

Large Deviations of Cover Times by Random Walk on Tori

Xinyi Li, <u>Jialu Shi</u>, <u>Qiheng Xu</u> Peking University

Setup and Previous Results

Setup Consider cover time C_N of simple random walk $(X_n)_{n\geq 0}$ on discrete torus $\mathbb{T}_N = (\mathbb{Z}/N\mathbb{Z})^d$, $d \geq 3$. <u>Previous results</u>

- d = 2. For $\gamma \in (0, 1)$, $\mathsf{P}(C_N \leq \gamma \cdot \frac{4}{\pi} N^2 \log^2 N) = \exp(-N^{2(1-\sqrt{\gamma})+o(1)})$. (Comets-Gallesco-Popov-Vachkovskaia '13).
- $d \ge 3$. For $\gamma \in (0,1)$, $\mathsf{P}(C_N \le \gamma \cdot g(0)N^d \log N^d) \le \exp(-N^{d(1-\gamma)+o(1)})$. A straightforward adaptation of the LDP for the ε -cover time of Brownian motion (Goodman-den Hollander '14) under the discrete setup.

• General Markov chain. Linear cover time is exponentially unlikely (Benjamini–Gurel-Gurevich–Morris '13).

<u>Remark</u> Upward deviation is polynomially unlikely. This is an almost trivial consequence of moment bounds.

Main Results: Downward Deviation for $d \geq 3$

• For all $\gamma \in (\frac{d+2}{2d}, 1)$, sharp asymptotics:

$$\mathsf{P}(C_N \le \gamma \cdot g(0)N^d \log N^d) = \exp\left(-\left(\mathbf{1} + \mathbf{o}(\mathbf{1})\right)\mathbf{N}^{\mathbf{d}(\mathbf{1}-\gamma)}\right)$$

• For all $\gamma \in (0, 1)$, correct order of lower bound that matches the upper bound from [GdH14]:

$$\mathsf{P}(C_N \le \gamma \cdot g(0)N^d \log N^d) \ge \exp(-A \cdot N^{d(1-\gamma)}) \text{ for some } A > 0.$$

Proof Sketches

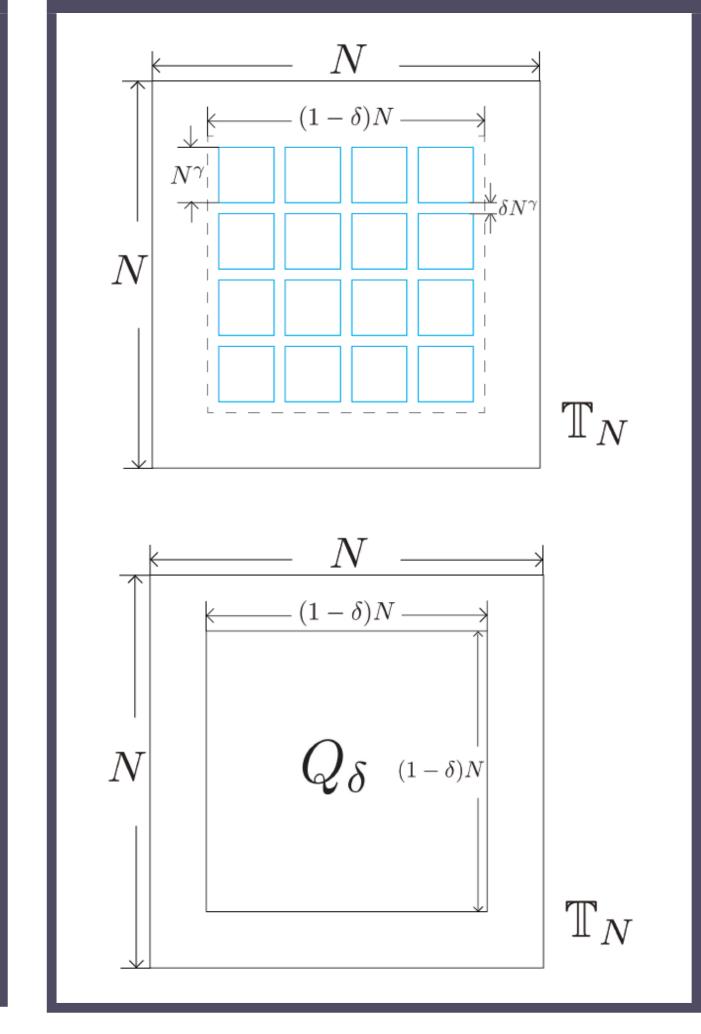
Upper bound

• <u>Localization</u>: Dominate the trace of random walk by disjoint boxes of size N^{γ} by **independent** random interlacements using a coupling from [PRS23] (see below).

Illustrations

(1)

(2)



• <u>Cover level of random interlacements</u>: The probability that a box of size N^{γ} is covered by random interlacements \mathcal{I}^{u} at level $u \approx \gamma g(0) \log N^{d}$ converges to e^{-1} as $N \to \infty$ (adapted from Belius '12).

Lower bound

Let the random walk evolve freely until KN^d steps left for some large K and apply different strategies for late points inside and outside Q_{δ} respectively (see figure to the right).

- Macroscopic coupling (only for (1)): In Q_{δ} , couple the trace of random walk with random interlacements (using [PRS23]) and apply **FKG** for Poisson point processes.
- Covering via loops: For late points outside Q_{δ} , insert **meticulously designed loops** into the trace of random walk (applied on the whole \mathbb{T}_N instead for (2)).

A Slightly Improved Coupling from Prévost–Rodriguez–Sousi '23

For $R \simeq N^{\eta}$ with $\eta \in (1/2, 1]$, write Q(x, R) for the box of side length R around x. Let $(Q(x, R))_{x \in F}$ be a collection of δR -separated boxes contained in Q_{δ} . There exists a coupling of $(X_n)_{n \ge 0}$ and independent copies of random interlacements $(\mathcal{I}^{(x),u(1 \pm \varepsilon)})_{x \in F}$ such that

 $\mathcal{I}^{(x),u(1-\varepsilon)} \cap Q(x,R) \subset X[0,uN^d] \cap Q(x,R) \subset \mathcal{I}^{(x),u(1+\varepsilon)} \cap Q(x,R) \quad \text{simultaneously for all } x \in F,$

with probability exceeding $1 - CuN^{3d} \exp(-c\varepsilon^2 \sqrt{uN^{d-2}})$, where c and C are constants depending only on δ and d.

References

[Bel12] D. Belius. Cover levels and random interlacements. AAP, 2012.

[BGGM13] I. Benjamini, O. Gurel-Gurevich, and B. Morris. Linear cover time is exponentially unlikely. PTRF, 2013.

[CGPV13] F. Comets, C. Gallesco, S. Popov, and M. Vachkovskaia. On large deviations for the cover time of two-dimensional torus. *EJP*, 2013.

[GdH14] J. Goodman and F. den Hollander. Extremal geometry of a brownian porous medium. *PTRF*, 2014.

[PRS23] A. Prévost, P.-F. Rodriguez, and P. Sousi. Phase transition for the late points of random walk. arXiv:2309.03192, 2023.