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Setup and Previous Results
Setup Consider cover time CN of simple random walk (Xn)n≥0 on discrete torus TN = (Z/NZ)d, d ≥ 3.
Previous results

• d = 2. For γ ∈ (0, 1), P(CN ≤ γ · 4
πN

2 log2 N) = exp(−N2(1−√
γ)+o(1)). (Comets–Gallesco–Popov–Vachkovskaia ’13).

• d ≥ 3. For γ ∈ (0, 1), P(CN ≤ γ · g(0)Nd logNd) ≤ exp(−Nd(1−γ)+o(1)). A straightforward adaptation of the LDP for
the ε-cover time of Brownian motion (Goodman–den Hollander ’14) under the discrete setup.

• General Markov chain. Linear cover time is exponentially unlikely (Benjamini–Gurel-Gurevich–Morris ’13).

Remark Upward deviation is polynomially unlikely. This is an almost trivial consequence of moment bounds.

Main Results: Downward Deviation for d ≥ 3

• For all γ ∈ (d+2
2d , 1), sharp asymptotics:

P
(
CN ≤ γ · g(0)Nd logNd

)
= exp

(
−
(
1+ o(1)

)
Nd(1−γ)

)
. (1)

• For all γ ∈ (0, 1), correct order of lower bound that matches the upper bound from [GdH14]:

P
(
CN ≤ γ · g(0)Nd logNd

)
≥ exp(−A ·Nd(1−γ)) for some A > 0. (2)

Proof Sketches
Upper bound

• Localization: Dominate the trace of random walk by disjoint boxes of size Nγ by
independent random interlacements using a coupling from [PRS23] (see below).

• Cover level of random interlacements: The probability that a box of size Nγ is covered
by random interlacements Iu at level u ≈ γg(0) logNd converges to e−1 as N → ∞
(adapted from Belius ’12).

Lower bound
Let the random walk evolve freely until KNd steps left for some large K and apply different
strategies for late points inside and outside Qδ respectively (see figure to the right).

• Macroscopic coupling (only for (1)): In Qδ, couple the trace of random walk with ran-
dom interlacements (using [PRS23]) and apply FKG for Poisson point processes.

• Covering via loops: For late points outside Qδ, insert meticulously designed loops
into the trace of random walk (applied on the whole TN instead for (2)).

Illustrations

A Slightly Improved Coupling from Prévost–Rodriguez–Sousi ’23
For R ≍ Nη with η ∈ (1/2, 1], write Q(x,R) for the box of side length R around x. Let (Q(x,R))x∈F be a collection of
δR-separated boxes contained in Qδ. There exists a coupling of (Xn)n≥0 and independent copies of random interlacements
(I(x),u(1±ε))x∈F such that

I(x),u(1−ε) ∩Q(x,R) ⊂ X[0, uNd] ∩Q(x,R) ⊂ I(x),u(1+ε) ∩Q(x,R) simultaneously for all x ∈ F,

with probability exceeding 1− CuN3d exp(−cε2
√
uNd−2), where c and C are constants depending only on δ and d.
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