作业#1(3月14日上课收集作业): 讲义中练习1.5, 1.6, 1.12, 2.7, 2.8, 2.10, 2.12。
证明:a finitely generated group is a countable group.
练习(选做):draw a porportion of the Cayley graph of the group given by
作业#4(4月25日上课收集作业):讲义中练习6.13, 6.14, 6.26, 7.5, 7.14.
证明: Given t>0, any subpath of a t-taut path is t-taut.
证明: Two free groups of finite rank at least 2 are quasi-isometric.
选题2:Stallings' paper "Topology of finite graphs"。其中引入了一个后来广泛使用的Stallings folding技术。
阅读文献:John R. Stallings. Topology of finite graphs. Inventiones Mathematicae, vol. 71 (1983), no. 3, pp. 551–565.
M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, vol. 319, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999.
一本针对本科生的介绍几何群论的书,包含很多有意思的例子:
J.Meier, Groups, graphs and trees: An introduction to the geometry of infinite groups, Cambridge University Press, Cambridge, 2008.