemma 12.13 (Repelling-Attracting dynamics). Let g be a hyperbolic element in
a convergence group G with two fixed points {a, b}. Assume that b is an attracting
fixed point.

Then there exists a sequence of elements gn in {gn : n ≥ 0} such that for any
xn → x ∈ M \ {a}, we have gnxn → b. In other words, gn converges to b locally
uniformly in M \ a.

Proof. Since b is an attracting fixed point, there exists a sequence of elements gn
in {gn : n ≥ 0} such that gny → b for some y ∈ X \ {a, b}. We apply Lemma
12.6 to gn(a, y, b) → (a, b, b), and conclude that for xn → x ∈ M \ {a}, we have
gnxn → b. �

A corollary is that in the definition of attracting points, one can replace “some”
by “any”: gnx→ b for any x ∈M \ {a, b}.

We now note the following fact saying that the role of repelling, attracting points
are reversed by taking the inverse of g.

Lemma 12.14. If g−, g+ are repelling, attracting points of a hyperbolic element g.
Then g+, g− are repelling, attracting points of a hyperbolic element g−1.

Proof. Let x ∈M\{g−, g+}. Then by compactness of M , there exists a subsequence
of elements g−n for n > 0 such that g−nx → y. By Lemma 12.5, y ∈ {g−, g+}. If
y = g−, then g− is a contracting point for g−1 by definition.

We now consider y = g+ and then g−nx→ g+. We apply Lemma 12.13, we see
that x = gn(g−nx)→ g+. This is a contradiction, completing the proof. �

12.4. Tits alternative in hyperbolic groups. We apply the general theory of a
convergence group action to a hyperbolic group on its Gromov boundary.

Recall that a finitely generated group G is hyperbolic if the Cayley graph G (G,S)
is hyperbolic for some finite generating set S.

For different generating sets of G, the corresponding Gromov boundaries are
homeomorphic (cf.Theorem 8.19). Thus, Gromov boundary ∂G of a hyperbolic
group G can be defined to be that of the Cayley graph G (G,S).

Since G acts freely on G (G,S), by Theorem 12.12, G acts as a convergence group
on its Gromov boundary.
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In a hyperbolic group, an infinite order element is called hyperbolic by definition.
The following lemma says that infinite order elements are hyperbolic with respect
to the convergence action on the Gromov boundary. Therefore, two notions of
hyperbolic elements are identical in hyperbolic groups.

Lemma 12.15. Let g be a hyperbolic element (by definition which is infinite order
element) in a hyperbolic group G. Then g has exactly two fixed points.

In other words, with respect to the convergence action on Gromov boundary,
there exists no parabolic elements in a hyperbolic group.

Proof. By Lemma 11.14, n ∈ Z → gn ∈ G is a (λ, c)-quasi-isometric map. We
connect gn, gn+1 for each n ∈ Z and get a quasi-geodesic path p. See lemma 7.18.

By the construction, there exists R > 0 in such that p ⊂ NR(gnp) for any n ∈ Z.
We shall construct a bi-infinite geodesic q which lies in an uniform neighbourhood
of p. Then the two directions of q defines two points in ∂G, which are fixed by g.

We fix a basepoint o ∈ p. Choose xn ∈ [o, p−]p, yn ∈ [o, p+]p such that d(o, xn) =
d(o, yn) = n for any n > 0. We connect xn, yn be a geodesic qn. By Lemma 7.13,

qn ⊂ ND([xn, yn]p), [xn, yn]p ⊂ ND(qn)

for an uniform constant D = D(λ, c) > 0.
Since d(o, qn) ≤ D, we apply Ascoli-Arzela Lamma to qn and find a subsequence

which converges to a bi-infinite geodesic q. Moreover, p ⊂ ND(q), q ⊂ ND(p). Thus,
q ⊂ NR+D(gnq) for any n ∈ Z.

Let q−, q+ be the two endpoints of q in ∂G. Then g(q−) = q−, g(q+) = q+. The
proof is completed by Corollary 12.2. �

Let g ∈ G be a hyperbolic element. By Lemma 12.13, we denote by g−, g+ the
repelling and attracting fixed points of g.

Lemma 12.16. Let g, h be two hyperbolic elements in G. Then either Fix(g) ∩
Fix(h) = ∅ or Fix(g) = Fix(h).

Proof. Without loss of generality, assume that g+ = h+. (Other cases are similar,
by taking inverses of h or g.) We shall prove that g− = h−.

We connect gn, gn+1 for each n ∈ Z and get a quasi-geodesic path pg. Similarly,
we construct a quasi-geodesic path ph for h. By the proof of Lemma 12.15, there
are two geodesics qg, qh such that qg ⊂ ND(pg), qh ⊂ ND(ph). Moreover, qg and qh
end at g+ = h+. In other words qg and qh are asymptotic at g+ = h+.

By thin triangle property, it is easy exercise that qg, qh are eventually lying
in an uniform 4δ-neighbourhood of each other. Now there exists a big number
N > 0 with the following property. For any n > N , there exists m such that
d(gn, hm) ≤ 2D + 4δ. So d(1, g−nhm) ≤ 2D + 4δ for any n ≥ N . Thus, there exist
n1 > n2 > N,m1 > m2 > 0 such that

g−n1hm1 = g−n2hm2 .

It follows that gk = hl, where k = n2−n1, l = m2−m1. Since gk, hl have the same
fixed points as g, h respectively, it follows that {g−, g+} = {h−, h+}. �

We are now ready to prove an analogue of Tits alternative in the setting of
hyperbolic groups. Recall that a group is elementary if it is finite or contains a
finite index cyclic group.
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Theorem 12.17. Let H be a subgroup in a hyperbolic group G. Then either H is
elementary or H contains a free subgroup of rank at least 2.

We present two different proofs. The first proof generalizes to any convergence
actions by a ping-pong argument.

Proof 1 (using convergence group property). Suppose that H is infinite. Let h ∈ H
be an infinite order element, which exists by Lemma 9.11. Let q be a geodesic
between h−, h+. By a similar argument as in the proof of Lemma 12.15, there
exists D > 0 such that 〈h〉 and q are lying in D-neighbourhood of each other. We
are going to analyze the following two cases.

Case I: every element g ∈ H preserves the endpoints h−, h+. Then gq also
connects h−, h+. Thus, gp, p are contained in a 4δ-neighborhood of each other. It
can proven that g〈h〉 = g′〈h〉 for some g′ with d(1, g′) ≤ D + 4δ. This implies that
[H : 〈h〉] <∞.

Case II: there exists g ∈ H which does not preserves h−, h+. Since ghg−1 is
a hyperbolic element with fixed points gh−, gh+, it follows by Lemma 12.16 that
g{h−, h+} ∩ {h−, h+} = ∅.

Choose U−, U+, V−, V+ be disjoint neighbourhoods of h−, h+, gh−, gh+ respec-
tively. By Lemma 12.13, there is a subsequence hni of hn such that hni → h+

locally uniformly in ∂G \ {h−}. Hence, there exist n,m > 0 such that

a(M \ U−) ⊂ U+, a
−1(M \ U+) ⊂ U−,

and

b(M \ V−) ⊂ V+, b
−1(M \ V+) ⊂ V−,

where a = hn, b = ghmg−1. Since U−, U+, V−, V+ are disjoint, we see that

a(X) ⊂ U+, X = U+, V−, V+; a−1(X) ⊂ U−, X = U−, V−, V+,

and

b(X) ⊂ V+, X = V+, U−, U+; b−1(X) ⊂ V−, X = V−, U−, U+.

By Ping-Pong Lemma 2.13, we see that 〈a, b〉 is a free group. �

Proof 2 (using local-global quasi-geodesics). The second proof proceeds similarly as
the first proof, but differs at the argument in the Case II proving that 〈hm, ghmg−1〉
is a free group of rank 2 for m� 0.

Fix m > 0 and Denote Tm := {am, bm, a−m, b−m}. The goal is to prove that the
natural map π : F(Tm)→ 〈Tm〉 < G is injective for m� 0. Let W = t1t2 · · · tn be
a reduced non-empty word over Tm where ti ∈ Tm. Let γW be the path labeled by
W in the Cayley graph G (G,S).

Claim. There exist λ, c,m0 > 0 such that for any m > m0, γW is (λ, c)-quasi-
geodesic.

Proof of the Claim. Define

L := min{d(1, t) : t ∈ Tm}
It is clear that L→∞ as m→∞. To prove quasi-geodesicity of γW , it suffices to
prove that γW is a L-local (γ′, c′)-quasi-geodesic for some λ′, c′ > 0.

Let α := {hn : n ∈ Z}, β := {ghng−1 : n ∈ Z} be the quasi-axis of h, ghg−1

respectively. To verify the local quasi-geodesicity, we are reduced to consider quasi-
geodesicity of four paths labeled by a±mb±n.
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Note that am, a−m ∈ α and bm, b−m ∈ β. Since quasi-geodesics α, β have disjoint
endpoints at the Gromov boundary, there exists D > 0 depending on quasigeodesic-
ity constant of α, β such that

diam(Prα(β)) ≤ D, diam(Prβ(α)) ≤ D.
It is easy exercise that there are λ′, c′ depending on D such that a±mb±n labels a
(γ′, c′)-quasi-geodesic for any n,m > 0.

Therefore, by taking sufficiently large m and so L, γW is a L-local (γ′, c′)-quasi-
geodesic. By Lemma 9.3, γW is a (γ, c)-quasi-geodesic. �

By the claim, the injectivity of π follows: indeed, if π(W ) = 1 in G, then the
endpoints of γW are the identity so γW has length at most c. However, γW contains
at least one geodesic labeled by a letter in Tm so Len(γW ) ≥ L. Choose m large
enough such that L > c. We thus obtain a contradiction. Hence, 〈Tm〉 is a free
group of rank 2. �
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13. Subgroups in convergence groups

All the results established in previous section are special cases of the general
theory of subgroups in convergence group action.

13.1. South-North dynamics of hyperbolic elements.

Lemma 13.1. A hyperbolic element h acts properly and co-compactly outside its
fixed points.

Proof. Let U−, U+ be disjoint open neighborhoods of h−, h+ respectively. By the
property of a convergence group, there exists n such that hniU+ ⊂ U+ for any
i ≥ 1. Similarly, there exists m such that h−miU− ⊂ U− for any i ≥ 1. By taking
mn, we can say that there exists n such that hniU+ ⊂ U+ for h−niU− ⊂ U− for
any i ≥ 1.

For simplicity, up to take a finite power of h, we can assume that hiU+ ⊂ U+

and h−iU− ⊂ U− for any i ≥ 1.

Define U̇+ = (X∞ \ hŪ−) ∩U+, U̇− = (X∞ \ h−1Ū+) ∩U−, which are open sets.

Then we claim that X∞ \ {U̇− ∪ U̇+} is a compact fundamental domain of 〈h〉.
First, hU̇+ ⊂ U̇+, since hU+ ⊂ U+ and hŪ c− ⊂ Ū c−. Similarly, h−1U̇− ⊂ U̇−.

Secondly, hU̇− ∩ U̇+ = ∅, since hU̇− ∩ U̇+ ⊂ hU− ∩ U̇+ = ∅. Similarly, h−1U̇+ ∩
U̇− = ∅.

Consequently, we obtain the following by using these two observations:

∩{hi(U̇+ ∪ U̇−) : i ∈ Z} = {hiU̇+ : i ∈ Z} ∩ {hiU̇− : i ∈ Z}.

By convergence property, it follows that

∩{hiU̇+ : i ∈ Z} = h+,∩{hiU̇− : i ∈ Z} = h−.

The proof is complete. �

Corollary 13.2. The stabilizer of the two fixed points of a hyperbolic element h ∈ G
contains 〈h〉 as a finite index subgroup.

The following is a generalization of Lemma 12.16 to convergence group actions.

Lemma 13.3. Let h be a hyperbolic element and p any element in G. If p(h−) =
h−, then p(h+) = h+.

In particular, a hyperbolic element can not share only one fixed point with a
parabolic or hyperbolic element.

Proof. Note that p(∂G \ {h−, h+}) = ∂G \ {h−, p(h+)} and p(h+) 6= h−, for h is a
homeomorphism on ∂G.

Assume to the contrary that p(h+) 6= h+. Then z := p−1(h+) ∈ ∂G \ {h−, h+}.
Thus, p(∂G \ {h−, z}) = ∂G \ {h−, h+}.

For any n, we have h−n(z) ∈ ∂G \ {h−, h+} and z 6= h−n(z). The equality
p(∂G \ {h−, z}) = ∂G \ {h−, h+} implies ph−n(z) ∈ ∂G \ {h−, h+}. Let K be
a compact fundamental domain for the action of 〈h〉 on ∂G \ {h−, h+}. Then
there exists m such that hmph−n(z) ∈ K. Note that hmph−n(h−) = h− and
hmph−n(h+) = hm(ph+)→ h+ for p(h+) 6= h−.

Noting that h± /∈ K, the convergence property for hmph−n shows that {hmph−n}
is a finite set. That is hrp = pht. Then pht(z) = hrp(z) = hr(h+) = h+ = p(z).
Thus, ht(z) = z . This is a contradiction, as h has only two fixed points h−, h+. �
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13.2. Producing loxodromic elements. We now give a helpful criteria to decide
whether an element is loxodromic.

Lemma 13.4. [1, Lemma 2.4] Let f ∈ G be an element of infinite order. If there
exists an open subset U ⊂M such that fU ⊂ U , then f is loxodromic.

Proof. By the assumption, we have fn+1(U) ⊂ fn(U) for n ≥ 1. Let K =⋂
0≤n≤∞ fn(U). Since M is compact, we obtain that K is nonempty. Moreover, it

is easy to see that K = fK.
On the other hand, let V := M \ U . Then we have f−1V ⊂ V . Let L =⋂

0≤n≤∞ f−n(V ). Arguing as above, we have L is nonempty and is f -invariant.
Note that K and L are disjoint closed f -invariant sets. By the convergence

property, we obtain that K and L consist of a single point, i.e., that K and L are
the fixed points of f . �

The following lemma is a direct corollary of Lemma 13.4.

Lemma 13.5. [1, Lemma 2.5] Let {gn} be a subsequence of G converging to b
locally uniformly on M \ {a}. If a 6= b, then gn is loxodromic for all sufficiently
large n.

Using Lemma 13.4, one can produce many loxodromic elements.

Lemma 13.6. Suppose f ∈ G is a loxodromic element with distinct fixed points
p, q ∈ M . Let g ∈ Γ be an element which does not keep invariant the set {p, q}.
Then fng or f−ng are loxodromic for all sufficiently large n. Moreover, p and q
are not the fixed points of fng and f−ng.

Proof. Since g does not preserve the set {p, q}, without loss of generality, suppose
that z = g(p) /∈ {p, q}. Assuming further that p is the attracting point of the
sequence {fn}. Otherwise, up to a change of notations, we replace fn by f−n.

As z /∈ {p, q}, we can take a small open neighborhood Up of p such that q /∈
Up and p, q /∈ gUp. Then the convergence property of {fn} gives the inclusion

fngUp ⊂ Up for all sufficiently large n. By Lemma 13.4, this implies that fng is
loxodromic. �

13.3. Limit sets of subgroups. In the sequel, we always assume that G is a
convergence group acting on M . In this setting, we introduce two equivalent defini-
tions of a limit set for a subgroup. The notation ΘM denotes the space of distinct
ordered triples of points of M .

Definition 13.7 (LS1). The limit set Λ1(Γ) of a subgroup Γ ⊂ G is the set of
accumulation points of all Γ-orbits in M .

The large diagonal 4M := M3 \Θ3M is the set of triples with at least two same
entries, i.e., (x, x, y) ∈ 4M . By sending each triple (x, x, y) ∈ 4M to x ∈ M , we
give the union Θ3M tM the quotient topology of the product topology M3. Thus
Θ3M tM is compact, and the subspace topology on M coincides with its original
compact topology.

The following lemma says that a convergence group also has the convergence
property on the compact space Θ3M tM .

Lemma 13.8. [1, Proposition 1.8] If G has the convergence property, then so
does G on Θ3M t M : for any sequence {gn} of G, there exists a subsequence
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{gni} and two points a, b ∈ M such that gni converges to b locally uniformly on
(Θ3M tM) \ {a}.

As above, M can be thought of as a boundary to compactify the triple space
Θ3M . By Definition 12.1, a convergence group acts properly discontinuously on
Θ3M . Inspired by a definition of limit sets in Kleinian groups, we give another
definition of limit set in convergence groups as follows.

Definition 13.9 (LS2). The limit set Λ2(Γ) of a subgroup Γ ⊂ G is the set of
accumulation points of a (or any) Γ-orbit in Θ3M .

Remark. It is easily seen that the qualifier “any” in the (LS2) definition is justified
by Lemma 13.8. Indeed, if z is the limit point of a sequence gnx for some x ∈ Θ3M ,
by Lemma 13.8, (some subsequence of) gn converges to z locally uniformly on
(Θ3M tM) \ {a} for some a ∈ M . Hence,we have gny → z for any y ∈ Θ3M .
Thus, the limit set Λ2(Γ) is independent of the choice of the orbit in Θ3M .

The following equivalence follows directly from the definitions and the above
remark. The proof is left as exercise (using similar arguments as in the remark).

Lemma 13.10. Let Γ be a subgroup of a convergence group G. Then Λ1(Γ) =
Λ2(Γ).

Exercise 13.11. Give a proof of Lemma 13.10.

In future, we will use Λ(Γ) to denote the limit set of Γ.

13.4. Conical points and parabolic points.

Definition 13.12. A point z ∈ M is called conical if there exists gn ∈ G and
(a, b) ∈M2 with a 6= b such that

gn(z, w)→ (a, b)

for any w 6= z ∈M .

Corollary 13.13. A conical point z ∈ ΛG is a limit point of G: it is an accumu-
lation point of some G-orbit.

Proof. By the convergence property, there exists a subsequence of gn still denoted
by gn such that

gn → x

locally uniformly on M \ y. Thus, x = b and y = z. By Exercise 12.10, we have
g−1
n → z locally uniformly on M \ b. Thus, z is a limit point of G. �

The following result generalizes Lemma 13.3: the fixed points of a hyperbolic
hyperbolic are conical.

Proposition 13.14. [1, Proposition 3.2] In a convergence group, a conical point
cannot be fixed by a parabolic point.

Proof. Suppose that z is a conical point. Thus, there exists gn ∈ G and (a, b) for
a 6= b ∈M such that gn(z, w)→ (a, b) for any w ∈M \z. Consequently, By Lemma
12.6, gn → b on M \ z and g−1

n → z on M \ b.
Fix n so that g−1

n b 6= z (passing to subsequence of gn, this holds for any n).
Thus, g−1

m gn → z on M \ g−1
n b. By Lemma 13.5, g−1

m gn is hyperbolic for sufficiently
large m.
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Let z = p(z) be a fixed point of a parabolic element p. Consider γn := gnpg
−1
n .

Then {γn} is an infinite set. Indeed, if it was finite, we would see that g−1
m gnp =

g−1
m gnp for m 6= n: a parabolic element is commute with a loxodromic element.

This is impossible by Lemma 13.3.
Therefore, γn contains a collapsing sequence still denoted by γn. Now gn(z)→ a

and γngn(z) = gnp(z) = gn(z) → a. And gn(w) → b and γngn(w) = gnp(w) → b
for p(w) 6= z. By the convergence property of γn (cf. Lemma 12.6), we conclude
that either γn → a on M \b or γn → b on M \a. By Lemma 13.5, γn is a loxodromic
element. However, γn = gnpg

−1
n is conjugate to a parabolic element p. This is a

contradiction. The proof is complete. �

13.5. Properties of limit sets. In this section, we aim to give some further char-
acterization of limit sets of non-elementary subgroups. Note that a subgroup of a
convergence group is non-elementary if its limit set contains more than two points.

Lemma 13.15. If |Λ(Γ)| ≥ 2, then Λ(Γ) is the minimal one among the family of
Γ-invariant closed subsets in M of cardinality at least two.

Proof. It is easy to see that the limit set Λ(Γ) is a Γ-invariant closed subset. So it
suffices to show that for any Γ-invariant closed subset N ⊂ M with |N | ≥ 2, we
have Λ(Γ) ⊂ N .

Let x, y be distinct points in N . We shall show that any point p ∈ Λ(Γ) is an
accumulation point of the orbit Γx or Γy.

Since p ∈ Λ(Γ), there exists a sequence {γn} and a point z ∈ M such that
γn(z)→ p. By the convergence property, we assume that γn converges to b locally
compactly on M \ {a} for two points a, b ∈M .

If b = p, then we are done with a choice of {x, y}, say x ∈ M \ {a}, such that
γn(x)→ p. In other words, p is an accumulation point of the orbit Γx.

If b 6= p, then we must have p = a, as γn(z)→ p. By the convergence property,
the inverse γ−1

n converges to a locally compactly on M \{b}. Hence we are reduced
to a similar case as “b = p”. Therefore, we obtain that every limit point of Γ is an
accumulation point of some Γ-orbit in N . The proof is complete. �

If we consider a non-elementary subgroup, the cardinality restriction in Lemma
13.15 will not be necessary.

The following result characterizes the limit set as the minimal, group invariant,
closed subset.

Theorem 13.16. If |Λ(Γ)| > 2, then Λ(Γ) is the minimal Γ-invariant closed subset
in M . In particular, Γ acts properly discontinuous on the complement M \ ΛΓ.

In fact, Theorem 13.16 is a direct consequence of Lemma 13.15 and the following
Lemma 13.17.

Lemma 13.17. If |Λ(Γ)| > 2, then Γ can not fix a point in M .

Proof of Lemma 13.17. Suppose, to the contrary, that Γ fixes a point p ∈ M . By
Proposition 13.14 or Lemma 13.3, a loxodromic element can not share only one
fixed point with a parabolic or loxodromic element. Then Γ can not contain both
loxodromic and parabolic elements.

Case I. If Γ contains a loxodromic element f , then all loxodromic elements in Γ
also fix the two fixed point of f . Moreover, the other elliptic elements in Γ also keep
invariant these two points. Otherwise, by Lemma 13.6, we can produce loxodromic
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elements which do not fix the fixed points of f . Hence Γ keeps invariant the two
fixed point of f . Then it follows that that 〈f〉 is a finite index subgroup in Γ. This
proves that Λ(Γ) consists of two points, a contradiction with the assumption that
|Λ(Γ)| > 2. Hence there are no loxodromic elements in Γ.

Case II. We are now able to assume that Γ consists of parabolic and elliptic
elements. Let q ∈ Λ(Γ) \ {p}. Then there exists a sequence γn and a point z ∈ M
such that γn(z) converges to the limit point q. By the convergence property, we
assume that γn → z locally uniformly on M \ {w}. Thus we have two cases as
follows.

First if z = q, then w = p, as p is fixed by Γ. Since p 6= q, by Lemma 13.5, we
obtain that γn have to be loxodromic elements for all sufficiently large n.

Otherwise, we assume z 6= q. It follows that w = q. By the convergence property,
we have the inverse γ−1

n → w locally uniformly on M \ {z}. As the first case, we
have that γn are loxodromic elements for all sufficiently large n.

Summarizing the above two cases, we got a contradiction with the just proved
fact that Γ can not contain loxodromic elements. Therefore, we conclude that Γ
could not fix a point in M . �

We now draw some corollaries to Theorem 13.16, which describe several well-
known properties on the limit sets of non-elementary subgroups.

Note that the set of accumulation points of a Γ-orbit in M gives a Γ-invariant
closed set. So for a non-elementary subgroup, the (LS1) defintion of its limit set
can be strengthened as the following form.

Corollary 13.18. If |Λ(Γ)| > 2, then Λ(Γ) is the set of accumulation points of a
(or any) Γ-orbit in M .

By Corollary 13.18, any Γ-orbit of a limit point is dense in the limit set Λ(Γ).
This shows that limit sets are perfect.

Corollary 13.19. If |Λ(Γ)| > 2, then Λ(Γ) has no isolated point, i.e. it is a perfect
set and contains uncountable many points.

If Λ(Γ) 6= M , then we take a Γ-orbit of a point in M \ Λ(Γ). Then the set of
accumulation points of this orbit is the limit set of Γ. This proves the following.

Corollary 13.20. If |Λ(Γ)| > 2 and Λ(Γ) 6= M , then Λ(Γ) has no interior points,
i.e. it is nowhere dense in M .

13.6. Classification of subgroups in convergence groups.

Theorem 13.21. Let H be a subgroup of a convergence group G acting on M . If
|Λ(H)| <∞, then exactly one of the following cases holds:

(1) H is finite,
(2) H consists of elliptic and parabolic elements. In this case, Λ(H) is one

point and H may be a torsion group.
(3) H contains a finite index subgroup generated by a hyperbolic element h. In

this case Λ(H) consists of two points.

If |Λ(H)| ≥ 3, then H contains a free subgroup of rank 2.

Proof. By the convergence property, |Λ(H)| ≤ 2.
Suppose that H is not a finite group. The proof of Lemma 13.17 shows the

second and third assertions. It remains to consider |Λ(H)| > 2.
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If |Λ(H)| ≥ 2, then there exist two loxodromic elements h, k such that their fixed
points are disjoint. Using ping-pong lemma as in the proof of Theorem 12.17, we
see that 〈hm, kn〉 is a free group of rank 2 for m,n� 0. �
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14. Introduction to relatively hyperbolic groups

There are various equivalent formulations of relative hyperbolicity. We start
with the definition of geometrically finite actions on hyperbolic spaces.

14.1. Cusp-uniform and geometrically finite actions. Assume that G admits
a proper action on a proper hyperbolic space (X, d). Let ΛG be the limit set of the
induced convergence action of G on the Gromov boundary of X (Definition 13.7).
Equivalently, ΛG also concides the set of the accumulation points of Gx for any
x ∈ X.

Definition 14.1 (Bounded parabolic point). A point p ∈ M in a convergence
group is called parabolic if its stabilizer Gp is infinite and p = ΛGp. If Gp acts
co-compactly on ΛG \ p, then p is called a bounded parabolic point.

Remark. The fixed point of a parabolic element must be a parabolic point: its
stabilizer is infinite, and ]ΛGp = 1 follows Theorem 13.21. However, the stabilizer
of a parabolic point may not necessarilly contain a parabolic element. In fact, it
may be an infinite torsion group.

Proposition 14.2 (Tukia [13]). In a convergence group, a conical point cannot be
a parabolic point.

Proof. Let z be a parabolic point. If Gz contains a parabolic element then the
conclusion follows from Proposition 13.14. Let us now assume that Gz is an infinite
torsion group: every element is ellptic. This case is proved by Tukia [13]. �

Definition 14.3. A function h : X → R is called a coarse horofunction at p ∈ ∂X
if there exist constants C1, C2 > 0 such that for any x, a ∈ X with d(a, [x, p]) ≤ C1,
we have

|h(x)− h(a)− d(x, a)| ≤ C2

Given a constant K > 0, a K-horoball Bp centered at p contains h−1((−∞, c]) and
is contained in h−1((−∞, c+K]) for some constant c.

Remark. A coarse horofunction is a quasi-perturbution of a horofunction defined
in Definition 17.4. Namely, for any coarse horofunction h, choose a geodesic ray γ
ending at p such that h(γ(0)) = 0. Then

|h− bγ |∞ = sup
x∈X
|h(x)− bγ(x)| <∞

where bγ(x) := limt→∞(d(x, γ(t))− d(γ(0), γ(t))).

Exercise 14.4. If X is a hyperbolic space, then a K-horoball Bp at p is σ-quasiconvex,
where σ depends on K and the coarse horofunction h at p (indeed the constants
C1, C2 there). Thus, a horoball itself is a hyperbolic space.

Moreover, the Gromov boundary of Bp consists of only one point.

Let Π be the set of bounded parabolic points in the limit set ΛG.

Definition 14.5 (Cusp-uniform action). If there exists a G-invariant family of
disjoint horoballs Bp centered at p ∈ Π so that the action of G on their complements
X \∪p∈ΠBp is co-compact, then the action of G on X is called geometrically finite.

Recall the definition of conical points in Definition 13.12 is defined using conver-
gence action. It admits the following geometric interpretation which explains the
name.
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Lemma 14.6. Let q be a limit point of G y X. If there exists a sequence of
elements gn such that sup{d(gno, γ)} < ∞ for every geodesic ray at q, then q is a
conical point.

Conversely, if q is a conical point, then there exists a sequence of elements gn
such that sup{d(gno, γ)} <∞ for every geodesic ray at q.

Lemma 14.7. Assume that G y X is geometrically finite. Then Π/G is finite
and every limit point of G is either bounded parabolic or conical.

Proof. Let p be a parabolic point and Bp the horoball at p. Since horoballs at
different points are disjoint, we have gBp = Bp for any g ∈ Gp and gBp ∩ Bp = ∅
for any g ∈ G \Gp. Thus, Gp acts co-compactly on the boundary ∂B. Indeed, by
assumption, G acts co-compactly on X \ ∪p∈ΠBp. Then the natural orbital map
gives a topological embedding of ∂Bp/Gp as a closed subset into X \ ∪p∈ΠBp/G.
Thus, ∂Bp/Gp is compact and the claim follows. As a consquence, Π/G is is a
finite set.

Let q be a non-parabolic point in ΛG. Since G y X \ ∪p∈ΠBp is compact, let
K be compact set K so that GK = X \ ∪p∈ΠBp.

Let o ∈ K be a basepoint. Consider a geodesic ray γ ending at q and issuing
from o. There exists a sequence of elements gn such that

d(gno, γ) ≤ D := diam(K) <∞

This implies that q is conical. �

Definition 14.8 (Geometrically finite action). If the limit set of a convergence
action GyM consists of bounded parabolic points and conical points, the action
of G on M is called geometrically finite.

Proposition 14.9. [3, Prop 6.13] Assume that G acts properly on a hyperbolic
space X so that every limit point is either bounded parabolic or conical. Then
Gy X is geometrically finite.

Lemma 14.10. Assume that G acts properly on a hyperbolic space X so that every
limit point is either bounded parabolic or conical. Then there exists a G-invariant
horoball at each bounded parabolic point.

Let H denote the set of maximal parabolic subgroups of the cusp-uniform action
of G on X. We also say that the pair (G,H) is relatively hyperbolic. The collection
H is often referred as a peripheral structure of G, and each element of H a peripheral
subgroup of G.

The following theorem of Yaman gives a topological chracterization of relatively
hperbolic groups.

Theorem 14.11 (Yaman). If a group G admits a geometrically finite convergence
action on a compact metrizable space M , then there exists a hyperbolic space X and
a cusp-uniform action of G on X such that the Gromov boundary is G-equivariant
homemorphic to the limit set of G in M .

14.2. Combinatorial horoballs. Let Γ be a connected graph, equipped with the
combinatoral metric d. We define a graph H(Γ) = Γ× N≥0 called a combinatorial
horoball over (horosphere) Γ so that the following holds:

(1) For k ≥ 0, we connect (v, k) and (v, k + 1) by a vertial edge of length 1.
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(2) For k ≥ 0, we add a horozontal edge of length 1 between every pair of
vertices (u, k), (v, k) ∈ Γ× {k} if d(u, v) ≤ 2k.

We consider a class of special paths in H(Γ) between any two points x =
(u, k), y = (v, l) as follows:

Let px be the vertical ray from x = (u, k) consisting of vertical edges (u, i) ↔
(u, i + 1) where i ≥ k. Let py be the vertical ray from y = (v, l). There exists a
minimal m ≥ k, l such that (u,m) is connected to (v,m) by a horozontal edge. The
special path from x to y is then obtained by connecting (u,m) ∈ px to (v,m) ∈ py
by one horozontal edge. The subpath of a special path is special.

By construction, it is easy to see that the triangle with special paths as sides
satisfies the thin triangle property: any side is contained in the 1-neighborhood of
the other two sides. With more effort (Exercise 14.13), we can show the following.

Lemma 14.12. The graph H(Γ) is a δ-hyperbolic space where δ is a universal
constant, where special paths are uniformly quasi-geodesics. The Gromov boundary
of H(Γ) consists of only one point.

Remark. Each sublevel set (i.e.: Γ × [N,∞)) of a combinatorial horoball is K-
horoball for a uniform constant K, since the height function (v, i) 7→ i is a coarse
horofunction.

If H acts by isometry on Γ, then H acts by isometry on H(Γ). In particular,
any finitely generated group acts properly on the combinatorial horoballs over its
Cayley graphs. However the action is “elemetrary”, since the group has a global
fixed point at the boundary.

Exercise 14.13. Let X be a geodesic metric space. Assume that we can choose a
family of special paths px,y from x to y such that

(1) px,y = py,x and subpaths of px,y are special paths between their endpoints.
(2) The triangle obtained by special paths has (uniform) thin-triangle property.

Then X is a hyperbolic space, where special paths are uniform quasi-geodesics.

Remark (on the proof). A proof can be given as follows: using the triangle property
(2), first prove analogue of Lemma 7.10, where [a, b] is replaced by a special path
between a, b, and then use it to prove analogue of Lemma 7.13: the specical path
follows travel quasi-geodesics.

14.3. Augmented spaces. We consider a finitely generated group G with a finite
collection of finitely generated subgroups H = {Hi}i∈I . Fix a finite generating set
S which contains the generating set of each H ∈ H. For each H-coset gH, we
atatch a copy gH(Γ) of a combinatorial horoball over its Cayley graph of gH. The
resulted space is called augmented space X(G,H).

Definition 14.14. The pair (G,H) is called relatively hyperbolic if the augmented
space X(G,H) is hyperbolic.

The following result is clear by definition of cusp-uniform action.

Lemma 14.15. If the augmented space is a hyperbolic space, then the action of G
on X(G,H) is cusp-uniform.
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15. Farb’s and Osin’s definition

In this susbection, we consider a countable groupG with a collection of subgroups
H = {Hi}i∈I . We refer the reader to [5] and [10] for more details, where the latter
considers finitely generated group but the latter allows even non-countable groups.

15.1. Coned-off and relative Cayley graphs. We shall put a metric dG on
a group G, which is proper if any bounded set is finite, and left invariant if
dG(gx1, gx2) = dG(x1, x2) for any g, x1, x2 ∈ G. For given g ∈ G, we define
the norm |g|dG with respect to dG to be the distance dG(1, g).

It is well-known that a group is countable if and only if it admits a proper left
invariant metric. Indeed, any countable group could be embedded into 2-generated
groups. Let dG be some proper, left invariant metric on G.

A subset X of G is a relative generating set for (G,H) if G is generated by the
set (∪i∈IHi) ∪X in the traditional sense.

Definition 15.1 (Relatively Cayley graphs). Fixing a relative generating set X
for (G,H), the constructed Cayley graph G (G,X ∪H) is called the relative Cayley
graph of G with respect to H.

The ramified version of of relative Cayley graphs is the following coned-off cayley
graphs introduced by Farb.

Definition 15.2 (Coned-off Cayley graphs). Fix a relative generating set X for
(G,H) and consider the Cayley graph G(G,X) of G with respect to X. Each left
coset gH for g ∈ G,H ∈ H is associated to a cone point cgH and a half edge
from each element in gH to the cone point c(gH) is added. The resulted graph

Ĝ(G,X ∪H) is called the Coned-off Cayley graph of G with respect to H.

It is clear that G (G,X ∪ H) is quasi-isometric to Ĝ(G,X ∪ H). From now on,
we assume that (G,H) has a finite relative generating set X.

15.2. BCP conditions. The following condition was introduced by Farb [5].

Definition 15.3. (Bounded coset penetration) The pair (G,H) is said to satisfy the
bounded coset penetration property with respect to dG (or BCP property with respect
to dG for short) if, for any λ ≥ 1, c ≥ 0, there exists a constant a = a(λ, c, dG)
such that the following conditions hold. Let p, q be (λ, c)-quasigeodesics without
backtracking in G (G,X ∪H) such that p− = q−, p+ = q+.

1) Suppose that s is anHi-component of p for someHi ∈ H, such that dG(s−, s+) >
a. Then there exists an Hi-component t of q such that t is connected to s.

2) Suppose that s and t are connected Hi-components of p and q respectively,
for some Hi ∈ H. Then dG(s−, t−) < a and dG(s+, t+) < a.

The following corollary is immediate by an elementary argument.

Corollary 15.4. BCP property of (G,H) is independent of the choice of left in-
variant proper metrics.

In view of Corollary 15.4, we shall not mention explicitly proper left invariant
metrics when saying the BCP property of (G,H).

Definition 15.5. (Farb Definition) A countable group G is hyperbolic relative to
H in the sense of Farb if the Caylay graph G (G,X ∪H) is hyperbolic and the pair
(G,H) satisfies the BCP property.



96 WENYUAN YANG

15.3. Osin’s Definition. The following terminoldge is introduced by Osin [10] in
relative Cayley graphs.

Definition 15.6. Let p, q be paths in G (G,X ∪H). A subpath s of p is called an
Hi-component, if s is the maximal subpath of p such that s is labeled by letters
from Hi.

Two Hi-components s, t of p, q respectively are called connected if there exists a
path c in G (G,X ∪H) such that c− = s−, c+ = t− and c is labeled by letters from
Hi. An Hi-component s of p is isolated if no other Hi-component of p is connected
to s.

We say a path p without backtracking by meaning that all Hi-components of p
are isolated. A vertex u of p is nonphase if there is an Hi-component s of p such
that u is a vertex of s but u 6= s−, u 6= s+. Other vertices of p are called phase.

As the notion of relative generating sets, we can define in a similar fashion the
relative presentations and (relative) Dehn functions of G with respect to H. We
refer the reader to [10] for precise definitions.

We now give the first definition of relative hyperbolicity due to Osin [10]. Note
that the full version of Osin’s definition applies to general groups without assuming
the finiteness of H.

Definition 15.7. (Osin Definition) A countable group G is hyperbolic relative to
H in the sense of Osin if G is finitely presented with respect to H and the relative
Dehn function of G with respect to H is linear.

The following lemma plays an important role in Osin’s approach [10] to relative
hyperbolicity. The finite subset Ω and constant κ below depend on the choice of
finite relative presentations of G with respect to H. In our later use of Lemma
15.8, when saying there exists κ,Ω such that the inequality (23) below holds in
G (G,X ∪ H), we have implicitly chosen a finite relative presentation of G with
respect to H.

Lemma 15.8. [10, Lemma 2.27] Suppose (G,H) is relatively hyperbolic in the
sense of Osin and X is a finite relative generating set for (G,H). Then there exists
κ ≥ 1 and a finite subset Ω ⊂ G such that the following holds. Let c be a cycle in
G (G,X ∪ H) with a set of isolated Hi-components S = {s1, . . . , sk} of c for some
i ∈ I, Then

(23)
∑
s∈S

dΩi(s−, s+) ≤ κLen(c),

where Ωi := Ω ∩Hi.

Remark. By the definition of dΩi , if dΩi(g, h) <∞ for g, h ∈ G, then there exists a
path p labeled by letters from Ωi in this new Cayley graph G (G,X ∪ Ω ∪ H) such
that p− = g, p+ = h.

Using Lemma 15.8, the following lemma can be proven exactly as Proposition
3.15 in [10]. The finite set Ω below is given by Lemma 15.8.

Lemma 15.9. [10] Suppose (G,H) is relatively hyperbolic in the sense of Osin
and X is a finite relative generating set for (G,H). For any λ ≥ 1, c ≥ 0, there
exists a constant ε = ε(λ, c) > 0 such that the following holds. Let p, q be (λ, c)-
quasigeodesics without backtracking in G (G,X ∪ H) such that p− = q−, p+ = q+.
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Then for any phase vertex u of p(resp. q), there exists a phase vertex v of q(resp.p)
such that dX∪Ω(u, v) < ε.

The following lemma is well-known in the theory of relatively hyperbolic groups.

Lemma 15.10. [10] Suppose (G,H) is relatively hyperbolic in the sense of Osin.
Then the following statements hold for any g ∈ G and Hi, Hj ∈ H,
1) If Hg

i ∩Hi is infinite, then g ∈ Hi,
2) If i 6= j, then Hg

i ∩Hj is finite.

The following lemma states that for a given finite relative generating set, we can
always find a finite subset Σ such that (G,H) satisfies BCP property with respect
to dΣ.

Lemma 15.11. Suppose (G,H) is relatively hyperbolic in the sense of Osin and X
is a finite relative generating set for (G,H). Then there exists a finite set Σ ⊂ G
such that then (G,H) satisfies BCP property with respect to dΣ.

Proof. Let Ω be the finite set given by Lemma 15.8 for G (G,X∪H). We take a new

finite relative generating set X̂ := X ∪ Ω. Using Lemma 15.8 again, we obtain a
finite set Σ and constant µ > 1 such that the inequality (23) holds in G (G, X̂ ∪H).

We now verify BCP property 1). Let p, q be (λ, c)-quasigeodesics without back-

tracking in G (G,X ∪ H). Since X̂ is finite, the embedding G (G,X ∪ H) ↪→
G (G, X̂ ∪ H) is a quasi-isometry. Regarded as paths in G (G, X̂ ∪ H), p, q are

(λ′, c′)-quasigeodesics without backtracking in G (G, X̂ ∪ H), for some constants

λ′ ≥ 1, c′ ≥ 0 depending on X̂.
Let ε = ε(λ, c) be the constant given by Lemma 15.9. Set

a = µ(λ′ + 1)(2ε+ 1) + c′µ.

We claim that a is the desired constant for the BCP property of (G,H). If not,
we suppose there exists an Hi-component s of p such that dΣ(s−, s+) > a and no
Hi-component of q is connected to s.

By Lemma 15.9, there exist phase vertices u, v of q such that dX∪Ω(s−, u) <

ε, dX∪Ω(s−, v) < ε. Thus by regarding p, q as paths in G (G, X̂ ∪ H), there exist
paths l and r labeled by letters from Ω such that l− = e−, l+ = u, r− = e+, and

r+ = v. We consider the cycle c := er[u, v]−1
q l−1 in G (G, X̂ ∪ H), where [u, v]q

denotes the subpath of q between u and v. Since [u, v]q is a (λ′, c′)-quasigeodesic,
we compute Len(c) by the triangle inequality and have

Len(c) ≤ (λ′ + 1)(2ε+ 1) + c′.

Obviously e is an isolated Hi-component of c. Using Lemma 15.8 for the cycle c in
G (G, X̂ ∪H), we have dΣ(e−, e+) < µLen(c) < a. This is a contradiction.

Therefore, BCP property 1) is verified with respect to dΣ. BCP property 2) can
be proven in a similar way. �

We conclude this subsection with the following theorem which is proven in [10]
for finitely generated relatively hyperbolic groups.

Theorem 15.12. The pair (G,H) is relatively hyperbolic in the sense of Farb if
and only if it is relatively hyperbolic in the sense of Osin.
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Proof. By Corollary ??, BCP property of (G,H) follows from Lemma 15.11. The
hyperbolicity of relative Cayley graph G (G,X∪H) is proven in [10, Corollary 2.54].
Thus, (G,H) is relatively hyperbolic in the sense of Farb.

The sufficient part is proven in the appendix of Osin [10] for finitely generated
relatively hyperbolic groups. We remark that the only argument involved to use
word metrics with respect to finite generating sets is in the proof of Lemma 6.12 in
[10]. But Osin’s argument also works for any proper left invariant metric. Hence,
Osin’s proof is through for the countable case. �
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16. Relatively quasiconvex subgroups

In this section, we shall introduce the notion of a relatively quasiconvex subgroup.
This is analogous to quasiconvexity of subgroups in hyperbolic groups. The main
result is that relatively quasiconvex subgroups are relatively hyperbolic with respect
to induced peripheral subgroups.

Definition 16.1. [6] Suppose (G,H) is relatively hyperbolic and d is some proper
left invariant metric on G. A subgroup Γ of G is called relatively σ-quasiconvex
with respect to H if there exists a constant σ = σ(d) > 0 such that the following
condition holds. Let p be an arbitrary geodesic path in G (G,X ∪ H) such that
p−, p+ ∈ Γ. Then for any vertex v ∈ p, there exists a vertex w ∈ Γ such that
d(u,w) < σ.

Corollary 16.2. [6] Relative quasiconvexity is independent of the choice of proper
left invariant metrics.

In fact, when proving relative quasiconvexity, we usually verify the relative qua-
siconvexity with respect to some partial distance function, as indicated in the fol-
lowing corollary.

Corollary 16.3. Suppose (G,H) is relatively hyperbolic and Γ is a subgroup of G.
Let A ⊂ G be a finite set and dA the partial distance function with respect to A. If
there exists a constant σ = σ(dA) > 0 such that for any geodesic p with endpoints
at Γ, the vertex set of p lies in σ-neighborhood of Γ with respect to dA. Then Γ is
relatively quasiconvex.

The following result says that there exists a quasi-isometric map between a
relatively quasiconvex subgroup to the ambient relatively hyperbolic group.

Lemma 16.4. Suppose (G,H) is relatively hyperbolic. Let Γ < G be relatively σ-
quasiconvex. Then Γ is finitely generated by a finite subset Y ⊂ G with respect to
a finite collection of subgroups

(24) K = {Hg
i ∩ Γ : |g|d < σ, i ∈ I, ] Hg

i ∩ Γ =∞}.
Moreover, X can be chosen such that Y ⊂ X and there is a Γ-equivariant quasi-
isometric map ι : G (Γ, Y ∪ K)→ G (G,X ∪H).

Proof. The argument is inspired by the one of [10, Lemma 4.14].
For any γ ∈ Γ, we take a geodesic p in G (G,X ∪ H) with endpoints 1 and γ.

Suppose the length of p is n. Let g0 = 1, g1, . . . , gn = γ be the consecutive vertices
of p. By the definition of relative quasiconvexity, for each vertex gi of p, there exists
an element γi in Γ such that d(gi, γi) < σ.

Denote by xi the element γ−1
i gi, and by ei+1 the edge of p going from gi to gi+1.

Obviously we have γi+1 = γixiLab(ei+1)x−1
i+1.

Set κ = max{|x|d : x ∈ X}. Then κ is finite, as X is finite. Let Z0 = {γ ∈ Γ :
|γ|d ≤ 2σ + κ} and Zx,y,i = {xhy−1 : h ∈ Hi} ∩ Γ. Since the metric d is proper,
the set Bσ := {g ∈ G : |g|d ≤ σ} is finite.

For simplifying notations, we define sets

Π = {(x, y, i) : x, y ∈ Bσ, i ∈ I}
and

Ξ = {(x, y, i) : ] Zx,y,i =∞, x, y ∈ Bσ, i ∈ I}.
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If ei+1 is an edge labeled by a letter from X, then the element xiLab(ei+1)x−1
i+1

belongs to Z0. If ei+1 is an edge labeled by a letter from Hk, then xiLab(ei+1)x−1
i+1

belongs to Zxi,xi+1,k. By the construction, we obtain that the subgroup Γ is also
generated by the set

Z := Z0 ∪
(
∪(x,y,i)∈ΠZx,y,i

)
.

For each (x, y, i) ∈ Π, if Zx,y,i is nonempty, then we take an element of the form
xhiy

−1 ∈ Zx,y,i for some hi ∈ Hi. Denote by Z1 the union of all such elements⋃
(x,y,i)∈Π xhiy

−1. Note that Z1 ⊂ Z. Then we have that Γ is generated by the set

Ẑ := Y ∪
(
∪(z,z,i)∈ΞZz,z,i

)
,

where Y := Z0 ∪Z1 ∪
(⋃

(z,z,i)∈Π\Ξ Zz,z,i

)
. Indeed, for each triple (x, y, i) ∈ Π, we

have

Zx,y,i = Zx,x,i · xhiy−1, where xhiy
−1 ∈ Z1.

On the other direction, it is obvious that Ẑ ⊂ Z.
Let X̂ = X ∪ Y ∪ Bσ. By the above construction, we define a Γ-equivariant

map φ from G (Γ, Z) to G (G, X̂ ∪ H) as follows. For each vertex γ ∈ V (G (Γ, Z)),
φ(γ) = γ. For each edge [γ, s] ∈ E(G (Γ, Z)), if s ∈ Z0, then φ([γ, s]) = [γ, s];
if s ∈ Zx,y,i for some (x, y, i) ∈ Ξ, then s = xty−1 for some t ∈ Hi and we set
φ([γ, s]) = [γ, x][γx, t][γxt, y−1].

For any γ1, γ2 ∈ V (G (Γ, Z)), it is easy to see that dX̂∪H(γ1, γ2) < 3dZ(γ1, γ2).
For the other direction, we take a geodesic q in G (G,X ∪H) with endpoints γ1, γ2.

Since X̂ is finite, there exist constants λ ≥ 1, c ≥ 0 depending only on X̂,
such that the graph embedding G (G,X ∪ H) ↪→ G (G, X̂ ∪ H) is a G-equivariant

(λ, c)-quasi-isometry. Thus, q is a (λ, c)-quasigeodesic in G (G, X̂ ∪H), i.e.

dX∪H(γ1, γ2) < λdX̂∪H(γ1, γ2) + c.

Since q is a geodesic in G (G,X∪H) ending at Γ, we can apply the above analysis
to q and obtain that dZ(γ1, γ2) < dX∪H(γ1, γ2). Then we have

dZ(γ1, γ2) < λdX̂∪H(γ1, γ2) + c.

Therefore, φ is a Γ-equivariant quasi-isometric map.
We now claim the subgraph embedding ı : G (Γ, Ẑ) ↪→ G (Γ, Z) is a Γ-equivariant

(2, 0)-quasi-isometry. This is due to the following observation: every element of Z

can be expressed as a word of Ẑ of length at most 2.
Finally, we obtain a Γ-equivariant quasi-isometric map ι := φ ·ı from G (Γ, Y ∪K)

to G (G, X̂ ∪H). �

Remark. Eliminating redundant entries of K such that all entries of K are non-
conjugate in Γ, we keep the same notation K for the reduced collection. It is easy
to see the construction of the quasi-isometric map ι : G (Γ, Y ∪ K)→ G (G,X ∪H)
works for the reduced K.

In the following of this subsection, we assume the Γ-equivariant quasi-isometric
map ι : G (Γ, Y ∪ K) → G (G,X ∪ H) is the one constructed in Lemma 16.4. In
particular X is the suitable chosen relative generating set such that Y ⊂ X.

Lemma 16.5. Suppose (G,H) is relatively hyperbolic. Let Γ < G be relatively σ-
quasiconvex. Then the quasi-isometric map ι : G (Γ, Y ∪ K) → G (G,X ∪ H) sends
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distinct peripheral K-cosets of Γ to a d-distance σ from distinct peripheral H-cosets
of G.

Proof. Taking into account Lemma 16.4 and Remark 16, we suppose all entries of
K are non-conjugate. We continue the notations in the proof of Lemma 16.4.

By the construction of φ, we can see the map φ sends the subset gZx,x,i to a
uniform d-distance σ from the peripheral coset gxHi of G for each (x, x, i) ∈ Ξ
and g ∈ G. Here σ is the quasiconvex constant associated to Γ. Observe that
ı : G (Γ, Ẑ) ↪→ G (Γ, Z) is an embedding. Therefore, we have the quasi-isometric
map ι = φ · ı maps each peripheral K-coset to a uniform distance from a peripheral
H-coset.

We now show the “injectivity” of ι on K-cosets. Let γHg
i ∩ Γ, γ′Hg′

i′ ∩ Γ be

distinct peripheral K-cosets of Γ, where γ, γ′ ∈ Γ and Hg
i ∩ Γ, Hg′

i′ ∩ Γ ∈ K.

Using Lemma 15.10, it is easy to deduce that if γ(Hg
i ∩ Γ)γ−1 ∩ (Hg′

i′ ∩ Γ) is
infinite, then i = i′ and γ ∈ Hg

i ∩ Γ.
It is seen from the above discussion that there is a uniform constant σ > 0, such

that ι(γHg
i ∩ Γ) ⊂ Nσ(γgHi) and ι(γ′Hg′

i′ ∩ Γ) ⊂ Nσ(γ′g′Hi′). It suffices to show
that γgHi 6= γ′g′Hi′ .

Without loss of generality, we assume that i = i′. Suppose, to the contrary,
that γgHi = γ′g′Hi. Then we have γg = γ′g′h for some h ∈ Hi. It follows that

γgHig
−1γ−1 = γ′g′Hig

′−1γ′−1. This implies that Hg
i ∩Γ is conjugate to Hg′

i ∩Γ in

Γ, i.e. Hg
i ∩Γ = (Hg′

i ∩Γ)γ
−1γ′ . Since any two entries of K are non-conjugate in Γ,

we have Hg
i ∩Γ = Hg′

i ∩Γ. As a consquence, we have γ−1γ′ ∈ Hg
i ∩Γ, as Hg

i ∩Γ ∈ K
is infinite. This is a contradiction, since we assumed γHg

i ∩ Γ 6= γ′Hg′

i′ ∩ Γ.
Therefore, ι sends distinct peripheral K-cosets of Γ to a uniform distance from

distinct peripheral H-cosets of G. �

Before proceeding to prove the relative hyperbolicity of relatively quasiconvex
subgroups, we need justify the finite collection K in (24) as a set of representatives

of Γ-conjugacy classes of K̂ in (25).

Lemma 16.6. [9] Suppose (G,H) is relatively hyperbolic. Let Γ < G be relatively
σ-quasiconvex. Then the following collection of subgroups of Γ

(25) K̂ = {Hg
i ∩ Γ : ] Hg

i ∩ Γ =∞, g ∈ G, i ∈ I}.

consists of finitely many Γ-conjugacy classes. In particular, K is a set of represen-
tatives of Γ-conjugacy classes of K̂.

Proof. This is proven by adapting an argument of Martinez-Pedroza [9, Proposition
1.5] with our formulation of BCP property 15.3. We refer the reader to [9] for the
details. �

We are ready to show the relative hyperbolicity of (Γ,K). Using notations in the
proof of Lemma 16.4, we recall that K = {Zx,x,i : (x, x, i) ∈ Ξ}.

Lemma 16.7. Suppose (G,H) is relatively hyperbolic. If Γ < G is relatively σ-
quasiconvex, then (Γ,K) is relatively hyperbolic.

Proof. Recall that ι is the Γ-equivariant quasi-isometric map from G (Γ, Y ∪ K) to
G (G,X ∪H). In particular we assumed Y ⊂ X.
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We shall prove the relative hyperbolicity of Γ using Farb’s definition. First, it is
straightforward to verify that G (Γ, Y ∪K) has the thin-triangle property, using the
quasi-isometric map ι and the hyperbolicity of G (G,X ∪H).

Let dG be a proper left invariant metric on G. Denote by dΓ the restriction of
dG on Γ. Obviously dΓ is a proper left invariant metric on Γ. We are going to verify
BCP property 1) with respect to dΓ, for the pair (Γ,K). The verification of BCP
property 2) is similar.

Let [γ, s] be an edge of G (Γ, Y ∪ K), where s ∈ Zx,x,i for some (x, x, i) ∈
Ξ. By the construction of ι, [γ, s] is mapped by ι to the concatenated path
[γ, x][γx, t][γzt, x−1], which clearly contains an Hi-component [γx, t]. Note that
|x|d ≤ σ. To simplify notations, we reindex K = {Kj}j∈J .

Given λ ≥ 1 and c ≥ 0, we consider two (λ, c)-quasigeodesics p, q without back-
tracking in G (Γ, Y ∪ K) such that p− = q−, p+ = q+. By Lemma 16.5, as p, q are
assumed to have no backtracking, the paths p̂ = ι(p), q̂ = ι(q) in G (G,X ∪H) also
have no backtracking. Moreover, for each Hi-component ŝ of p̂(resp. q̂), there is a
Kj-component s of p(resp. q) such that ŝ ⊂ ι(s).

Note that paths p̂, q̂ are (λ′,c′)-quasigeodesic without backtracking in G (G,X ∪
H) for some λ′ ≥ 1, c′ ≥ 1. By BCP property of (G,H), we have the constant
â = a(λ′, c′, dG). Set a = â + 2σ, where σ is the quasiconvex constant of Γ. Let
s be a Kj-component of p for some j ∈ J . We claim that if dΓ(s−, s+) > a, then
there is a Kj-component t of q connected to s.

By the property of the map ι, there exists an Hi-component ŝ of p̂ such that the
following hold

dG(ŝ−, ι(s)−) ≤ σ, dG(ŝ+, ι(s)+) ≤ σ.
Thus, we have dG(ŝ−, ŝ+) > â. Using BCP property 1) of (G,H), there exists an
Hi-component t̂ of q̂, that is connected to ŝ. By the construction of ι, there is a
Kk-component t of q for some k ∈ J such that t̂ ⊂ ι(t).

Since ŝ and t̂ are connected as Hi-components, endpoints of ŝ and t̂ belong to
the same Hi-coset. By Lemma 16.5, it follows that k = j. Furthermore, endpoints
of s and t must belong to the same Kj-coset. Hence s and t are connected in
G (Γ, Y ∪ K). Therefore, it is verified that (Γ,K) satisfies BCP property 1). �
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17. Boundaries of relative hyperbolic groups

17.1. Topological characterization of hyperbolic groups. We say that a con-
vergence group action is a uniform convergence group if it acts properly discontin-
uously and cocompactly on the space of distinct triples.

Theorem 17.1 (Bowditch). A convergence group is uniform if and only if it is
hyperbolic.

Theorem 17.2 (Tukia). A convergence group is uniform if and only if every limit
points are conical.

Theorem 17.3. A subgroup H is quasiconvex in a hyperbolic group if and only if
every limit points of H are conical.

17.2. Horofunction (Buseman) boundary. Let X be a metric space. Fix a
basepoint o ∈ X. Consider the family of nomalized distance functions at each
point x ∈ X:

X = {y 7→ bx(y) : x ∈ X}
where bx(y) := d(x, y) − d(o, y). So we can identify X with X by sending x to a
1-lipschitz function bx(·).

Let Lip1(X, o) be the set of 1-lipschitz functions on X vanishing at the basepoint
o. By the following exercise, X is precompact in Lip1(X, o) endowed with uniform
convergence topology on bounded balls equivalently, pointwise convergence). Note
that X with the subspace topology is homeomorphic to X with metric topology.
So X admits a topological embedding into Lip1(X, o).

Definition 17.4. The horofunction compactification X̄ of X is the toplogical clo-
sure of X in Lip1(X, o), and the horofunction boundary denoted by ∂bX is X̄ \X.
The latter is the set of limiting functions bξ(y) of X which are called horofunctions.
Namely, each point ξ ∈ ∂bX is associated with 1-lipschitz horofunction as follows:

bξ(y) = lim
xn→ξ

bxn(y).

In plain words, ∂bX can be understood either as a set of points to compactify X
or as the set of horofunctions in the space of 1-lipschitz functions

Exercise 17.5. Let F be a family of L-lipschitz functions on a metric space X.
Prove that F (x) := inf{f(x) : f ∈ F} is L-lipschitz if F is finite on one point.

Corollary 17.6 (McShane). If f is a L-lipschtz function on a subset A of a metric
space, then there exists an L-lipschitz extension of f to X.

Proof. The extension is given by F (x) = infa∈A{f(a) + L · d(a, x)}. �

Lemma 17.7. Let X be a separable metric space. Each isometry g of X extends
by homeomorphism to horofunction compactification ∂bX ∪X: the isometry on X
extends to horofunction boundary ∂g : ∂bX → ∂bX defined by

∂g : ξ 7→ ∂g(ξ) := bξ(g
−1y)− bξ(g−1o)

where bξ(y) is the horofunction associated to ξ.

Proof. If xn → ξ for xn ∈ X, then bxn(y)→ bξ(y) for any y ∈ X. Noting

bgxn(y) = d(y, gxn)− d(o, gxn) = d(g−1y, xn)− d(g−1o, xn)

we see that bgxn(y)→ bξ(g
−1y)− bξ(g−1o). Thus, g extends to a homeomorphism

on ∂bX ∪X. �
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Exercise 17.8. Let X be a hyperbolic space. There exists a continuous and sur-
jective map from the horofunction boundary ∂bX to Gromov boundary ∂X.

17.3. Floyd boundary.
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