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5 - Topological methods in group theory

PETER SCOTT and TERRY WALL
University of Liverpool

Introduction

This article is a revised version of notes on an advanced course
given in Liverpool from January to March 1977 in preparation for the
symposium. The lectures given by Terry Wall at the symposium were
mainly taken from Sections 3 and 4, and much of the material in John
Stallings' lectures is in Sections 5 and 6. It seemed worth publishing
the whole, as a rather full introduction to the area for those with a back-
ground in topology. Originality is not claimed for the results in the
earlier sections (though full references have not always been given), but
the uniqueness results in Section 7 and most of Section 8 are due to
Peter Scott.

1. BASIC NOTIONS

The link between topology and group theory comes from the funda-
mental group. I shall make no attempt to present this: almost every
introductory topology text does so. Particularly suitable for this course
is Massey's book [18]. An equivalent account, from a different viewpoint,
is given by Brown [2]. Let us recall the basic properties of the funda-

mental group.

(1) For every topological space X and point x € X we have a
group nl(x; x). This depends only on the path component of X containing
%x. A path from x to y induces an isomorphism nl(x; X) = nl(x; y); a
closed path induces an inner automorphism. Amap f:X-Y with
f(x) =y induces a homomorphism f, : nl(X; x) — nl(Y; y), and this
assignment is functorial: in fact we have a homotopy functor.

(2) A map 7n:Z =X isa covering if it is locally trivial, with
discrete fibres - i. e. every x € X has a neighbourhood U, and a homeo-
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morphism 7 (U) U x D with D discrete, such that pr, °h=1. For
a covering 7, and z € Z, the map 7, : 7 (Z; z)—~ nl(X; f(z)) is injective.
If X is reasonably nice (the minimal technical conditions are path-
connected, locally path-connected, and weakly locally 1-connected), the
correspondence between triples (7 : 2 =X a connected covering,

Z € n'l(x)) and subgroups 7,7, (Z;z) of "1(X; X) induces an isomor-
phism of categories. Hence, in particular, the coverings are isomorphic

if and only if the corresponding subgroups are conjugate.

(3) The third basic fact we need to recall is the technique for
calculating fundamental groups, due to van Kampen. First suppose Xl,
Xz are path connected open subsets of X, with path-connected intersection
Xo. Then for any base point x € Xo, we have the following commutative

diagram in which all the maps are induced by inclusions of spaces.

i

1 » .
nl (XO' x) v ”l(xl ’ X)
i2 . jl
JZ
LR (Xz, X) > nl(x, X)

Proposition 1.1, This is a pushout diagram in the category of

groups. In other words, for any group G we have a bijection, induced
by (j,, i,), Hom(s (X; x), G) = {(f , ,) € Hom(n (X ;x), G) X
Hom(m (Xz; x), G): 1 i = f,i, € Hom(n (X ; x), G) }.

The standard argument with universals shows that the pushout is
uniquely determined; existence is provided by the proposition. The proof,
involving breaking up a path in X into subpaths each lying in Xl or Xz,
is somewhat messy. The restriction that the Xi are open can be relaxed
if each is a deformation retract of some neighbourhood, as is usually the
case in practice,

The restriction that Xo be connected is less desirable. One may
reformulate the proposition to cover this case by using groupoids [2].
More nawely, suppose X has just two path- components Y and Z;
define Z by identifying x and X along Z, and X by attaching Y X1

to Z by identifying Y X i to the copy Yo, of Y in Xi+1 i=o0, 1)

There is an obvious map ¢ : X =X (identify Y X I to Y) which is usually
a homotopy equivalence, and induces isomorphisms of . We can calcu-
late = (Z) by Proposition 1, 1,

S

Now choose a base point y ¢ Y; let ¥; be the corresponding point

in Yi’ and ! apathin Z joining ¥, to v, We have homomorphisms
@ mOGyyEn ¥ 5y)=n(2;y),
(Y ) = : Fev)Ea (3
a, : 1r1(Y, y) = "1(Yz' yz) »nl(Z; yz) = "1(2; yl).

Proposition 1. 2. For any group G, we have a bijection

Hom(n X; ¥,), G) =1(f,, t) eHom(, (E;yl), G) X G:

-1
flaz(p)=t f1°’1(p)t for all pen (Y; vl

Here, fl is the composxte n (Z, v, )= (X Y, )= G, and t is the
image of the class in 7 (X ¥, ) of the loop ] U y X I

We will show that Propositlon 1. 2 follows from Proposition 1. 1.

In order to start our study of fundamental groups, we need to know
that the circle S' has infinite cyclic fundamental group, This is easy to
prove using the covering of s' by the real line R. One might think of
deducing this result from Proposition 1. 2 by taking X to be s' and X

" and X, tobe open intervals. For then Hom(n, (X), G) = G for any
} group G However our proof of Proposition 1. 2 uses the fact that st

has infinite cyclic fundamental group, Here is a quick sketch of that proof.
First, the intermediate space W = Zu (y X I) can be considered

'35 the union of Z and the circle Z u (y X I) intersecting in the arc I.
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Hence nl(vz', yl) is the pushout of Z+~ 1 — 1:1(2, yl), i. e. (see later)
the free product Z » ul(TZ, yl).’ Now X=Wu (Y X1I), and ,
Wo(YxD=(YXx0)u(yxDu(Y x1). Wededuce, after a little mani-

pulation, a pushout diagram

7 (Y, y)* (Y, y) —2L sz xn(3,y)

|

(¥, y) > 7 (X, y,)

where ¢ is givenby a_ on the first factorandby crt- az(c) - t™! on

1
the second. This is equivalent to Proposition 1.2, We have given the
proposition independently, however, since it introduces a construction

which will be important below.

Example 1.3, X = s v s , the one-point union. Now apply Propo-
sition 1. 1, taking Xl, X2 as the two circles. Thus Hom(nl(x;y),G) =
G X G, The group nl(X, y) is called the free group on generators t,
t2 the classes of the circles.

To put some bones into this abstraction, we next give a concrete
description of this free group on t, u. A letter is any one of t, u, t, u
A word is a finite (perhaps empty) sequence of letters. The word is

reduced if none of tt, tt, uu, uu occurs as a pair of consecutive letters.

Theorem 1.4. There is a bijection between elements of the free

group F on t, u and the set W of reduced words. Each word defines

an element of G by forming the product of various of t, u, t'l, ut in

the indicated order.

Proof. (i) Observe that F contains the elements t, u and hence

-1
the set H of products of finite ordered sequences of elements t, u, t -,

u'l. Clearly H is closed under products and inverses, hence is a sub-
group. There is a homomorphism F —=H suchthat t=t, u=u The
composite F=H CF coincides with the identity on t, u hence is the

identity. Thus F = H,

‘By definition, each element of H is represented by a word. If the
word is not reduced, we can cancel products tt'1 etc. Thus each ele-
ment is represented by a reduced word and we have a surjection a@:W=F,

It remains to prove a bijective,

(ii) Write S for the symmetric group on the set W of reduced
words. Define permutations 7, 9 € S as follows: If the word w ends in
t (resp. u), then w7 (resp. w9) is obtained from w by deleting the
last letter. Otherwise, w7 (resp, w9) consists of w followed by t
{resp. u)., We see at once that these are permutations with inverses
1"1, 97! defined similarly but interchanging the roles of t and t (resp.
u and u).

By definition of F, there is a unique homomorphism ¢ : F =S such
that ¢(t) =7, ¢(u) =S, We definea map B: F =W by B(g) = ¢(g) (1).
For any reduced word w, we see by induction on the length of w that
Bla(w)) = w. Thus « is injective, hence bijective.

We used the example of Sl v S1 to demonstrate the existence of a
free group F of rank two. Note that the proof above does this quite
independently for it shows that the set W has a natural group structure
which makes it a free group of rank two.

There is an obvious analogue to the above for the free group F(X)
on any set X of generators. If X is finite, existence is seen by in-
duction. We observe that if X1 C Xz’ the natural map F(Xl) - F(Xz) is
injective. Now for X infinite, define

F(X)=U{F(Y): YC X, Y finite).

1f v, € F(Yi) CFX) for i=1, 2, 3 we define AN to be the product in
l“(Yl u Yz)’ Asgsociativity follows by considering F(Y1 v Yz v Y}). It is
immediately verified that for any G, restriction to X yields a bijection
Hom(F(X), G) = Map(X, G), so F(X) is th- free group on X.

Now consider any group G, set X and map ¢ : X~ G, By the
above, ¢ has a unique extension Y : F(X) = G to a homomorphism whose
image is then a subgroup X. Any element of X can be written as a word
in the elements ¢(x), and thus lies in any subgroup of G containing ¢(X).
Thus X is the intersection of the subgroups containing ¢(X): it is called

141



the subgroup generated by ¢(X) (orby ¢). If X =G, wesay G is
generated by ¢(X).

Now consider a finite CW-complex K with one vertex x. .By
induction we see that the 1-skeleton K' has free fundamental group
generated by the classes 8 of the 1-cells. As K' is a deformation
retract of a neighbourhood, we can apply van Kampen's theorem to cal-
culate the effect on the fundamental group of attaching a 2-cell ez. Now
e? is contractible, and a suitable neighbourhood of K' meets it ina copy
of ' xR. The map @ :S' = NK')~K' is homotopic to the attaching
map of the cell, and determines a,:Z = "181 - anl with a,(1)=r,

say.

Then ul(Kl u e?) is the pushout of

*

z > 7, (K)

1)

Arguing similarly with the other 2-cells ej, we find that if their
attaching maps yield classes rj €mn (Kl), then the 2-skeleton K has
fundamental group LA (Kz) characterized by the property that for any
group G,

Hom(n (K%), G) = f enom(ul(x‘), G):
f(rj) =1 for each j}.

Since nl(Kl) is freeon (g, i €1}, { is determined by the f(g,).
The sequence Igilrj} where the g; are abstract symbols and
s €F lgi} is called a presentation of 2 if, for any G, Hom(n, G) is
given as above. The same argument as in (i) of the proof above shows
that the images of the 8; are generators of 7. The r]. are called

relators. Let N be the subgroup of F {gi} generated by the T and

all their conjugates: N is called the normal closure of the rj. Clearly
it is the least normal subgroup of F {gi] containing them all. Hence

F {gi } /N has the universal property defining Igilrj }: this yields a
construction of this group. Again, the restriction to finite sets of genera-
tors and relators is easily seen to be irrelevant.

Of course you have all seen generators and relators before: here it
is the relation with two dimensional CW complexes that I wish to stress.
{(Incidentally, adding cells of dimension > 2 does not affect 7, as we
see on applying van Kampen's theorem again.) For example, let X2 be

any such - say having one vertex x - and Y any space.

Lemma 1.5. For any homomorphism ¢ : ul(xz, X) - ﬂl(Y, y)

there is a map a: X’ =Y with a, = ¢,

Proof. The 1-cells and 2-cells of X’ give a presentation
m x?) = {gilrj }. The image of g; by ¢ isanelementof 7 (Y), repre-
sented by a map (Sl, x) = (Y, y). Use these maps to define al i x' -y,
Then we have a diagram

o 1
Flg} =7 X, x ol

= nl(Xz, x)

{gilrj}

which commutes, by construction of a'. Hence ai(r].) =1, For each

2-cell of X, with characteristic map
2 ol 1
xj : (0%, 8=, X, x)

the class of x.|S1 is rj (by definition) so the class of al ° )(J.|S1 is
al,(rj) =1. Thus at1 ° X ] is nullhomotopic, so there is a continuous
extension

zpj:DZ-oY

1
with leIS =a'o (lesl). Now by definition of the topology of X as an
identification space, the diagram
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X' v U %) 1, v
j I
linc!u{xj} -7
XZ /”
defines a map « : X =Y such that ozlx1 =a' and as X, = .

J i
Since nl(Xz, x) is a quotient of 'nl(Xl, x) it follows that a, = ¢.

Remarks. The condition that X has dimension 2 is essential
here. However, a particularly interesting case is when Y is such that
LN (Y, y) =7 and for any (X, x) the map @ - a, gives a bijection
between homotopy classes of maps (X, x) = (Y, y) and HOm(TI X, x), 7).
Sucha (Y, y) is called a classifying space for # (or Exlenberg-

MacLane space K(m, 1)). The usual argument with universals shows its
uniqueness (up to homotopy); existence is also not hard to prove, for any
7. However, the existenceof a Y whichise.g. a manifold, or finite
complex imposes an interesting and subtle condition on 7.

1 now return to Propositions 1.1 and 1.2. We have obtained in some
cases fairly explicit descriptions of the groups so defined. I will now give
some useful generalizations of these.

The real beginning of our subject was the discovery that in the case
when the maps are injective one can obtain structure theorems similar to
1.4. 1Infact a description of A *o B in terms of reduced words was
already given by Schreier in 1927 [36], but a more thorough account and
the start of the recent work of the subject is contained in Hanna Neumann's
thesis [35]. The groups A *c 80 back to [13], though they are not actually
defined in that paper. There have of course been many papers on the
subject since; our account derives from those of Serre [22] and Cohen [5]
and seems simpler and more natural than the original papers.

Propositions 1.1, resp. 1.2 concerned diagrams

a B
resp. C _—_l__—zA -—===G
o

1AA

Definition, If the maps «,, @, are injective, the universal group
G is called the free product of A and B amalgamated along C (resp.

amalgamated free product of A -along C), and denoted by A *o B resp.
A *c If C is the trivial group, then A *o B is denoted by A * B and

is called the free product of A and B.

,

Note. There seems no reason except tradition for calling the first
an amalgamated product but the second an HNN group.

We now present the traditional combinatorial arguments for analysing
the structure of amalgamated products. Essentially equivalent results will
be obtained below independently by geometrical reasoning,

In each of the above cases, one can give an explicit description using
reduced words. The easy first half of the proof of Theorem 1. 4 shows
(with only slight changes) that any element of A *o B can be writtenasa
product

a1b1a2bz - anbn with a, € [31 (A), bi € BZ(B) (maybe = 1)

and that any element of A *c can be written as

PP Tn .

alt azt vee ant with a, € (A), r, €Z.
Now we restrict our attention to A *o B. Again, it is clear that some-
reduction is possible - e, g. for ¢ €C, ﬁl (a)Bz(az(c)- b)=ﬁ1 (a- al(c))ﬁz(b).
We deal with this by pushing all the c's to the right, as follows. To
simplify notation, write @,a, as inclusions so C € A, C € B. Pick
representatives a, € A for the right cosets a. C of C - thus givinga
section of the prolectlon A=+ A/C, orright transversal of C in A; then
do the same for B. We impose the restriction that the identity coset C
is represented by the identity element.

A reduced word is now a sequence

ab ...abc
11 2,°n

such that ¢ € C, a, belongs to the chosen transversal TA for C in A,
bi belongs to the chosen transversal TB for C in B and
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ai=1=> i=1, bi=1=> i=n.
Any element of A *c B may be represented by a reduced word.

For write the element as

and use induction on n. For n =0, the empty word may be represented
by 1 €C: a reduced word. Otherwise, by inductive hypothesis, we may
write

:11bl cee @ 1bn 1 =a;b; a;.b;.c', a reduced word with r=n-1,

If now b;‘ =1 resp. a € C then (a;c'an) €A resp. (b;c'anbn) €B
and we have a word of length = r, which may be reduced by inductive
3 3 3 1 —_— L] ” 3 1

hypothesis, Otherwise write c¢ a =2 ,,¢ with 1 # ai € TA and

L — ]
c bn = br+1c with br+l € TB and we have a reduced word

] * 1 *
alblaz br+1° .

Theorem 1. 6. The maps A —~A *©c B, B—~A *C B are injective:

every element may be represented by a unique reduced word.

Proof. Again write W for the set of reduced words.
Define an actionof B on W by

(a.b

b_ [P — et § s ("
1 1...anbnc) _al...anbc tfbncb-bc in B with b c'I‘B.

To check that this is an action, observe that the part of the word up to
(and including) a is left fixed; for the words a, ... anbnc which start
so, it is equivalent to the right action of B on itself.

Define an action of A on W by

a ... ba'c if b #1, ca=a'c' witha' eTA
1 n n

a_
(alb1 anbnc) = {

a ... b

Matt 3 — — N
h-12"¢ if bn—l, a ca=a’c with

a eTA

To check that this is an action, observe that the part of the word up to bn
(ft b #1) or b, (if b =1) is fixed; the rest is the standard right
action. This defines maps A =+ S(W), B = S(W) which clearly agree on
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C, hence define A *c B A S(W). It is now immediate by induction again
that ( )¢(w) =w for any reduced word w, so these elements of the group
are distinct.

For A *c we proceed similarly. Pick right transversals Ti of
ai(C) in A. Now taz(c)= al(c)t 80 t'lal(c'l)= ()tz(t:'l)t’l and we

define a reduced word to be one of the form I

€ € €
n

1 2

alt azt ant a
where € = +], a, eT1 if g = +1, a; ET2 if g =-1 and moreover
a, #1 if €1 # € We let a4 be arbitrary. The above relations

allow us to bring any word to a reduced form.

Theorem 1.7. Themap $:A —A »

is represented by a unique reduced word.

C is injective, Every element

Proof, Again we define an action. The element a € A acts by

sending the final an to a3 t corresponds to the permutation 7
defined by setting

€ €

1 ! n —
(alt cen dnt an_H)-r =
81 En 1 1
t .. - N i = -
a an_lt (an0201 (an+l)) if € 1 and an+1€al(C)
€
1 n .
alt e ant a;l+1taz(c') otherwise, where

— 1 3 ]
a4 a4, al(c') with a eTl .

We see that this is a permutation by verifying that an inverse is given by
€ “n
(alt ant an+1)-r=

€ €
1 n-1 -1
at ... =
an_lt (analaz (an+l)) if e +1 and a4y € az(C),
€
1 n -1
alt ant a;’lﬂt al(c") otherwise, where
a s n n 3 ”
0+l an+laz(c ) with ari cTz .

The proof now concludes as before.
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2. GRUSKO'S THEOREM

Grusko's Theorem. Let F be a finitely generated free group,

G= Gl * Gz and let ¢ : F—= G be an epimorphism. Then there are
subgroups F1 and F2 of F suchthat F=F =« F2 and ¢(Fi) = Gi’
This is a subtle result about generators of G, It says that if G

can be generated by n elements, then there exists a set of n generators

for G with each element in G1 or Gz‘ This gives us the inequality
#(G) = pu(G)) + 1(G,)

where p(G) denotes the minimal number of generators of a group. But the

reverse inequality is obvious, so we deduce
Corollary 2,1, If G= G1 » Gz’ then p(G) = u(Gl) + p(Gz).

As only the trivial group can have p equal to zero, we see that
p(Gi) < p(G) when G1 and Gz are nontrivial.

Corollary 2,2, Ii G is a finitely generated group, then

G= G1 * ... Gn for some n, where each Gi is indecomposable, (I e.

G.l =A +B implies A or B is trivial.)

We now give Stallings’ proof [25] of Grusko's Theorem. See [12]
for a proof using groupoids and see [3] for a proof using Bass-Serre
theory (Chapter 4 of these notes).

Pick two CW-complexes with fundamental groups G1 and G2 and
construct a CW-complex X with fundamental group G1 * G2 by joining
these two complexes with an interval E. Let v denote the midpoint of
E and subdivide E so that v is a vertex of E, We will take v as the
basepoint of X, Let Xi denote the closure of the component of X - {v]}
whose fundamental group is Gi'

Let K be a based space and let f : K=~ X be a based map. We will
say that f represents ¢ if there is an isomorphism of "1(K) with F
such that the diagram below commutes.

1A

G= nl(x)

We consider 2-dimensional CW-complexes K and cellular maps
f: K=+ X which represent ¢. Such maps certainly exist for one can
take K to be the wedge of n circles where n is the rank of F. How-
ever, this particular choice of K may not be the correct one for our
purposes. Our aim is to choose K anda map { : K= X representing
¢ so that f'l(v) is a tree, Once this is achieved, the result follows
easily. For let Li denote f'l(xi) and let F, denote 7, (Li). As
L UL, =K,andas L nL, = f-1(v) which is simply connected, we
see that m (K) = Fl * Fz' Also I*(Fi) C Gi as f(Ki) C Xi. Now the
results of Theorem 1. 6 on reduced words in a free product, show that
we must have f*(Fi) = Gi’ because ¢ is an epimorphism. This is now
the conclusion of Grusko's Theorem.

We find an appropriate choice for K by starting with a space Ko
and a map fo : Ko -+ X representing ¢ and then performing a sequence
of modifications to Ko and ‘o' We do this so as to obtain spaces
Kl, Kz, . 2
is a forest (disjoint union of trees) with @ components and @ < a,

+1
for n= 0, After at most a steps, we will obtain a space Kn and

and maps f, f, ... all representing ¢, such that f;‘l (v)

map fn : Kn =X representing ¢ such that f;l(v) is a tree, and the
result will follow.

We take K0 to be the wedge of n circles, where n is the rank of
F and choose a cellular map fo : Ko ~+ X representing ¢ so that f;l(v)
is a finite number of 0-cells in Ko‘ In particular, f:)l(v) is a forest
with a, components, If f;l(v) is connected (and hence a single point),
we already have the space K and map [ which we want. Otherwise, we
use the following lemma to construct the sequence of spaces already des-
cribed and hence deduce the result.

Lemma 2.3, Let K be a based CW-complex and {: K~ X a map
representing ¢ : F ~ G such that f'l(v) is a forest with @ components.
If @ =2, then there is a based CW-complex K' anda map f': K' =X
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representing ¢ such that f"l(v) is a forest with @ - 1 components.

Proof. Let I beapath in K with endpoints in £ '(v). (Bya
path, we mean simply that { isa map I1-— K.) Then f° ! isa loop in
X basedat v. Pick a path ¢ joining distinct components of I'l(v).

We construct 2 space K' from K by attaching a 1-cell e to ol and
then attaching a 2-cell B to e ul. We would like to extend f : K~ X
toa map f': K'=X suchthat f'(e) =v and f"l(v) does not meet the
interior of the 2-cell B. If this can be done, then ' '(v) = '(v) ue
which is a forest with @ - 1 components. Also {' represents ¢, as [’
extends f and K' deformation retracts to K. Hence f' has all the
required properties. We will be able to construct such an extension f{’
if the loop f o I has image in X1 (or Xz) and is contractible in X.
For then { o I is null homotopic in Xl, and {' restrictedto B is
essentially this null homotopy. Our aim is to show that sucha ! exists,

Choose two distinct components A and B of f-l(v) and let L
be a path in K from A to B, As {,: ”1(K) i nl(x) is onto, there is a
loop ¥ in K based at L(0) such that { . y is homotopic to the loop
fe L. Let I be the path y-lL in K. This is a path in K joining A
to B such that f o ! is a contractible loop in X.

We can suppose that ¢ is a cellular map 1->K by subdividing 1
and by choice of I. Thus we can express ( as a union of subpaths
ll, cens ln such that the ends of li lie in f'l(v) and f o ti is a loop
in )'{l or xz. Further we can suppose that the maps f o li alternate
between X1 and Xz‘ (Note that li may meet components of f-l(v) in
its interior.) We say that ¢ has length n.

Let g; denote the homotopy class of f o l.1 in ul(X, v). Suppose
that some l has the two properties that g; is trivial and that the end-
points of l lxe in one component of (v) Then we can alter I to '
by removing li and replacing it with a path l; in f'l(v) which joins
the endpoints of li. Clearly ' has length less than n. By repeating
this process, we can arrange that I has no subarcs li with these two
properties.

Now the equation ! = l1 ces lr gives rise to the equation

l=geg,... g, in 7 (X). As nl(x) =G, »G, and the g's lie alter-

IEN

nately in G and G 0 We deduce that some g is trivial, The corres-
ponding ll ]oms dnstmct components of {~ (v) and has f o l con-
tractible. We can now construct the required space K' and map

f' : K' =X as previously described,

3. SUBGROUPS AND COVERING SPACES

We will apply the theory of covering spaces to the problem of des-
cribing subgroups of amalgamated free products. First, we consider free
products,

Suppose given a group G = Gl - Gz' As before we construct a
space X with fundamental group G by taking CW-complexes Xl, X2
with LA (Xi) = Gi and joining the basepoints of X1 and Xz with an
interval E. We take the midpoint v of E as the basepoint of X. Now
suppose that H is a subgroup of G. Then H is the fundamental group
of some connected covering space ;( of X, with projection map
p: X~ X. Inside ;( we have p-l(x ) which is a covering space of X1
and so consists of various connected covering spaces of X Also
p (X ) is a union of connected covering spaces of X Fmally, as E
is snmply connected, p~ (E) is a union of copies of E Thus X looks
like (and agrees up to homotopy with) a graph I' with a covering space of
X1 or X2 at each vertex. If T were a tree, then H would be the free
product of the fundamental groups H)\ of all the spaces at the vertices (ff
I. Ingeneral, I' consists of a tree T with extra edges attached to T,
where T is a maximaltree in I, Thus H will be the free product of
all the groups HA and of a free group whose generators correspond to the
edgesof I'- T,

Let ¥ denote the basepomt of X and recall that H= p,,(n (X ).
Let C be a component of p~ (X ) and join it to Vv by a path in X. We
see that p,(rll(C, v)) isa conjugnte of some subgroup of Gl. Thus the
above description of a typical covering space of X leads at once to the

following result,

Theorem 3,1 (Kuro$' subgroup theorem). If H is a subgroup of

G= G] * Gz’ then H is the free product of a free group with subgroups

of conjugates of G1 or G_.
P - T2
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Corollary 3. 2.

free.

If H is a subgroup of a free group, then H is

Corollary 3.3. If H is indecomposable and not infinite cyclic, and

if HC Gl » G_, then H lies in a conjugate of G1 or Gz'

Examples of an application of Corollary 3.3 would be when H is

finite or abelian,

Exercise. Prove that a non-trivial direct product cannot be a non-

trivial free product.

Lemma 3.4, I G= G * G and if w G wn G is non-trivial,

then i=1, weG andsow GwnGi—G

Clearly G1 must be non-trivial, and we may as well
Now let g be a non-trivial element of

Proof,
suppose that G is non-trivial,
G1 such that w~ gw € G We can write w = aw,, where « € G and
w isa reduced word in G beginmng in G Thus

wlgw = w (a ga)w -—w1 gw where g' is a non-trivial element of
is a reduced word But this is an element of G and
is trivial and so w lies in Gl.

This can only happen

GI. Thus w1 gw

so has length 1,
w'lle = G1 and we have G1 n Gi non- trivial,

when i =1, which completes the proof of the lemma.

Hence w, Hence

If G is a finitely generated group, then
If also

Theorem 3. 5,
G= G1 LI Gn’ where each Gi is indecomposable.
G= G1 LI an=H1 .. ® Hm where each Gl and H]. is non-
trivial and indecomposable, then m =n and, by re-ordering, we have

Gi"=‘ Hi for each i. Further, for each i with Gi not infinite cyclic

we have Gi conjugate to Hi'

Proof. The first sentence is just Corollary 2, 2 stated again.

Now suppose that G = G1 *
G, H. is indecomposable. If each Gi is infinite cyclic, then G is free
i
and Corollary 3. 2 tells us that each Hj is free. As Hj is indecomposable,

it must be infinite cyclic and it now follows easily by abelianising and

= «+... *H where each
*Gn Hl m’
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using the basis theorem for f.g. abelian groups that m = n. Other-

wise we can re- er t ' i
order the Gi s so that Gl, s Gr are not infinite

cyclicand G_,, ..., G are infinite cyclic.
Corollary 3, 3 apphed to G C H .. * H
ordering the H's, we have u~ G uc H

shows that, by re-
for some u in G. Hence H
is not infinite cycllc and Corollary 3.3 applled to H C G . G
shows that v~ H vcC G for some i. Hence w~ G wC G where

w = uv, Now L
emma 3. 4 shows that w ¢ G1 and i =1, Thus we have

-1 -
G1=w Gwcv'iHvcg
1 1 1

It follows that H1

isomorphic to Gl,

is conjugate to G1 in G and hence also that H  is
1

Repeat this process for G » G
r
to H. for i=1, 2,

to show that G is conjugate
(Note that we cannot find two dlfferent G s
o
c n]ugate to the same HJ as different G s cannot be conjugate to each
other, by Lemma 3, 4,)
Consider G/(G1 ...k Gr>’ where (X) denotes the normal

closure of a suhset X of G.
i=1, 2,

R &

As Gi is conjugate to Hi for
., I we have
Grgp *-* G = GAG, .

..t-Gr)';“G/(H1 *...*Hr)%‘Hr_'_l*...*H

m’
The left hand group is free, and so each H,
infinite cyclic. l

» I=r+1, ..., m must be
It now follows that m = n and we have completed the

proof of Theorem 3, 5,
One might ask whether an analogue of Theorem 3. 5 holds for non-f. g
groups. At the end of this chapter, we give an example which shows that the

first part of the theorem fails for non-f. g. groups. However, the unique-
ness result which is the second part of Theorem 3.5 clearly applies to all
groups which can be expressed as a finite free product of indecomposables.
The next step is to consider the structure of subgroups of amalgama-
ted free products. Let us consider a group G=A «_ B. Let X be a

C
CW-complex with fundamental group A, let X be a CW- complex with
fundamental group B and let X be a 2- dlmensxonal CW-complex with

fundamental group C. Lemma 1. 5 tells us that there are maps
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f X - X and I X - X such that the induced maps of fundamental
groups are the mclusxons of C in A and B respectively. (By sub-
dividing, we can suppose that { 0 and f1 are cellular,) We construct a
space X with fundamental group G by taking Xo’ X1 and X2 X1 and
gluing X_ X {i} to X; using f,, for i=0, 1. Weidentify X, with the
subspace X, X {3 of X.

Let H be a subgroup of G and let X be the correspondmg cover-
ing space of X with projection map p : X =+ X. As before p. (Xi) con-
sists of a collection of connected covering spaces of Xi’ for i=0,1
or 2. Thus X is constructed from a collection of connected covering
spaces of X and X and a collection of connected spaces of the form
Y %1, where Y isa coverlng space of X by gluing Y X {i} toa
covering space of X for i=0, 1. X looks like a graph T’ witha
space at each vertex and a (space X I) along each edge. If T were a tree,
then H would be a multiple amalgamated free product where each amal-
gamation is of the type A *c B and not A o In general, T is a tree
T, with extra edges attached, and then H is a multiple amalgamated free
product together with HNN cxtensions. Note that the form of H one
obtains depends on the choice of a maximal tree T in T.

If G=A~ c
H. We take a CW-complex Xo with fundamental group A and a 2-
dimensional CW-complex X2 with fundamental group C and construct
X from X and X X I by gluing X x ol to X appropriately.

We now mtroduce the termmology, due to Serre, of a graph of

one can obtain a similar description of subgroups of

groups to describe the above sort of structure in a group.

Notle that the word graph means a 1-dimensional CW-complex, so
that a graph T' may containa loop i.e. an edge with its two endpoints
identified. ‘This gives rise to difficulties with orientations of such an
edge. In order to avoid these difficulties we first introduce the idea of
an abstract graph. Essentially this has twice as many edges as T, one
for each orientation of an edge of T.

Definition. An abstract graph I' consists of two sets E(I') and
V(I'), called the edges and vertices of T, an involution on E(I) which
sends e to €, where e #e, anda map 9, : E(T) - V(D).
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We define 9 e = So'é and say that e joins 2 e to 9_e.

An abstract graph I' has an obvious geometric realisation ]FI
with vertices V(I') and edges corresponding to pairs (e, €). When we
say that T' is connected or has some other topological property, we
shall mean that the realisation of T' has the appropriate property. An
orientation of an abstract graph is a choice of one edge out of each pafr
(e, e).

A graph of groups consists of an abstract graph I' (which will
always be tacitly assumed to be connected) together with a function §

J
assigning to each vertex v of I' a group Gv and to each edge e a

group Ge’ with C’é = Ge’ and an injective homomorphism fe : Ge -G

One may think of I" as a partial category and § as a sort of functor.
Similarly we may define a graph X of topological spaces, or of spaces
with preferred basepoint: here it is not necessary for the map X -*Xa e
to be injective, as we can use the mapping cylinder construction to repl:.ce
the maps by inclusions, and this does not alter the total space defined below.
But we will suppose for convenience that the spaces are CW complexes
and maps cellular.

Given a graph X of spaces, we can define a total space XI‘ as the

quotient of LJ{XV :vevV(D)l uu lXe x1:e €E(l')}} by the identifications
XeX I-’XE I by (x, t) = (x, 1-1t)
Xe X 0= Xaoe by (x, 0) = fe(x).
If X is a graph of (connected) based spaces, then by taking fundamental
groups we obtain a graph § of groups (with the same underlying abstract

graph T). The fundamental group Gl" of the graph § of groups is
defined to be the fundamental group of the total space X

r Observe that
in the cases when I has just one pair (e, e) of edges

A
B D

we obtain the products A C B, A o already discussed, as follows by

van Kampen's theorem (1.1 and 1. 2). The general case may be considered
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as derived by an iterated application of these constructions; however if
it is treated in this way, the underlying geometry is liable to be obscured
by computational complexities.

We now show that G does not depend on the choice of X. First,
for any G we can choose (using presentations) connected 2-dimensional
CW complexes with nl(Xv, *) = Gv and nl(xe, *) = Ge' By Lemma
1.5, the homomorphisms fe are induced by continuous maps
(Xe, *) = (X 2 e ). This defines a graph X of connected based spaces
giving rise to® . Next for any X we can attach cells of dimension =3
to each Xv’ Xe to obtain aspherical spaces Kv’ Ke still with the same
fundamental group. Now the map fe : Xe - Xaoe extends to a map
ke : Ke - K Je (there is no obstruction) so we have a new graph X of

0
spaces, still inducing G; its total space KI" is obtained from XI‘ by

adding cells of dimension = 3, so has the same fundamental group. But
Kv is a space of type (Gv’ 1): its homotopy type is entirely determined
by Gv (similarly Ke, Ge). Also the map ke is determined up to homo-

topy by fe : Ge -G 3 e Thus Kl.. is determined up to homotopy, and its
0
fundamental group is unique up to isomorphism.

In order to relate the topology more closely to the group theory, we
have insisted above on preservation of base points. However if the attach-

ing maps Xe -+ X Je are altered by any homotopy (not necessarily base
0

point preserving), the homotopy type and hence the fundamental group of
XI‘ are unchanged. If the base point is pulled round a loop defining

is changed by conjugation
0
by g Thus even such a change will not alter GF'

Corresponding to and generalising (1. 6) and (1. 7) we now have the

ge€ nl(Xaoe, »}, the homomorphism Ge - Ga e

Proposition 3.6, (i) If § isa graph of groups as above, each
map Gv -+ GI‘ is_injective.
(ii) If X is a graph of aspherical spaces as above, the total space

K., is aspherical,

T

Proof. We start from the graph X of spaces. Observe that for

each vertex v of I', the space

L =K u v (K x1)
v vaoe-—-ve

admits Kv as deformation retract, so its universal cover Lv is con-

tractible. Moreover, as each map Ge ind Gv is injective, Lv is obtained

from Kv by attaching copies of Ke X 1 with Re the universal cover of
Ke’ hence also contractible, ‘

Now construct a space Y = UYn by induction, Choose any vertex

vo of T and set YD = Lvo. Now for any n = 1, in forming Yn_1

number of copies of Ke X I will have been attached (each along K x 0),
) e
for various edges e. We define Yn to be the union of Y 1 with a copy
~ n-

of Lale for each such copy of Ke x I, identified along f{e X 1. Since we

are attaching contractible sets along contractible subsets, each Y _is
contractible. "

a

Set Y = UYn with the weak topology. Then Y also is contractible.
There is an ev1dent. projection Y -‘Kr; by construction KI‘ is evenly
covered by Y. This proves (ii), and (i) follows since for each K C Kr,

. s v
the induced covering of Kv contains the universal covering.

Remark, Assertion (ii) is equivalent to the exact sequences of
Chiswell [30]. A normal form, in the style of Theorems 1.6 and 1.7, is
given by Higgins [32].

We can now state our first result about subgroups of amalgamated
free products,

Theorem 3,7. If G=A *cB or A *c andif HC G, then H is
the fundamental group of a graph of groups, where the vertex groups are

subgroups of conjugates of A or B and the edge groups are subgroups
of conjugates of C.

Remarks, This result has an obvious generalization to the case
where G is the fundamental group of 2 graph T of groups. The theorem

covers the special case when the geometric realisation of T has a single
edge.

There is a corollary of this result which is analogous to Corollary
3.3 in the case of free products. We say that a group G splits over a
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subgroup C if G=A *c O G=A 'CB with A #C #B. If G splits
over some subgroup, we say that G is splittable. Note that Z is split-

table as Z = {1}*“}.

Corollary 3.8. If G=A *c
generated non-splittable subgroup of G, then H liesina con)ugate of A

or B.

B or A *c and if H is a finitely

Proof. We know that H is the fundamental group of a graph T
of groups. As H is finitely generated, there is a finite subgraph I
whose fundamental group equals H, Now the fact that H is not splittable
implies that one of the vertex groups of I'' is equal to H. The result

follows.

Remark. The finite generation of H allows one to deduce that
some vertex group of T equals H. If we consider non-finitely generated
subgroups H, we see that H need not lie in a conjugate of A or B, For

example, consider G=12% *a where the two inclusion maps are the

identity and multiplication by 2. Thus G has presentation {a, t:t tat=a?).

The subgroup H of G generated by t"at™™ for all integers n is isomor-
phic to the dyadic rationals and is therefore non-splittable, but of course

H cannot be contained in an infinite cyclic group.

We must now consider covering spaces more closely. Recall para-
graph 2 on page 138 of these notes. Let (X, xo) be a based connected
pace with fundamental group G. Let H be a subgroup of G and let
(X X ) be the corresponding connected covering space with projection
map p X, xo) = (X, x). Thus P, (7, X, x n=

Lemma 3.9. There is a natural bijection ¢ : H\G p'l(xo), where

H\G denotes the quotient of G under the action of H by left multiplication.

Remark, The path lifting property of covering maps can be used to

define bijections pnl(xo) - p }(x) for each x €X.

Proof. First we definea map ¢ : G = p'l(xo). Given g €G,
choose a map (I, oI) = (X, xo) representing g. We will call such a map

a loop. Let I be the lift of this map starting at io and define
og) =1(1) € p'l(xo). This definition is independent of the choice of the
loop chosen to represent g.
The map ¢ is a surjection. For given y € p'l(xo), choose a path
0
element g €7 X, x ) and ¢(g) =v.

If ¢(g )— ¢(g ), then l “! isa loop in X based at xo, where
li is a lift of a 1oop in X representmg B

! in X from x_ to y. Then pe°! isaloopin X representing some

Thus p° (l l ) represents
an elcmcnt h of H and we have the equatnon g, g = h, Conversely if
g, g =h €H, then g =hg, and it is clear that ¢(g1) = ¢(g2). Thus
¢(g ) = cp(g ) if and only if g g
¢ H\G-' p (x ).

¢ H and so ¢ induces a bijection

Lemma 3.10. If H is a normal subgroup of G, then G/H acts

on X by covering homeomorphisms with quotient X.

Proof. Let geG andlet y ¢ p')(xo) be the point deter mined by
3 -1 .
g. Then p*(nl(x, y)) =g "Hg which equals H as H is normal in G,
The uniqueness of covering spaces corresponding to H shows that there
. : (X, §0) = (X, y). 1claim that
this process defines a homomorphism of G to the group of covering homeo-

morphisms of X. One need only show that X)=y¢ oy (X)), as
8,8, ¢ & 2 ° ,

two covering homeomorphisms which agree on in must be equal by the

uniqueness result again. Let ll and l? be paths in 5( starting at X
I 2 0

which are lifts of loops in X representing g, and g, respectively.

Then wg] ° lz is a path in X starting at uzgl(in) and still lifting a loop

is a unique covering homeomorphism

in X representing g, Thus wg ° 12 begins where ll ends and we
1

(i ) = ol (1) = o X i i

,% l,l/g1 2( ) dzg‘ wgz(xo) as required. It is

clear that the kernel of this homomorphism is H, so that we do have an

action of G/H on 5(

deduce that

The quotient of X by the action of G/H has a natural projection
7 to X and 7 is a covering map. Also, for each x ¢ X, ﬂ-l(x) isa

. -1 . .
single pointas = (xo) is a single point. Hence 7 is a2 homeomorphism
and this completes the proof of the lemma.



Before going further, we give an application of this result.

Theorem 3.11. If G=A «B
is a finitely generated, normal subgroup of G, then H is trivial or has

where A, B are non-trivial and H

finite index in G,

Proof. We suppose that H has infinite index in G and will prove
that H must be trivial. We know that H is the fundamental group ofa
graph T of groups, where the edge groups are trivial and the vertex
groups H)( are subgroups of conjugates of A or B. If T is a maximal
treein T, then H=TF » (* HA) where F is a free group whose genera-
tors correspond to the edges of I' - T. The fact that H is normal in G
tells us that G/H acts on I' with quotient an interval,

As H has infinite index in G, we deduce that I' has infinitely
many edges. As H is finitely generated, we deduce that T - T is finite
and only finitely many of the groups H , are non-trivial. Thus H is the
fundamental group of some connected finite subgraph T" of I'. Let E
be an edge of I' - I'". Then removing E from T gives two subgraphs
I‘l and I‘2 one of which has trivial fundamental group. As G/H acts
transitively on the edges of T, we deduce that every edge of T’ has these
properties. Thus T’ must be a tree and at most one vertex group can he
non-trivial. Thus H is contained in a conjugate of A or B. As H is
normal in G, it must lie in the intersection of all conjugates of A (or of
B). But A 0b 'Ab is trivial for any non-trivial element b € B, Hence

H is trivial. Q. E.D.

Exercise. Is there an analogous result when G =A *c B or
A *C?

We now return to covering spaces. The aim of our next result is
to give a more precise structure theorem for subgroups of amalgamated

free products,

Let H bea subgroup of G =1 (X, x ), and let X, ;{0 be as before.

Let Y be a subspace of X which contains X5 such that inclusion of
Y in X induces an injective map 7, (Y, xo) - X, xo). We denote the

image group by A and identify ™ (Y) with this subgroup of G.

1AN

[ S UV N

" Lemma 3,12. There is a natural correspondence # between the
double cosets HgA and the components of p'l(Y) in X,

Proof. Let i denote the inclusion of p~ (x) m p (Y) and
recall the map ¢ : G-’p"](x ). We define 6 : G-'p (Y) by 86 =1i¢ ¢.
Suppose that B(g ) and G(g ) lie in the same component of *
P (Y) Then they can be joined byapath ! in p (Y) Let aecA be
the element of # (X x ) represented by the loop p o .. Then, by pro-
jecting into X, we see that g agz € H, so that g, = hg a for some
h € H. Conversely, if g, = hg a for some elements a €A and h eH,
then hftmg to X tells us that G(g ) and 9(g )} can be joined by a path
I in p~ (Y) where ! isa lift of a.
Hence 8 induces the required bijection 8,

Lemma 3, 13 Let geG,y=¢(@) ep (x ) andlet C be the
component of p (Y) which contains y. Let A bea loop in X repre-
senting g andlet ¢ be the lift of A which goes from ¥ to y. Then

0 — —

- -1 . ~
lp*(ﬂl (c, xo)) =H ngAg °, where we define nl(C, xo) by using the path

Proof. We know that p,(n (C, y)) C A, and so p*(n c, % ))CgAg ;
As py(m (c, xo)) C H, we have p,(7 (C, X )) CHngag™!

Consider an element 8 = gatg'l of Hn gAg , where a €A, Let
p bealoopin Y representing @, Then g~}
senting B. We know that Aph'l lifts to a loop in 3-(, because f € H.
Thus A liftsto I and A™' lifts to 27° lifts to Zm”
where m is some loop in p'l(Y) based at y. Therefore B lies in

p*(nl(C, io)) and we have shown that p*(nl(C, io)) =Hn gAg'1 as

required,

is a loop in X repre-

and so a? !

We can now state a more precise version of the subgroup theorem,
Similar statements can be found in {4], [15], [22], [28]. For convenience
in the case G=A o where we have two injections i, and i2 of C
into A, we identify C with 1 (C). Then i (C)= t"'ct, and the subgroup

C=1/(C) of A isalsoa subgroup of tAt™!,
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Subgroup Theorem 3.14. If H is a subgroup of G=A *c (or_
A e B), then H is the fundamental group of a graph T of groups. The
vertlces of T correspond to the double cosets HgA (and HgB), and the
corresponding groups are H n gAg’ -1 (and H ngBg~ Y. The edges of T
correspond to the double cosets HgC and the corresponding groups are
HngCe .

I G=A *c B, the two ends of the edge HgC are the vertices
HgA and HgB and the injections of the associated groups are simply the

inclusion mappings.
If G=A *c , the two ends of the edge HgC are the vertices HgA
and HgtA. The m]ectlons of the associated groups are simply the inclu-

sion mappings.

A corresponding theorem for subgroups H of G, where G is the
fundamental group of any graph of groups, follows from the same lemmas.
We leave the precise formulation to the reader.

As applications of the subgroup theorem, we prove the following
results,

Lemma 3,15. If G=G, *- G, then either gGlg'l nG, isa
subgroup of a conjugate of C, or i= 1 and g € Gl, so that

-1 _
gGlg n Gi = Gl.

Proof. Let H= gGlg'1

of a graph T of groups. The vertices vV, of ' corresponding to
the double cosets HgG and HG have associated groups H n gG g '=H
and HN G =H, If v, and v, are distinct vertices of T, choosea

pathin I Jommg them. As the inclusion of each of the groups associated

n Gi' Then H is the fundamential group

to v VY, is an isomorphism with H, we see that each vertex and edge of
this path has associated group H. Thus H is the group associated to
some edge and so lies in some conjugate of C. The only other possibility

is that v, = vz. This implies that i =1 and HgG1 = HGI. Thus g € Gl,

and the result is proved.

Next we give the promised example of a non-f, g. group G which
fails to satisfy the conclusion of Theorem 3.5. This example is due to
Kuro¥ [17)].

169

Example. The group G= lao a,a,,.. ’bl’bz"" |
an—l = [an, bn]’ ¥n =1} cannot be expressed as a free product of

indecomposable subgroups.

First observe that G = {al, b, ) ¢C1 |a2, bzi *Cz ..., where

each factor group is free of rank 2, each Ci is infinite cyclic, the inclu-
sion map C, = {ai, bi} sends a generator to a; and the inclusion map
Ci nd lai+1’ le | sends the same generator to [a

Next observe that

i+17 P

G= {b] | lal,az,...,bz,bJ,...lan_l = [an, bn]’ Vn=2}=7Z+0G.

Hence G can be expressed as a free product involving any given (finite)
number of factors. Hence G cannot be a free product of n indecom-
posables, for any integer n, as the proof of the uniqueness result of
Theorem 3.5 would apply to show that any factorisation of G has no
more than n factors - a coniradiction, Hence if G can be expressed as
a free product of indecomposables, then G must have an infinite number
of factors. The last step is to show that this also is impossible.

Suppose that G = G1 * G2 * ..., where each Gi is indecomposable
and non-trivial, Consider the element a, of G. For some n, a, must
lie in Gl LI Gn’ which we denote by A, Thus G =A *» B, with A
and B non-trivial and a, € A. Our decomposition of G as an infinite
amalgamated free product shows that each a; is a non-trivial element
of G. The fact that a, lies in A shows that a, b1 lie in A, by
Lemma 3. 16 below. As a e A, we see a,, b2 € A by the same lemma.
By repeating this argument, we see that G C A, contradicting the hypo-

thesis that B is non-trivial., This contradiction proves the required
result.

Lemma 3.16. Ifagroup G=A «B, A+ {1] v B, and if
g= [gl, g2] is a non-trivial element of A, then g and g, lie in A,

Proof. Let H be the subgroup of G generated by 8, gz. By
the Subgroup Theorem, H = (H n A) » C, for some subgroup C of H. We
must prove that H ¢ A, If this is not the case, then each of H NA and
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C is non-trivial and so Corollary 2.1 of Grusko's Theorem shows that
each group is cyclic. Hence the abelianisation homomorphism H - H/H'
injects HnA and C. This contradicts the fact that g is a non-trivial

commutator in H n A. Hence H must be contained in A,

We finish this section by proving the famous embedding theorem of
Higman and Neumann [13] which states that any countable group can be
embedded in a 2-generator group. A nice example to consider is the sub-
group K of Fz’ the free group on a and b, which is the kernel of the
homomorphism F2 -+ Z, which sends b to a generator and a to the
identity. Let X~ denote the wedge of 2 circles, sothat = (X) = Fz' The
covering space X of X corresponding to K consists of a copy of R
together with a circle attached at each integer point. Thus K has basis
lb""ab" :n €Z}. If one started with a countably generated free group
K= {xn :n € Z}, one would embed it in a finitely generated group by
adding an element b to K which makes all the xi's conjugate. More
precisely, one has the shift automorphism of K sending X, to X410
for each n, and one takes the extension of K by % determined by this
automorphism. The new group generated by x 0 and b is, of course,
isomorphic to Fz‘ The idea of the proof of the embedding result is to

do the same sort of thing in general, i.e. make lots of generators con-

jugate.

Theorem 3.17. I G is a countable group, then G can be em-

bedded in a 2-generator group.

Proof. Let Ko Xpy eoe be a generating set for G, We embed G
in G1 =G+« Z. Let t bea generator of Z, and write ¥ = xit, Y= t.
Then G1 is generated by Yoo ¥
Now let G = lGl, tos
from Gl by an infinite sequence of HNN extensions and so Gl C Gz‘

o and each ¥y has infinite order,

-1 . :
URRTRRR A A L5 A }. Then G, is obtained

A set of generators for G2 is Yo t,t The subgroup K of

0t byr e e
G2 generated by the ti's is free and has the ti's as a basis. To see
this observe that by killing G1 one obtains a homomorphism of G2 toa
free group F which maps the ti's to a basis for F. Thus we can embed

K in F2 as in the discussion preceding the theorem and we let
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G3 = (;2 K Fz' Again G2 c G3 and G3 is generated by Yor @ and b
where a denotes one of the ti's. Finally we observe that the subgroup
H of 03 generated by Yo and' b is free of rank two. This can be seen
by applying the Subgroup Theorem, as H n G? and Hn F2 are infinite

cyclicand H nK is trivial. Thus we can construct G4 = 63 F where

- : - 2
our two inclusions of F2 in 03 have images H and Fz‘ We choose
= . a1 -1
G4 = {G3, 8:58 as=b, s bs= Yo }. Then G4 is generated by a and
s which completes the proof of the embedding theorem.

4, GROUPS ACTING ON GRAPHS

The subject matter of this chapter is a reworking of the Bass-Serre
theory [22]. We consider a (continuous) action of a group G ona (topo-
logical) graph I': clearly this corresponds also to an action on the corres-
ponding abstract graph. We say that G acts without inversions if whenever

an element g of G fixes anedge e of T, it fixes each point of e. In

the abstract setting, this means that g. e = e is forbidden. Given any
action, the process of subdividing each edge once by an extra vertex in the
middle gives us an action without inversions.

The following simple example will be of use in Section 6. Let G be
a group, S C G a subset (not subgroup), I = I'(S, G) the (geometric)
graph with vertex set G and, for each (g, 5) € G X § a single edge
e(g, s) joining g to gs. There is an obvious action of G on I', where
h € G takes the vertex g to the vertex hg; the edge e(g, s) to the edge
e(hg, hgs). Only the identity element of G can leave a vertex or edge
fixed, so G acts freely (without inversions). Note that even if 5.2 =1

we do not identify the edges e(g, s) and e(gs, s) with the same endpoints.

Proposition 4.1. (i) T contains no loop «=> 1 ¢8,
(i) I is a simplicial complex <= SnS§™ ! = g.
(iii) I’ is connected <> S generates G.

(iv) T isatree < § freely generates G.

Proof. (i) and (ii) are trivial,
If H denotes the subgroup generated by S, and I'" the full sub-
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Tt

graph on H, then I" is open (there are no edges with just one end in I'")
and connected (any word - e. g. 315253154 -in SuS™! defines, inan
obvious way, a path in I joining 1 to the element in H it represents).
Now (iii) follows. A

Finally if T' is a tree, it is contractible; as G acts freely on r,
we have an isomorphism of G on nl(G\I‘, *), But G\I' is the graph
with one vertex and edges labelled by S, so its fundamental group is the
free group F(S). Moreover the composed isomorphism F(S) = G takes
s € F(S) to the class of the loop 's'; lifting this, we get the edge of T
from 1 to s, which corresponds to s € G. This argument is reversible:
if 8 freely generates G, then G = F(S) = nl(G\I‘, %), so T is the uni-
versal cover of G\I', hence contractible - i.e. a tree.

Now suppose given a graph § of groups, with vertices v and
edges e corresponding to groups Gv’ Ge with GE = Ge’ and injections

ale) : Ge - Gaoe
nected spaces Xv’ Xe with total space XI" and fundamental group GF'

As before, we choose a corresponding graph of con-

Since by (3. 6) the natural maps Gv - GI‘" Ge - GF are injective, the
universal cover ir. is a union of copies of the universal covers
Xv, Xe X~I. .
In XI" identify each copy of Xv to a point, and each copy of
X x1toa copy of 1, giving a quotient space Z with projection
'n? }~(r-’ 7. Clearly Z isa graph., We define j: 72 — ;(F by first
choosing for each vertex {(edge) of Z a point V(E) in the corresponding
copy of iv(;(e). Then divide each edge of Z into three parts: j maps
the middle part to E X I, and the end parts to paths in the connected space
iv joining the corresponding points E, V. Clearly 7 ¢ j is homotopic to
the identity, so Z is connected and simply-connected, and hence is a tree.
The map # is compatible with the natural action of GI‘ on il’"
so we inherit an action of Gr. on Z., This action has no inversioxls. The
isotropy group of each vertex (obtained from collapsing a copy of Xv) is
a conjugate of Gv’ and of an edge (collapsed from ;(e X 1) is a conjugate of
Ge' As Gl" acts without inversions, GP\Z is also a graph and in fact
coincides with the geometric realization |1"| of the original graph TI:

there is an obvious map onto |T'| and each vertex (edge) of |T'| deter-
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inines Xv(xe X I) in Xl‘" hence a collection of copies of iv(ie X 1) in
X transitively permuted by Gp, hence a single vertex (edge) of
GF\Z' Thus we recover the original graph G of groups from the action
of Gl" on Z. There is a slight problem here: how to choose the sub-
groups within their conjugacy classes to obtain the desired inclusions.
This will be dealt with below. ’

We now start from an action of a group G on a tree Y, having no
inversions, and show how to construct a graph of groups with fundamental
group G. Choose a connected CW complex U with fundamental group
G: then U is simply connected and G acts freely on it, hence also
(diagonally) on UxY. Consider the quotient X and the projection

X =G\(U X Y) » G\Y = T, say.

Since G acts without inversions, I" is a graph and each vertex (edge) of
Y projects isomorphically onto one of I, For a vertex v (edge e) with
isotropy group Gv (Ge) in G, we see that G\(YJ X v) (G\(f] X e)) has
fundamental group Gv (Ge). Thus X has the structure of a graph X of
connected spaces realising a graph G of groups. Since G acts freely
on the 1-connected space (fJ X Y), we have G = 'nl(X) the fundamental
group of §. Observe that U plays no essential role in the construction
of G, which could be expressed purely algebraically except for a certain
vagueness about conjugates which will be considered below.

In order to deal with the points at the end of the two preceding
paragraphs, and also to obtain a more precise formulation of the result
which can be used for explicit calculation with words, we must now con-
sider base points. The usual procedure with a CW-complex K is to
choose a maximal tree T in the 1-skeleton K(l) (a graph). This is
contractible and contains all the vertices., Hence K-+ K/T isa homotopy
equivalence, and K/T a complex with only one vertex, which we take as
base point. Thus the edges of K not in T give generators of LN (X).

Now let G act without inversions on a (connected) graph Y, so
that X = G\Y is alsoa graph; let T bea tree in X containing the
vertex v, and let ¥ ¢ Y lie over v,
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Proposition 4. 2. There is a lifting j: T —Y of the inclusion of T

in X; moreover, we can take j(v) =V.

Proof. Applying Zorn's Lemma, we see that there is a maximal
pair (T', j'): T' a subtreeof T (containing V), j' : T' =Y over the
inclusion (with j'(v)=¥%). If T' #T, let w bea vertexof T - T';
since T is connected, we can join w to v by an edge path, and at least
one edge in the path, say e, has one vertex v 0 which is in T' and one
which is not. Now e is the image of an edge € of Y, one of whose
vertices VO lies over v . As Vo and j'(vo) lie over v, they are
equivalent under G. If g.Vo = j'(vo), we can extend j' over e by
setting j(e) = g. 8. This contradicts the supposed maximality and proves
the result. ’

Returning now to the action of G on the tree Y, we fhoose a maxi-
mal tree T in T = G\Y, a lifting j: T—~Y with j(T) = T, and use
these as 'extended base points'. Over each vertex v of I' there is just
one vertex Vv of T: we define Gv as the stabiliser of v. If e isan
edge of T, we have the edge ¢ = jle), and call its stabiliser Ge. For
each other edge e of T' we choose an edge € of Y over e with
aos = (aoe)~, and an element g € G such that 816 =g (al.e)“, a.nd
define G to be the stabiliser of €. The map ao(e) is the inclusion
map; a (e) is induced by conjugation by g Note that we have implicitly
chosen e from the pair (e, ) (one could set e = (g e) y Bg = ge ,
but then would have G'é # Ge).

We have considered two constructions above. Given a graph § of
groups, realised by a graph X of spaces, we defined a quotient Z of
XI" proved it a tree, and obtained an action of Gl“ on it. Conversely,
given an action (all actions supposed without inversions) of a group G on
a tree Y we defined (following (4. 2)), using certain choices (maximal
tree T, liftings "f‘, E, elements ge) a graph of groups over I = G\Y.
The key result of the theory is

Theorem 4.3. These two constructions are mutually inverse up to

isomorphism and (for graphs of groups) replacing the ai(e) by conjugate

homomorphisms.
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Proof. Most of the proof was given above. Starting from the
action of G on Y, the graph of groups over I = G\Y is realised by a
graph of spaces with total space 'G\(fJ X Y), U a connected CW complex
with fundamental group G, The collapsing process on the universal cover
(i) X Y) gives back the original tree Y and action of G on it,

Now suppose given a graph § of groups and construct (as abové) an
action of the fundamental group Gl" ona tree Z. We have already ob-
served that the isotropy groups of vertices and edges agree up to conjugacy
with the images in GI‘ of the given groups Gv' Ge' It remains to identify
the injections ai(e), where more care is necessary.

Take X as a graph of based spaces, so we can identify I’ with a
subset of X, and choose a maximal tree T in I, Since T is contrac-
tible, we can lift itto T C X_.. For eachedge e of T - T there isa
unique lift e C il‘ with au'é €T, and a unique g, € Gp with (g;l. 303)6'}.
Now G is isomorphic to a graph of groups in which each ao(e), and those
al(e) with e ¢ T, are inclusions; so we can identify each Ge, Gv with a
subgroup of GP‘

Now = : Xl_.-’ Z maps T isomorphically toa tree T over T.
Using the action of GF on Z to define a graph of groups as above, we
obtain the same subgroups Ge and Gv; each ao(e) and those al(e)
with e € T are inclusions. For e ¢ T, a (e) is induced by conjugation
by 8o In the given graph of groups a (e} was induced by the map

(X *) = (Xale’ *). There is a unique path p in T joining ale to

aoe; as we have identified Ge (via Xe - Xa e) with a subgroup of Ga e

the map f; cannot be regarded as preserving base points, which have t(:)
be translated along the path p. Thus al(e) is induced by conjugation by
the element g'~ of GI‘ represented by the closed path p.e. Now p lifts
to the path in T joining (ale)" to (aoe)~ = ao'é, so the lift of p.e. joins
it to Bl ¢. Thus g'. (ale)" = (ale)~, which identifies g' with 5 and
hence concludes the proof,

Remark. The reader may already have observed that our two in-
verse constructions can be formulated in purely algebraic terms. We feel

however that the above proof of the key theorem is more intuitive than any
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involving cancellation arguments.
We now note some special cases of the theorem.

e v'

Corollary 4.4. Let G\Y consist of a single edge Z_—. .

Then G%‘Gv* G,.

H v
e
Corollary 4.5. Let G\Y consist of a single loop, Then Y con-
tains the edge M € €V and G= Gv *q -

e
A somewhat different application arises from considering free

actions. Of course, if G acts freely on a tree, it is free. The theorem
allows us to write down a set of free generators. Suppose in particular
that F is the free group on a set S, and G a subgroup of F. Write
down the graph FS for F: by (4.1) it is a tree, and the action of F on
it induces a free action of G.

Identify the vertices of I‘S with the corresponding elements of F.
Then the path in the tree joining 1 to the element with reduced word
tl oo tn (where each ti €Svu Sll) goes through the successive vertices
t, tt, tltzts’ ve. - Thus jf TC I‘S contains 1, it contains the initial
segments of the vertices of T.

Since the action of G is free, the lift of an edge of G\I‘S =X is
determined by its initial vertex. Thus the preferred lifts of the edges of
X - T are just those edges of T, whose initial vertex is in T but ter-

S
minal vertex is not. Applying the theorem we have

Proposition 4. 6. The left cosets of G in F are canonically
represented by the set R of vertices of T: if a reduced word w = uv

belongs to R, so does u. If W= {(t, s) eRXS:ts ¢R} and for each

w=(t, s) eW we write !s = g, with g, € G, u, € R then

{gw :w €W} isa free basis of G.

We conclude this section with brief mentions of two alternative
approaches. The first follows a paper of Serre [23]. We say that G has
property (FA) if for any action of G on a tree Y, there is a fixed point
of G in Y.

Theorem 4.7. G has (FA) if and only if G is (i) unsplittable,

and (ii) not a_union of an increasing sequence of subgroups.

Note that for countable G, (ii) is equivalent to being finitely
generated.

Proof. (FA)= (i) by Corollaries 4.4 and 4.5: any decomposition
induces an action without a fixed point. As to (i1), if G=uG_ with
Gn C Gn+1 we form a graph with vertices U(G/Gn) and for :ach vertex
an an edge joining it to an+1. It is immediate that this is a tree, and
that the natural action of G on it has no fixed point,

Conversely if (i) and (ii) hold and G acts on Y, G is the universal
group of the graph of groups G\Y. By (ii), G is also the universal group
of a finite subgraph. If this subgraph is not a tree, G is splittable; if
the subgraph is a tree, we still have a splitting unless G coincides with
one of the vertex groups - i. e. has a fixed point in Y,

Some interesting examples of the above are given in Serre's paper
[23] and several more in his monograph [22, Chapter 6].

We conclude this paragraph by mentioning length functions, These
were introduced by Lyndon [34] to permit inductive arguments: they con-
stitute an axiomatic generalisation of the length of a reduced word as in
1.4, 1.6 or 1. 7 above. It was shown by Chiswell [3] however that every
function satisfying the axioms defines an action on a tree and hence comes
from a decomposition of G as fundamental group oi a graph of groups.
Thus here we have a further equivalent concept.

5. ENDS

The definition of ends, and construction of the end point compactifica-
tion (for a peripherally compact space) was achieved by Freudenthal in
1931 [9]; and the application to group theory initiated by himself [10], [11],
Hopf [14] and Specker [24]., We present 2 somewhat simplified version,
adapted to the present applications.

Let X be a locally finite simplicial complex. For each finite sub-
complex K, the number of connected components of X - K is finite;
denote by n(K) the number of infinite ones (equivalently, having noncompact
closure in X). Now define the number of ends e(X) = sup n(K). Clearly

e(X) =0 X is finite; otherwise e(X) is a positive integer or +,
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If X=R and K is a point, clearly n(K) = 2. On the other hand,
any compact K is contained in a closed interval J : R - J has only two
components, and a component of R - K meeting neither is contained in
J, hence finite. Thus e(R)=2. Similarly, since the complement of a
(large) disc is connected, e(Rn) =1 forany n= 2.

As X is locally finite, for any finite K the (open) subcomplex
st(K) consisting of all simplices with a vertex in K is finite, and clearly
n(stK) = n(st K) = n(K). Now any point of X - (st K) can be joined by a
path avoiding st K to a vertex not in K, and if two such vertices can be
joined by a path avoiding st K, as none of the vertices of the simplices
met by the path are in K, we can find a path along edges not in st K. It
follows that in computing e(X) we may ignore all simplices of dimension
> 1, and work in the 1-skeleton. This can now be formalized. The co-
chain complex C*(X) of X (coefficients z2 = integers mod 2 understood)
contains a subcomplex Cf*(X) of cochains with finite support. Nole: the
fact that Cf‘(X) is closed under the coboundary follows from local finite-
ness of X. Write C;(X) for the quotient complex, and H;(X), H;‘(X)
for the cohomology groups of C;(X), C;‘(X). Then the short exact
sequence 0 - CF(X) - C*X) = C;(X) -+ 0 induces a long exact sequence
of cohomology groups.

Our interest in these comes from

Proposition 5.1. e(X) is the dimension of HZ(X) over 22.

Proof. Observe that H((X) = 57} (C{(X))/C{(X) is the quotient of
0-cochains with finite coboundary by finite 0-cochains. Also, by the
above, we may suppose X 1-dimensional.

Now if the 0-cochains Civeees € define linearly independent
elements of HZ(X), as each (Sci is finite we can choose a finite sub-
complex K containing the supports of all Oci. But then for each edge
e not in K, each ¢ takes the same value at both ends of e. Thus for
each connected component A of X - K, each ¢ takes a constant value
ci(A) on the vertices of A. If there were only r < n infinite components
A, there would be a nontrivial linear relation XX ici(A) = 0 holding for all
such A. But then ZAici would be 2 finile cochain, contradicting our

choice. Hence n = dim Hg(x) implies e(X) = n.

Conversely, if e(X) = n we choose K finite with n(K) = n, and
let A, ..., A Dbe distinct infinite components of X - K. Define the
cochain < to take the value 1 on vertices of Ai’ 0 on other vertices
of X. Then if Gci(e) =1, e has one end in Ai’ the other not (and hence
in K), so e is one of the finitely many edges of st K. So each 6c. is
finite and, by construction, the ¢, are independent modulo finite coi-
chains. Hence dim H:(X) =n.

We next construct another theory, analogous to the above. For any
group G, let PG be the power set of all subsets. Under Boolean addition
('symmetric difference’) this is an additive group of exponent 2. Write

FG for the additive subgroup of finite subsets. Now define
QG={ACG:VgeG, A+ Ag is finite}.

We refer to two sets A and B whose difference lies in FG as almost
equal, and write A 4 B. This amounts to equality in the quotient;(;;
PG/FG. Moreover G acts by right translation on these groups, and
QG/FG is the subgroup of elements invariant under this action. FElements

of QG are said to be almost invariant. We define the number of ends of
G to be

e(G) = dim,, (QG/FG).
2

If G is finite, all subsets are finite and clearly e(G) = 0. Otherwise,

G is an infinite set which is invariant (not merely 'almost’), so e(G) = 1.
For finitely generated groups G we can identify these two definitions

as follows. Choose a finite set S of generators, and form the Cayley

graph I"S = TI'(S, G). Clearly this is locally finite,

Proposition 5. 2. e(G) = e(I‘S).

Corollary 5.3, e(Z) =2. For {1} generates Z, and the corres-
ponding graph is homeomorphic to R,

Proof. We can identify the vertices of FS with elements of G,
0 . 0 <
and hence C (I‘S) with PG and Cf(I‘S) with FG. What we have to show,
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then, is that if the 0-cochain ¢ corresponds to the subset A, then
Sc is finite <= A €QG.

Now 6c is supported by the set of edges (g, gs) (g €G, s €8)
with just one end in A. For fixed s, this means that g belongs to just
one of A, As”!: ie. geA+ As™!. If A isalmost invariant, for
each s we have finitely many g, hence a finite number of edges in total.
Conversely if 6c is finite, the class of A in PG/FG is invariant under
each s} (s € S), hence under the group, G, which they generate.

This connection can now be extended.

Theorem 5.4. Let G act freely on the connected complex X,
with finite quotient K (equivalently, X~ K isa connected regular cover-

ing, with group G). Then e(G) = e(X).

Proof. As before, we may suppose X a graph by ignoring cells
of dimension > 1. Let T be a maximal tree in K, 'E‘ a lift to X. The
trees g"I" (g € G) are all disjoint; if we identify each toa point {obtaining
Y, say) H (X) is unaltered. For if ¢ has finite coboundary, it is con- '
stant on a.ll but finitely many gT hence almost equal toa ¢' which is
constant on each, The natural map C Y -C X preserves the subgroups
of finite cochains and of cochains with finite coboundaries, hence induces
Hz(Y) - HE(X), This is clearly injective, and the above observation
proves it surjective.

We may thus suppose K/T has only one vertex, But now Y can

be identified with a suitable graph I"S, and the result follows from (5. 2).

Corollary 5. 5.
e.g. if G=2Z" wehave e(G)=1.

If G acts freely on R" with compact quotient,

The connection with topology is valid only for finitely gencrated G.
However, an interpretation in terms of group cohomology can always be
given. For any G, Hn(G' PG) = (n =0), 0 (n+#0). Moreover FG
can be identified with the group rmg '2.7 G. The invariant subgroup
QG/FG=H (G PG/Z G) and for G mhmte, since H (G V4 G) =0,
we deduce that
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e(G) =1 + dim H'(G; Z,G).

We now begin work on calculating the number of ends of various
groups. We start with lemmas noting the invariance of e(G) under
commensurabilily and isogeny.

i

Lemma S5.6. If H is a subgroup of finite index in G, e(G) = e(H).

Proof. 1If G is finitely generated, we may use (5. 2) and observe
that H acts freely on I‘S with finite quotient (a covering of G\PS, of
degree |G : HI).

In general, if A C G is almost invariant in G sois ANnH in H,
For (AnH)+ (A nH)h=(A+ Ah) nH is finite, for any h € H, Thus
intersection induces a homomorphism QG/FG = QH/FH. Choose a left
transversal T for H in G,

Now ¢ is injective, for if A n H is finite so is each Ag n H, hence
An Hg"1 Letting g run through the finitely many elements of T-l, we
deduce A is finite.

And ¢ is surjective, for if B C H is almost invariant consider
A =BT. Certainly AnH=B. Forany g €¢G, t €T, write tg= hts
(s € T). Then A + Ag = Z(Bt + Btg) = X(Bt + Bhts). But Bht is almost
equal to B, and s runs through T as t does. Hence A + Ag is finite.

Lemma 5.7. U K is a finite normal subgroup of G,

e(G) = e(G/K).

Proof. Write p : G=+ G/ for the natural map and

PG = P(G/K), p : P(G/K) = PG for the direct and inverse image
maps mduced by p. Then ptp 'B=B for any B C G/, whilc for
ACG, p ptA AK. Trivially B is almost invariant <= p~ B is,
and if A is almost invariant it is almost equal to AK, so pt(A) is
almost invariant. Hence pt, p—l preserve the subgroups Q and F and
the induced maps between QG/FG and Q(G/K)/F(G/K) are two sided
inverses, hence isomorphisms.

We now come to the main result of this section,
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Theorem 5.8. Suppose G finitely generated, A € QG such that
both A and A* (= G- A) are infinite, and that H= {h eG:ha 2 A}

is infinite. Then G has an infinite cyclic subgroup of {inite index.

Since the left translations on PG commute with the right, there is
an induced action of G from the left on QG/FG. As H is the stabilizer

of A for this action, it is a2 subgroup.

Corollary 5.9. I G is finitely generated, e(G) =10, 1, 2 or =,

For suppose e(G)#+0, 1 or « Then G is infinite (e{(G) # 0) and
acts on the finite (e(G) # ©) group QG/FG. As e(G) #1, we can find an
A as above; the isotropy group H has finite index in G, so is infinite.
Then by (5. 8) there is a subgroup Z of finite index which is infinite
cyclic, by (5. 6) e(G) = e(Z) and by (5. 3), e(Z) = 2.

We also have a characterization of groups with 0 ends (finite) or
2 ends (finite extensions of Z). Our next main objective will be a study
of groups with = ends, The restriction to finitely generated groups is
not essential: the result of Corollary 5. 9 is proved in Cohen's book [5]
for groups which are not locally finite; he also shows that a countable
locally finite group has = ends, and (see Goalby [31]) an uncountable one
alsohas 1 or <

We begin the proof of (5. 8) with a lemma, which (together with the
corollary) will also be repeatedly used in chapter 6.

Lemma 5.10. Let Ao’ A1 € QG. For almostall ¢ er, either
C C
gAl - Ao or gA; "Ao’

Proof. Choose a finite set S of generators of G, and use (as in

(5.2)) the actionof G on T Pick connected finite subgraphs Ci of

Fs containing GAi’ S
For each vertex c of Cl, ge er for almost all ¢ er. As Ci
is finite, gC1 n C0 = ¢ for almost all g € G. Hence for almost all g er,
we have gC1 ﬁC0 = ¢, and gc er for each vertex c of Cl.
For any collection A of vertices of T, let A denote the maximal
subgraph of T with vertex set equal to A, Each component E of IT;

or K_;‘ contains a vertex of Cl, so gE meets AO: if it also meets A;,
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it meets Co‘ But C0 is connected and disjoint from gCl, so lies in a
single component gE. Thus A’(‘]‘ cannot meet both gAl and gA*,
1

Corollary 5.11. If Ao’ A1 € QG, then for almost all g ¢ G one
(at least) of gAl C Ao’ gAl"' C Ao’ gA1 C A;, gA: C A; holds.

Proof of 5.8. Interchanging A, A* if necessary, we may as;ume
H nA infinite. We may also adjoin 1 to A. By the lemma, for almost
all g €A either gACA - {1} or gA* CA - {1]. Hence we can choose
¢ € H n A satisfying one of these: necessarily cA CA - {1]}. We will
show that ¢ generates the required subgroup.

If n> 0, ¢"A CcACA, Thus c"+# 1, so c¢ has infinite order,
As 1 €A, c" €A for n> 0, andas ¢"ACA- {1] for n> 0, we
have ¢ " €A* for n> 0.

If deni{c"™ :n> 0}, then ¢c™™ ¢Ad™' for n> 0, contradicting
the fact that Ad™' + A is finite, and all the ¢" distinct. Hence
ni{c™ :n> 0) =¢. So

A=u{c"A-c"+1A:n20]

=ulc™A-cA):n=0}

is contained in the union of finitely many (right) cosets of {c¢) in G:
recall that ¢ €¢H, so A - cA is finite. The same holds for A* (re-
placing ¢ by c”'). Hence the infinite cyclic subgroup {c) has finite
index in G.

Alternate proof of 5.8. As before, we may assume that H n A is
infinite. Lemma 5, 10 and its proof tells us that for almost all g € A,
g(6A) n 6A is empty and either gA C A or gA* C A, Hence there is an
element ¢ of H N A, such that c(6A) n 6A is empty and either cA C A
or cA*CA. As cA isalmost equal to A, we must have cA C A and
the inclusion must be strict, as c(6A) N 6A = ¢. Let B=A + cA. Then
B is non-empty, finiteand B C A, B ncA = ¢. Further for any two
integers r, s, with r > s, we have ¢'B nc°B = ¢. For
¢"Bnc®B=c%c""®BnB), and c" 5B ¢T"SA C cA. Thus
" *BnBCcAnNB=¢.

177



LR AR R

LA R s & e

Now consider 3 c¢"B, which equals U c"B by the above.

nez - nezZ
+
As 0 is additive, we have 6( z "B} = 3 (cnéA +c" le) = 0.
nezZ neZ n
(Note that these infinite sums make sense.) Thus U c¢ B must equal

nez
G, and so the cyclic subgroup of G generated by c¢ has index equal to

the order of B. As G is infinite, ¢ must have infinite order and the
result follows.

One can also give a more direct proof of the result (5, 9) that a
finitely generated group must have 0, 1, 2 or « ends. Let G bea
finitely generated, infinite group and suppose that e(G) is a positive
integer n. Choose a finite generating set for G and let T' be the
corresponding graph. G acts on I' on the left with finite quotient. Let
L be a finite connected subgraph of I' such that I' - L consists of n
infinite components Vl, e Vn' As G is infinite, there exists g € G
with gL n L = ¢. Thus gL lies in one of the V's, V_ say. Exactly
one of the components of V‘ - gL is infinite, for T - (L u gL) has only
n infinite components. Now L U Vz u... u Vn is connected, so that
I' - gL has al most two infinite components, As g is a homeomorphism,
I' - L. must have at most two infinite components and this proves the
required result.

We finish this section by giving some more information about

groups with two ends.

Theorem 5.12. The following conditions on a finitely generated

group G are equivalent:
(i) e@ =2,
(i) G has an infinite cyclic subgroup of finite index,
(iii) G bhas a finite normal subgroup with quotient Z or_ Z,» Z
(iv G=F *p with F finite, or G=A ‘p B with F fxmte and
IA:F|=|B:F| =2

Proof. (i)=> (ii) by Theorem 5.8, for H will have index at most
2in G,

(ii)=> (i) by Lemma 5. 6 and the fact that e(Z) = 2.

(iii) = (iv) If F is a finite normal subgroup of G with quotient
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Z, then G=TF g If the quotient is Z * z , then G= A F B, where
A and B are the inverse images of the Z factors. Thus
IA F] [B Fl = 2 as required.

(iv)= (iii) If G=F *p with F finite, then both inclusions of F
in F must be isomorphisms and so F is normal in G with quotient Z.
If G=A s+ B, with F finiteand |A:F| = |B:F|=2, then F is
normal in A and B. Hence F is normal in G and

= (A/F) * (B/F) = Z,+2,.

(iii) = (i) by Lemma 5. 7 Note that z . Z is isomorphic to
D(+), the infinite dihedral group, and so has two ends

Finally, we prove (ii)= (iii), to complete the theorem.

First, G must contain an infinite cyclic subgroup K of finite index
which is also normal in G, One takes for K the intersection of all the
conjugates of the original infinite cyclic subgroup, Let H denote the
centralizer of X in G. Thus IG : H’ = 2. H is finitely generated and
its centre is a subgroup of finite index. A theorem of Schur (see e. g,

W. R. Scott, Group Theory, Prentice-Hall, 1964, §15.1,13) tells us that
H', the commutator subgroup of G, is finite. Now H/H' must have
rank 1, and so there is an epimorphism ¢ : H = Z with finite kernel L.
If G =H, our result is proved. Otherwise observe that H is normal

in G and L is characteristic in H, as L is the torsion subgroup of H,

Thus L is normal in G and we have the exact sequence
l*H/L-’G/L-’ZZ*l.

We know that G/L must be non-abelian, and therefore G/L is isomor-
phic to 22 * Zz. This completes the proof of Theorem 5. 12.

6, THE STRUCTURE THEOREM FOR GROUPS WITH INFINITELY
MANY ENDS

The aim of this section is to describe which finitely generated groups
have infinitely many ends. The neatest formulation of the result includes
the case of two ends.
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Theorem 6.1. If G is a finitely generated group, then e(G) =
if and only if G splits over a finite subgroup.

Remark. Theorem 5. 12 tells us that e(G) = 2 if and only if
either G=F * with F finiteor G=A ‘p B with F finite and
|A:F|=|B:F|=2

This remarkable result is due to Stallings [37], [26], but our treal-
ment of the proof is an amalgam of results of Cohen [5], Dunwoody [7] and
Stallings [26).

There is a close connection between Theorem 6. 1 and the Sphere
Theorem. In fact, Stallings discovered the result by considering the
proof of the Sphere Theorem due to Papakyriakopoulos [19] and Whitehead
[29]).

Sphere Theorem, If M is an orientable 3-manifold with nz(M) #0,

there is an embedded 2-sphere S in M which represents a non trivial

element of uz(M).

Let M be a closed vurientable 3 manifold with fundamentai group G.
One can show easily (see below) that the hypothesis that nZ(M) is non-
zero is equivalent to asserting that e(G) = 2, Also the conclusion of the
Sphere Theorem implies that G splits over the trivial subgroup. Thus
the Sphere Theorem is extremely like Theorem 6.1, when M isa closed
manifold. Further, it is possible [26] to give a proof of the Sphere Theor-
em which uses Theorem 6,1,

~The reason why uz(M) #0 ifand only if e(G) = 2 is as follows.
Let M denote the universal covering space of M. Then Theorem 5.4
tells us that e(G) = e(l\71) For these purposes it will be convenient to
use coefficients Z, not Z when defining the groups H (M) H (M),
H (M) The natural analogue of Proposition 5.1 is that e(M) equals
the rank of H (M), where the rank of an abelian group is defined to be
the maximal rank of all finitely generated free abelian subgroups or <
if this maximum does not exist. Now consider the long exact sequence
connecting the groups Hn(lrd), H?(ﬁ), H:(IUI). This begins

HO (M)~ H°(M) = HO(M) ~ H (M) = H (M) —

T OoNn

As H! (M) = 0, we see that e(M) = 2 if and only if H (M) is non zZero,
Now Poincaré duality for M gives an isomorphism between H (M) and
H (M) and we have H (M) ] tM) nz(M) Thus Tiz(M) #0 ifand
only if e(G) =2,

The conclusion of the Sphere Theorem implies that G = A »

n (5)2
or A *a.(S) according to whether S separates M or not. As "1(8) is
1

trivial, this implies that G splits over the trivial subgroup unless S
separates M into two components one of which is simply connected. We
show that this is impossible, If this did happen, we would have a compact,
simply connected 3-manifold X with boundary a 2-sphere. Hence
Poincaré duality tells us that HZ(X, aX) = Hl(X) = 0. Now the exact
homology sequence of the pair (X, 3X)

O*HB(X, GX)*Hz(BX)-*HZ(X)-'Hz(X, oX) -

shows that Hz(X) = 0. The Hurewicz Theorem then implies that nz(x)= 0,
so that S is null-homotopic in X, contradicting our assumption on §S.

A purely group theoretic result, which follows easily from Theorem
6.1 is the following,

Theorem 6.2. If G is a finitely generated, torsion free group with

a free subgroup of finite index, then G is free.

Remark. Swan [27] has extended this result by removing the restric-
tion that G be finitely generated.

Proof. Let p(G) denote the minimal number of generators of G.
If p(G) =0, then G is trivial, so the theorem holds. If p(G)> 0, then
G is non-trivial. As G cannot be finite, G has a non-trivial free sub-
group F of finite index and so e(G) = 2. Thus Theorem 6. 1 tells us
that G splits over a finite subgroup. Now the only finite subgroup of G
is the trivial subgroup, so that either G=Z or G= G * G_, where
each Gi is non-trivial. In the first case, our result islprov:d. In the
second case, we observe y(Gi) < p(G) by Corollary 2.1 and that F n Gi
is a free subgroup of Gi which is of finite index. Thus the required
result follows by induction on p(G). Note that we have used the fact that
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subgroups of free groups are free.
We now come to the proof of Theorem 6, 1 and we start with the

easy half.

Lemma 6.3. If G splits over a finite subgroup, then e(G) = 2.

Remark. For this result, G need not be finitely generated.

Proof. It suffices to produce an almost invariant subset E of G
such that E and E* are infinite.

First suppose that G = A c B, where C is finite, and recall the
canonical form for elements of G given by Theorem 1. 6. One chooses
based transversals TA and TB for C in A and B and obtains the
form alhl anbnc for any element of G, where c €C, a, €T,,
bi e'I‘B and ai=1$ i=1, bi=1=> i=n. Let E be the subset of G

consisting of elements for which a, is non-trivial, Clearly E and E*

are infinite. (This uses the fact that A # C # B.) If b € B, then Eb=E. .

If a €A, then EaC EuC and so also Ea ! CEUC. Hence
ECEauCaCEuCucCa

sothat EX Ea. As A and B together generate G, we have Eg:—i'E
for all g in G.

Secondly suppose that G = A ‘o where C is finite, and recall
the canonical form for elements of G given by Theorem 1.7. One
chooses é)ased transversals 'l‘i of ai(C) in A and obtains the form

€

€
1 2 n _
alt azt ant an+1’ where an+1 €A, ai GTl if ei— 1, ai €T2

if €, = -1, and moreover a; #1 if € 3 # € Let E be the subset of

elements of G for which a, is trivial and e = 1, If a €A, then

Ea =E. Also EtCE and Et'cEU al(C). Therefore, as before,

E is almost invariant in G. This completes the proof of Lemma 6. 3.
The hard part of Theorem 6,1 is the result that a finitely generated

group G with infinitely many ends must split over a finite subgroup. Our

aim, following Dunwoody [7], is to produce a tree T on which G acts

with quotient a single edge. We start by considering graphs and trees in

more detail than before. Let I' be an abstract graph.

1R2

Definition. An edge path in I' is a sequence e NOEETEN - of

edges such that alei = E,‘oeﬁ1 and e # eip for i=1, 2, ..., n-1,
If e, { are edges of T, we will write e ={ if there is an edge path with

e. =e and e_=f.
1 n

The relation =< has the following properties.

(A) TFor any graph T, the relation = is reflexive and transitive,
(B) Forany graph I andany edges e, f of T, if e =<f then f=se.
(C) The graph T is connected if and only if for any pair e, [ of edges
of T, atleastoneof e=<1{, e<Tf, e={f, e =T holds.

(D) The graph T has no circuits if and only if whenever e = f{ and
{f<e, then e=1{.

(E) o T has no circuits, then for no pair e, f of edges can we have
e=<f and esTf.

(F) If T has no circuits, then for any pair e,  of edges there are
only finitely many edges g with e =g =1{.

If a relation satisfies the conditions in (A) and (D), we shall call
it a partial order. Thus if T is a tree, the relation = on E(T') isa
partial order and the following conditions hold.

(1) If e=<f, then T<e.
(2) 1If e, f € E('), there are only finitely many g € E(I') such that

e=g=1
(3) If e, f €E(I), atleastoneof e=f, exf, e=f, e = holds.
(4) If e, f €eE(I), we cannot have e <f and e <T.

Remark. If two of the inequalities in (3) hold, then e=f or e=1.

The next step is to show that if we start with a partially ordered set
E satisfying all the above conditions, then we can construct a tree out
of E.

Let E be a partially ordered set with an involution e —'e, where
e # e, and suppose that conditions (1)-(4) hold. Write e< [ if e={
and e+f, Write e<< f if e< f, and e=g =<{ implies g=e or
g = {. We need the following technical result.

Lemma 6.4. The relation ~ on E, defined by e ~ 1 if and only if

e=1f or e<<T, is an equivalence relation.,
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Proof, The relation is obviously reflexive and is symmetric

because e << T implies << e,

We suppose e ~f and e ~h and will show { ~h. The first step
is to show that f=h or f<h. Condition (3) implies that one of f = h,
f=h,T=h, {<h holds. If f=<h, then h =T and we would have
e < h=T which implies h=f as e<< f. If T=<h, then e< T=h
implies h=f as e<<h., If T<h, wewouldhave e< f<h. As
e= }—1, this contradicts (4). The only remaining possibility is f < h.
Hence either f=h or f< h as required.

The last step is to suppose f< h and f =g =h andprove g=1f
or g="h, One of the inequalities e =g, e =g, e< g, e < g must hold.
If e<g, then e =h. As e <h, this contradicts (4). If e =<§g, then
e ={ which again contradicts (4). If e< g, then e < g=h shows that
g=has e<< h. If e< g, then e< g=T showsthat g=f as
e<< f. Hence g=f or g="h as required. This completes the proof
of Lemma 6, 4.

We construct a graph I' out of E as follows. Let t(e) denote the
equivalence class of e in E under the relation -. Let V = {t(e):ecE }
and let aoe = t(e). Then the sets E, V and the map 80 form an abstract
graph T.

Theorem 6.5. T is a tree and the order relation which I induces

on E is the same as the original relation.

Proof. We will prove the second part of the theorem. The fact
that T is a tree will then follow from properties (C) and (D). Lemma 6. 4
tells us that tor distinct elements e, { of E we have t{f) = t(e) if and
only if e << f. Thus ale = aof if and only if e << f. It follows that if
e and { are joined by an edge path in I, then e = f, and condition (2)
shows that if e <f, then e and [ can be joined by an edge path in T,
Hence T does induce the original order relation on E, as required.

Consider the following examples of Theorem 6. 5 in action.

Let G be the free group of rank 2 with generators a, b and
let T be the corresponding graph for G. If e isanedgeof T it
separates I' into two components, Thus G = A UA* where SA=0G6A*=e,
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Let E be the set of all subsets A of G with 6A equaltoa single edge
of I, We partially order E by inclusion. Then E has an involution
A —~A* and satisfies conditions- (1)-(4). The tree constructed in Theorem
6.5 is the graph T’ again.

One can obtain an action of G on a different tree T as follows.
Let A be the subset of G which contains a and whose coboundary is
the edge (e, 2a) of T, Let F be the set of all translates gA, gA* of
A and A*, partially ordered by inclusion. Again F satisfies conditions
(1)-(4). Hence we can construct a tree T from Theorem 6. 5. The
natural left actionof G on F induces anaction of G on T which has
quotient a single edge. Let g be an element of G such that gA = A or
A*. Then g(6A) = 6A so that the edges (g, ga) and (e, a) are equal,
This is only possible if g =e sothat G acts on T without inversions
and the stabilizer of any edge of T is trivial.

Recall that t(A) consists of A together with every element B of
F such that A << B*. We will call an edge of T of the form (g, ga)
an a-edge, and an edge of the form (g, gb) a b-edge. If A << B*, then
6B isana-edge of T which has no vertices in A and such that the path
from 6B to OA consists only of b-edges. It is now easy to see that

tA)={b"A:neZ)u (b"a 'A% :n €Z).

Hence the stabilizer of t(A) is the infinite cyclic subgroup H of G
generated by b. One can also see that eoA = alA* = aalA. Hence G
acts transitively on the vertices of T, sothat G\T is a loop. This
actionof G on T corresponds to expressing G as H » ) The graph
T is obtained from T by identifying each b-edge of I to a point.

We can now sketch the proof of the main part of Theorem 6.1, i.e.
if G is a finitely generated group and e(G) = «, then G splits over a
finite subgroup. The idea is to proceed, as in the example above, to
construct a tree T on which G acts so that the stabilizer of any edge is
finite and the quotient G\T isa single edge. However, we need to
partially order our almost invariant sets by almost inclusion and not by
strict inclusion in order to be able to prove that condition (3) holds.

For any almost invariant set B of G, write [B] for the set of all
2lmost invariant sets of G which are almost equal to B. Define [B] =[C)
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if and only if B é C. Fixa proper almost invariant set A of G i.e.
A and A* are infinite, and let’ E be the set of [gA] and [gA*] for all
g in G, partially ordered by <. We have the involution [A]—[A*] on
E. Our aim is to choose A so that E satisfies conditions (1)-(4).
Assuming that we can do this, we can construct the required tree T. The
stabilizer of the edge [A] will be finite because {g €G:gA 2A) s
finite by Theorem 5.8. G may invert edges but if 80 we simply subdivide
T. Hence, by Theorem 4.3, G is an amalgamated free product over a
finite subgroup F. Hence G splits over F so long as no vertex of T
has stabilizer equal to G. We show that this is impossible.

Suppose that G fixes a vertex v of T. Then every edge of T
has v as a vertex. In particular, v must be one of the original vertices
of T, and was not introduced by subdivision. Now we consider the original
T. If e and f are edges of T with e < {, we have e << f. Now Lemma
5.10 tells us that for almost all elements x of A, xA CA or xA* CA.
As {geG:gA 24A) is finite, by Theorem 5. 8, we deduce that there is '
an element x of A such that xA is not aimost equal to A or A* and
either xA CA or xA* C A, Similarly, there is an element y of A*
such that yA* is not almost equal to A or A* and either yA C A* or
yA* C A*. If XA CA, then we have x’A C xA C A and this contradicts
the fact that if e, f are edges of T with e < {, then e << {, Similarly,
if yA* C A*, we obtain a contradiction, If xA* C A and yA C A*, then
xyA C xA* C A and again we have a contradiction. Therefore G cannot
fix a vertex of T.

In order to complete the proof of Theorem 6.1, we must show how
to find a proper almost invariant set A in G such that the partially
ordered set E satisfies conditions (1)-(4). Conditions (1) and (4) hold
automatically for any choice of A. Our next result says that condition
(2) also holds for any choice of A,

Lemma 6.6 Let G bea finitely generated group with infinitely

many ends. If B, C, D are proper almost invariant subsets of G, then
a
fgeG:BCgCCD} is finite.

Proof. The result is trivial if B is not almost contained in D. If

186

B is strictly contained in D, we can add an element of D* to B with-
out alteringathe p;oblem. Hence we suppose that B é D but BZD.

If B CagC C D, then either gC ¢ D or B ¢ gC. We will show that
lgcG:gCCD, gC gD} and {geG:BEgC, BZgC} are both
finite. This will prove the required result. Now Corollary 5,11 states
that for almost all elements g in G one of gC C D, gC C D*, gC*’c D,
gC* € D* holds. If gC & D and gC ¢ D, none of these four inclusions
can hold except for gC* C D*. If gC é D and gC* C D*, then gC = D.
As lg€G:gC2C) is finite, by Theorem 5. 8, we deduce that
{g eG:gCgD, gC € D] is finite. Similarly {g €G: BégC, B¢gC)
is finite.

Finally, we show that it is possible to choose A so that E satisfies
condition (3). Note that for almost all g in G, we know that one of
gA C A, gA CA* gA*¥ CA, gA C A* holds. We must arrange that this
holds for every element of G, when we replace strict inclusion by almost
inclusion.

We {ix a finite generating set S for G andlet T = I'(S, G) be the
corresponding graph. If A is an almost invariant set in G, we denote the
number of edges in 6A by |6A | Let k be the smallest value taken
by IGAI as A ranges over proper almost invariant sets in G. We say
that a set A in G is narrow if |6A| = k.

Lemma 6. 7. Let A1 > A2 D ... be a sequence of narrow sets

in G. If B= N A_ is non-empty, then the sequence stabilizes, i.e.
n=1
there is an integer K such that An = B, when n =K,

Proof. Let e be an edge of 6B. Then e has one vertex in every
An and the other vertex is outside every An for which n exceeds some
integer N. Therefore e is an edge of 6An, when n> N, If 6B con-
tains k + 1 edges, the above argument shows that 6A would also con-
tain k + 1 edges for a suitably large value of n. It fol;lows that
[6B| =k and that 6B C 6A_ for all suitably large n. In particular, B
is almost invariant in G. We have the equations An = (An + B) + B and
0A =0(A +B)+6B. As 6BC 6A  we see that oA+ B) n 6B is
empty. As An is infinite, one of B and (An + B) must be infinite.

187



The infinite one, X, must have |6X| =k, as X is a proper almost
invariant subset of G. The other one must then have empty coboundary
and so be empty. As B is non;empty, we deduce B = An’ which
completes the proof of the lemma,

Let g be any element of G, and let A be a narrow set in G.
Then A* is also narrow so that g must lie in a narrow set in G.
Lemma 6. 7 tells us that the set of all narrow subsets of G which contain
g has minimal elements, where we partially order narrow sets by

inclusion.

Lemma 6.8. Let A be a narrow set, minimal with respect to

containing some element g of G Then for any narrow set A , one of
a8a,a&nr, a0 &a, Av&Ar hous.

Proof. The required result is equivalent to proving that one of the
sets A nAl, An A’l', A* nAl, A*n A;' is finite. For convenience we
call these sets Xl, Xz, X3, Xq. For each i, 6Xi C oAU 6A1. As the
Xi's are disjoint, any edge in 5A u 6A1 has its ends in exactly two of the
Xi's. Hence each edge in 8A u 6A L lies in the coboundary of exactly two
of the Xi's. Hence

lox | + |ox | + |ox | + |oX, | =2|ea v oa | = ax,

where |6A| = IGA | = k.
If each X is infinite, then we must have |6X f =k for each i,
because each X* is infinite. Hence |6X | =k for each i. But one of

An Al, An A; (say An Al) is then a narrow subset of G which con-
tains g, Hence A n Al = A Dby the minimality of A, andso A n A{ is
empty - a contradiction. Therefore some Xi must be finite which com-
pletes the proof of Lemma 6. 8.

In order to carry out the proof of Theorem 6.1 as sketched after
Theorem 6, 5, we simply need to choose a narrow set A in G which is
minimal with respect to containing some element of G.

TRR

e e

7. APPLICATIONS AND EXAMPLES

Many of the most important applications of Stallings' structure
theorem for groups with infinitely many ends have to do with the cohom-
ology of groups. We will only consider more simple minded examples.
We start by discussing the problem of accessibility first posed by W4ll
[28].

Think of a splitting of a group over a finite subgroup as a kind of
factorization. Stallings' theorem tells us that if G is finitely generated
and e(G) = 2, then G has such a factorization. The first natural question
to ask is whether one can go on factorizing G for ever, or whether the
process of factorization must stop,

We will say that a f. g. group with at most one end is 0-accessible,
and that a group G is n-accessible if G splits over a finite subgroup
with each of the factor groups (n-1)-accessible. We will call a group
accessible if it is n-accessible for some n.

Conjecture. Any finitely generated group is accessible.

Bamford and Dunwoody [1] have shown that accessibility is equivalent
to a certain condition on the cohomology of the group, but, in general, one
has no proof that their condition is satisfied. However, it is easy to see
that any f. g. torsion free group G is accessible. Corollary 2, 2, which
follows from Grusko's Theorem, tells us that G is a free product of
indecomposables. Each factor in this decomposition has at most one end
or is infinite cyclic and so G is accessible.

The following result seems to clarify the concept of accessibility.

Lemma 7.1. Let G be a finitely generated group. Then G is

accessible if and only if G is the fundamental group of a finite graph I'

of groups, where each edge group is finite and each vertex group has at
most one end,_

Proof. If T exists, G is obviously accessible. We prove the
converse by induction on n, where G is n-accessible. If n = 0, we can
take I' to be a single vertex.

If G= G1 *o G2 where G1 and G2 are already the fundamental
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groups of graphs l" and I‘ of groups, and C is finite, we construct
T as follows. By Corollary 3,8, there are vertex groups Hl, H of
I‘ I‘ and elements g,» B, of G G such that CCg Hg,
i=1, 2 By replacing every vertex and edge group H of F by
gll-lg1 we can suppose that C C Hl, and similarly for I‘z. Now T
consists of r 1" and an edge e joining the vertices underlying l-l1
and H where e has associated group C.

If G=A *c
1"1 of groups, and C is finite, we proceed as follows. We have two

where A is already the fundamental group of a graph

inclusions a, a, of C in A and each ai(C) must lie in a conjugate

of some vertex group H of F . As above, we can suppose that

a (C) CH ) and « (C)C sH s-!. (Note that possibly H1 =H2.) Now
G has presentatlon A, t: t' o (c)t =qa (c) Ve e C] Write u =ts.
Then G also has presentation {A u:ula (c)u =s la (c)s Ve €Cl.
We replace a, by 13 where B (c)=s" la (c)s As ﬁ (C) C Hz’ ‘
cantake T to be F together with an edge e joining the vertices of l"
which underlie H1 and Hz’ where e has associated group C.

We can now re-define accessibility to allow for infinite factorization.
A group is accessible if and only if it is the fundamental group of a graph
of groups in which every edge group is finite and every vertex group has
at most one end. For f.g. groups, this is equivalent to the old definition.
One can ask if all groups are accessible, but the Kuro$ example in Section
3 shows that the answer is negative. For Kurog's group is an infinite
amalgamated free product of iree groups and hence is torsion free. Thus
his group is accessible if and only if it can be expressed as a free product
of indecomposable subgroups.

There is one other class of groups known to be accessible. That is
groups with a free subgroup of finite index. We have already shown
(Theorem 6. 2) that if such a group is torsion free it must be free. We
now state a general structure theorem for such groups. This was proved
by Karrass, Pietrowski and Solitar in the f.g. case [16], Cohen in the
countable case (6], and Cohen [6] and Scott [20] in the general case. See

also Dunwoody [7] for a more recent proof.

Theorem 7.3. A group G has a free subgroup of finite index if

and only if G is the fundamental group of a graph I' of groups in which

every vertex group of T is finite and the orders of all the vertex groups
are bounded,

Remark. We will prove this theorem only in the case when G is
f.g. We can then assume that T is finite, so that the boundedness con-
dition is redundant.

Proof. Suppose that G is f.g. and has a free subgroup of finite
index. We will show that T exists by induction on r(G), where r(G) is
the minimal rank of free subgroups of G of finite index. I r(G) =0,
then G is finite and the result follows. If r(G)> 0, then e(G) = 2 so
G splits over a finite subgroup. If G=A *c B, or G=A ‘o I claim
that r(A) and r(B) are each less than r(G), so that the result will
follow by inductior as in the proof of Lemma 7.1. Let F be a free sub-
group of G of finite index and of minimal rank. As C is finite, F meets
any conjugate of C trivially. Hence the Subgroup Theorem applied to
FCA *CB or Atc tellsus that F=(FnA)+«(FnB)*K or

= (F nA) » K, for some subgroup K of F. Hence the ranks of F nA
and F n B are each less than that of F unless one of them equals F.
But then we would have F contained in A or B which is impossible as
F has finite index in G, but A and B have infinite index in G.

Now suppose that G is the fundamental group of a finite graph T
of finite groups. We use induction on the number n of edges of I'. If
n = 0, then G is finite and the result is obvious.

If n=1, we pickanedge e of I with associated group C. Then
G=A *c B or A *c according to whether e separates I or not, where
A and B are the fundamental groups of the subgraphs of T obtained by
removing e. Thus, by our induction hypothesis, each of A and B has
a free subgroup of finite index and hence a normal free subgroup of finite
index. Let Al, Bl denote the quotients of A and B by their normal
free subgroups of finite index. As C is finite, the natural maps from A
and B to Al and B1 both inject C. Hence we have a natural map

*c B -‘A1 *c B1 or A *C -’A1 *or which injects any finite subgroup
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of G. Lemma 7.4 below tells us that there are maps of A1 o B1 or
A1 *c to a finite group which inject A1 and Bl. By composing these
maps we obtain a homomorphism from G to a finite group which injects
every finite subgroup of G. The kernel of this homomorphism must be
a free group, by the Subgroup Theorem, which completes the proof of

Theorem 7. 3.

Lemma 7.4. If G=A *C
then G has a free subgroup of finite index.

B or A o with A, B and C ({inite,

Proof. We construct a homomorphism from G to a finite group
which injects A and B. The kernel must be free, by the Subgroup
Theorem.

Case G=A *CB

Let X=A/C XC x B/C, where A/C denotes the set of all cosets
aC of C in A, We will represent A and B faithfully as permutation

groups of the finite set X, in such a way that C acts on X in the same
way for each action. There will then be a homomorphism G = S(X), the
group of permutations of X, which injects A and B.

Choose a transversal t: A/C =+ A, We have a bijection A/C X C=A
sending (a, ¢) to t(a)c. The action of A on itself by right multiplication
gives an action of A on A/C X C, by using this bijection. We let A act
on X by defining (c, ¢, Bla = ({(a, c)a, B). If c' € C, then
(a, ¢, B)c' = (e, cc', B). Similarly we use a transversal of C in B to
define an action of B on X. For this action also, we have
(o, ¢, B)c' = (a, cc’, B) forall c' eC,

Case G=A *o

We have two injections of C into A. We use one of them to identify
C with a subgroup of A. Thus we have a subgroup C of A andan
injective map ¢ : C =+ A, whose image we denote by Cl.

Let X=A, andlet A act on X by right multiplication., The two
induced actions of C are each multiples of the right regular representation
so are equivalent, We can write down an equivalence as follows. Choose

transversals T : A/C = A, T1 :A/C1 ~ A and a bijection ¥ : A/C -’A/Cl.
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Then T, T1 induce bijections U:A/C X C =+ A, U] :A/C1 X c:1 -+ A
(as above), and we define @ to be the composite

-1 U
A—Y s Aacxe ¥X¢ AL xC —1 44,

Then 6(ac) = 6(a)p(c). Now we can define a homomorphism r : G -+ S(X)
by letting r IA be the right regular representation and r(t) = 6.

Remark. These constructions - which do not depend on finiteness
(except to suppose the existence of a bijection ¢) - give an alternative
proof of the assertion (1. 6, 1.7) that if C—+A, C - B are injective, so
are A=A *c B, A—+A *c

Having discussed the accessibility of groups i, e, the existence of
a factorization, the next question to consider is that of uniqueness of the
factorization. One would like some analogue of Theorem 3. 5 for free
products. The first point is that given any graph I' of groups with
fundamental group G, one can construct a larger graph I', also with
fundamental group G by adding an edge e to I' with only one vertex of
e in T and an isomorphism at the other end of e. This corresponds to
expressing G as G *c C for some subgroup C.

We will say that an edge e ina graph of groups TI' is trivial if
the two ends of e are distinct vertices of T and e has an isomorphism
atone end. If I' has such an edge, we can replace I" by a new graph
" obtained from I' by identifying e to a point, such that I has the
same fundamental group as I'. Hence if we start with a finite graph I,
we can eliminate all the trivial edges. However, this is false for infinite
graphs. For example, let T' be the graph with vertices 1, 2, ... and
edges e joining i to i+ 1. We associate an infinite cyclic group Ai
to the vertex i and an infinite cyclic group Bi to the edge € The

map Bi - Ai is an isomorphism and the map Bi A is multiplication

by two. The fundamental group of T is the dyadic ralt-;‘c}nals, but every
edge of T is trivial.

We will say that a graph of groups with no trivial edges is minimal.
Then any finitely generated accessible group G is the fundamental group
of some minimal graph T, where each edge group is finite and each

vertex group has at most one end. Even with minimal graphs, one still
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cannot expect that the graph I is unique. For example, if

G= G1 ... 0 Gn’ then one caﬁ take for I' any tree with n vertices,
and associate Gl, ceey Gn to the vertices and the trivial group to each
edge. The same problem arises for amalgamated free products e.g. when
G=G1 BRI Gn. Also if G=A *c B *DE with D C C, then

G =E *_ A »., B giving two possible graphs for G.

D C
We need the following result.

Lemma 7.5. Let G be the fundamental group of a finite graph I’

of groups, such that each edge group is finite and each vertex group has at

most one end.
(i) If A isa subgroup of G with at most one end, then A lies

in a conjugate of a vertex group of T.

(ii) Let Vi Y, be vertices of I' with associated groups Gl, Gz‘
Ii A=G, nGE, then either there is an edge path in T from v, to v,
such that each of the associated edge groups contains A or Gl = 02 M‘

geGl.

Proof. (i) The Subgroup Theorem tells us that A is the fundamen-
tal group of a graph I of groups where the associated groups are con-
jugates of subgroups of the groups associated to I'. Our aim is to show
that A must be a vertex group of I'.

The fact that e{(A) =1 tells us that each edge of I'' is trivial and
that I'' is a tree. Thus the vertex groups of I'' are partially ordered
by inclusion. Suppose that A1 C A2 C ... is an infinite ascending chain
of vertex groups of I'. If all the inclusions are strict, then each Ai
equals an edge group of I'', But, as I' is a finite graph, there is an
upper bound on the orders of the edge groups of I'. Hence, one cannot
have an infinite strictly increasing chain of vertex groups of I''. Hence
there is a maximal vertex group. This vertex group must equal A, which
completes the proof of (i).

(ii) The proof of this is the same as the proof of Lemma 3, 15.

Now we consider a finitely generated group G and two minimal
graphs T' and T' each with fundamental group G, such that each edge
group is finite and each vertex group has at most one end. Note that r

and I'" must be finite.

1T0A

Lemma 7.6. (i) There is a bijection between the vertices of T

and T' such that corresponding vertex groups are conjugate in G.

(ii) T and T' have the same number of edges.

(iii) If T does not have distinct edges e, { with Ge lying in a
conjugate of Gf, then I and T' are isomorphic as graphs and corres-

i/

ponding vertex or edge groups are conjugate in G.

Remarks. In (iii), the hypothesis implies that no edge group of T
is trivial, unless T" has only one edge.

It seems reasonable to suppose that the analogue of (i) for the edges
of ' and T'' always holds, but we cannot prove .it.

Proof. (i) Let A be a vertex groupof I, Then e(A) =1, Lemma
7.5 (i) tells us that A lies in a conjugate of a vertex group B of I'. The
same lemma shows that B lies in a conjugate of a vertex group Al of T,
Hence A lies in a conjugate A{f of Al for some g € G, Lemma 7, 5(ii)
tells us that either A = Al and g € A or there is a path from A to A1
in T for which each edge group contains a conjugate of A. As I is
minimal, the second case can only occur when A = A1 and the path
consists of a single loop. Therefore A = A% and A is conjugate to B.

As the groups associated to distinct vertices of I' cannot be conjugate
(because I is minimal), assertion (i) follows.

(ii) Let G denote the quotient of G obtained by killing all the
vertex groups of I'. This quotient is a free group of rank E - V + 1,
where E and V are the number of edges and vertices of I, Part (i)
tells us we obtain a group isomorphic to G by killing all the vertex groups
of T'. Hence E-V+1=E'-V'+1 As V=V’ by (i), we have
E = E' as required.

(iii) Let e bean edge of T with vertices v, and v, which may
be equal, Let G1 and Gz be the groups associated to v, and v_ and
let A be the group associated to e. Then A = G1 n GE where either
G1 # G2 or G1 = Gz and g g’Gl. 1t follows from Lemma 7. 5 (ii), and
from part (i) of this lemma, that A lies in a conjugate of an edge group
B of I'". Similarly, B lies in a conjugate of an edge group Al of T,

Our hypothesis on I, in (iii), implies that A = A so that A is con-

195



jugate to B. Thus for each edge group of T, there is an edge group of
T' conjugate to itin G and distinct edges of I’ correspond to distinct
edges of I'. As T and I have the same number of edges, by part
(ii), we have a bijection between the edges of T and I

Suppose that A is an edge group of T andthat A is contained in
a conjugate of a vertex group H of I. Our condition that A is not con-
tained in a conjugate of any other edge group of I’ implies that H is one
of the vertex groups at the end of the edge to which A is associated. The
same holds for I, so that the bijection between the edges of T and I
must actually induce an isomorphism of the graphs T and T,

We turn now to another embedding result proved in [20]. The result
and its proof are similar to those of Theorem 3,17, which told us that
any countable group could be embedded in a 2-generator group. The result
is an essential part of the proof of Theorem 7. 3 for arbitrary cardinality

of the groups involved.

Theorem 7.7. 1f G is the fundamental group of a countable graph

T of finite groups, where the vertex groups have bounded order, then

G can be embedded in a group H, which is the fundamental group of a

finite graph of finite groups,

Remarks. The natural homomorphism A o™ Z, obtained by

killing A, has kernel K equal to ... ‘c A *c A e This can be
seen most simply by constructing a space X whose fundamental group is
K and observing that Z acts freely on X with quotient a space with
fundamental group A o The graph I'" corresponding to K is a copy
of the real line with integer points as vertices, and all the vertex groups
are copies of A, all the edge groups are copies of C. Thus Z acts on
I, as a graph of groups. This is an example of how to embed a group
which is the fundamental group of an infinite graph of groups into a group
which is the fundamental group of a finite graph of groups. One needs a

fairly uniform sort of graph T so that T admits a group action,

Proof. The aim of our proof is to work in steps so as to make I’
uniform. Since the vertex groups have bounded order we can choose a

group H (for example, a symmetric group) in which they all embed.
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Let G1 be obtained from G by replacing each vertex group of I by a
copy of H. Note that G C Gl.

Let Hl, ceey Hn be groups, one from each isomorphism class of
subgroups of H. Let fl, ceey fN be the distinct embeddings of
H1’ ceey Hn in H. Then each edge of 1"1 has a pair of fl 's assog:iated
to it. We will say that two edges of I‘1 are of the same type if they
have the same unordered pair associated.

We enlarge the graph of groups I‘1 by adding countably many edges
of each type joining each distinct pair of vertices of I"l. This new graph
l"2 is still countable, and so is its fundamental group G 2 We have
G1 (= Gz' Choose a maximal tree T in l"z consisting of edges with the
identity map of H at each end. Let l"3 be the graph of groups obtained
{from I‘2 by identifying T to a point. Thus 1"3 has one vertex labelled

H and countably many loops of each type. Its fundamental group is still
G.
2
We now have a graph which clearly admits a group action. Suppose
that I“3 has m types of loop. We label the edges of I"3 by ai]., where
1 <1i < m, and for fixed i, the suffix j runs through all the integers, thus
enumerating all the loops of one given type.
02 has a presentation of the form
-1
{H, {ai].} I aij bikaij = Ciper where k runs through some set Ki
and by, c, €eH}.
We define an isomorphism ¢ : G2 - G2 by ¢(h)=h, for h €¢H
and ¢(ai].) = ai,j+1' This determines an extension of Gz by Z which

we call G}. G3 can be presented as

S -1
{H, {a, ), t |t 'ht=h for h €H, abya =cy

for k € Ki i,
Hence G3 is the fundamental group of a graph of groups which has one
vertex labelled H, one loop of each type and one extra loop which has
associated to it the identity map of H at each end. Hence G3 is the

required group H,.
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8. ENDS OF PAIRS OF GROUPS

The concept of the number of ends of a pair of groups (G, C),
where C is a subgroup of G, is a generalization of the number of ends
of a group. Recall (Section 6) the close relationship between the theory
of ends of groups and the Sphere Theorem. One is also interested in
conditions which will guarantee the existence of other surfaces ina 3-
manifold - particularly when the fundamental group of the surface injects
into the fundamental group of the 3-manifold. Thus one is interested in
groups which split over infinite subgroups. The starting point of my work
on ends of pairs of groups was the idea that there should be a generalization
of Stallings' structure theorem to this situation. Thus one is looking for a
natural definition of a number e(G, C), and one hopes to prove that
e(G, C)= 2 ifandonly if G splits over some subgroup closely related
to C.

The correct definition of e(G, C) is due to Houghton [33]. Recall
the definition of e(G). One lets PG be the power set of G, FG be the
collection of finite subsets of G, each with Boolean addition, and defines
EG = PG/FG. The right action of G on itself induces a right action of
G on EG. Let (EG)G denote the subset of elements left fixed by this
action (this is the same as QG/FG, where QG is as in §5). Then e(G)
is the dimension, as Zz-vector space, of (EG)G.

Let C be a subgroup of G andlet H= C\G. Then we define
e(G, C) to be the dimension of (EH)G. Clearly if C is trivial, then
e(G, C) = e(G). The following result justifies the claim that this is the
correct definition of e(G, C).

Lemma 8.1. Let X be a finite CW-complex with a connected

regular covering space X whose covering group is G, If C is a sub-
group of G, then e(G, C) = e(C\X).

Remark. The hypothesis that X is finite implies that G is f.g.

One can summarize the basic properties of e(G, C) as follows.

Lemma 8.2. (i) e(G, C)=0 ifandonly if |G:C] is finite.
() I GDG OC, with |G:G,| finite, then e(G, C) = e(G,, C).
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(iii) If K is a normal subgroup of G with quotient G1 and

[K:Knc| is finite, then (G, C) = e(G,, pC), where p : G=G, is

the natural projection.
(v) I C, €CCG and [C:C |=n, then
e(G, C) = e(G, Cl) =n.e(G, C).

These results are all the analogues of results about e(G), except
for (iv). One can give examples showing that either equality can be
achieved in this part. The final basic property of e{(G, C) is

Lemma 8.3. If G splits over C, then e(G, C) = 2,

Proof. The proof is very similar to that of Lemma 6. 3. We
consider only the case when G =A *c B. Recall the set E which was
the subset of G consisting of elements whose canonical form starts in
A. If beB, then Eb=FE andif a €A, then ECEauCaCEuUCuUCa,
The subset pE of C\G is left almost invariant by every element of A
or B, and so is almost invariant in C\G. Clearly pE and pE* are
infinite,

This leads us to the first large difference between e(G) and
e(G, C). We know that e(G) can only take the values 0, 1, 2 or
but e(G, C) can take any positive integer value. This is shown by the
following example. Note that both G and C are f.g. in this example,

Example. Let F be a closed surface and let X be a compact sub-
surface so that no component of F - X has closure homeomorphic to a
2-disc. Then the natural map LA (X) - LA (F) is injective, and we call the
groups G and C. Now e(G, C) equals the number of ends of FC, the
covering space of F with fundamental group C. But one knows that X
lifts to FC and can prove easily that FC consists of X together with
half open annuli st x [0, =) attached to each boundary component of X.
Thus e(G, C) equals the number of boundary components of X. By
choosing F to be of appropriately high genus, one can find pairs (G, C)
for which e(G, C) takes any specified value.

Originally I hoped to prove that e(G, C) = 2 if and only if G splits
over some subgroup closely related to C. The following example shows
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that no such result can hold.

Example. Let M be a closed, orientable irreducible 2-manifold,
It can be shown that M is sufficiently large if and only if LA (M) splits
over some subgroup. There exists such a 3-manifold which is not
sufficiently large, but has a finite covering space which is sufficiently
large. See [8] for a discussion of such examples. Thus we have an
unsplittable group G with a subgroup G1 of finite index which splits
over some subgroup C. Hence e(G, C) = e(Gl, C)= 2, but G is un-
splittable. (One can find a subgroup C which is finitely generated, so
there is nothing pathological about this example. )

This example suggests that one must be content to prove that
e(G, C)= 2 ifandonly if G has a subgroup G1 of finite index such
that G1 splits over some subgroup closely related to C. It then seems
reasonable that one will need a residual finiteness condition on G.

We say that a group G is residually finite if given g € G, there °
is G CG, suchthat |G:G | isfiniteand g ¢G,. If C isa sub-
group of G, we say that G is C-residually finite if given g €G- C
there is G, C G such that |G :G, | is finite, G, D C and g ¢G,. The
natural result seems to be the following, which is proved in [21].

Theorem 8,4, If G and C aref.g. groups and G is C-residually

finite, then e(G, C) = 2 if and only if G has a subgroup G1 of finite

index such that G1 contains C and splits over C,

The residual finiteness condition cannot be omitted.

Example. Let G=A «C, where A and C are infinite, simple,
f.g. groups. Thus G has no subgroups of finite index and C has no
subgroups or supergroups of finite index. Now for any non-trivial free
product A = C except for Z,+ 12, it is easy to show that e(G, C) = =,
But if G had a subgroup G1 of finite index which split over some sub-
group Cl closely related to C one would be forced to have G = G1
and C1 = C. The example is completed by showing that G cannot split
over C.

200

Lemma 8.5, Let G=A »C, where A is indecomposable and

not infinite cyclic. Then G cannot split over C.

Proof. Suppose G =X *o Y or X *c As no conjugate of A
meets C, we see from the Subgroup Theorem that A lies in a conjugate
of X or Y. We can suppose X is involved. Use (A) to denote the
normal closure of A ina group containing A. We know that GAA) = C
Hence we have the equations C = XAA) o Y or C =XAA) %o The
second equation is impossible, and the first equation can only hold when
XAA) =C =Y. Butthe equation C =Y contradicts the hypothesis that
G splits over C.
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