Favorite Sites for Random Walk in Two and More Dimensions

Chenxu HAO † **, Xinyi LI**† **, Izumi OKADA**[∗] **and Yushu ZHENG**§

†Peking University, ∗Chiba University, §Chinese Academy of Sciences

1: Favorite (Most Visited) Sites

 $\bullet (S_n)_{n\in\mathbb{N}}: d$ -dimensional discrete-time simple random walk. Write n

• Location of "favorite sites": $L_m^k := S_T$ \mathcal{k} \dot{m} .

• Event of k favorite sites of local time m :

 $M_m^k := \{T_m^k < T_{m+1}^1\} = \left\{L_m^1, \ldots, L_m^j \notin S_{(T)}\right\}$ $g_m^j, T_m^{j+1})$ for $j = 1, \ldots, k-1$ }.

$$
\xi(x, n) = \sum_{k=0}^{n} 1_{\{S_k = x\}} \quad \text{and} \quad \xi^*(n) := \max_x \xi(x, n)
$$

for the local time and maximal local time at time n .

• The set of favorite site(s) at time n :

$$
\mathcal{K}^{(d)}(n):=\{x\in\mathbb{Z}^d:\xi(x,n)=\xi^*(n)\}.
$$

• First time k sites of local time m :

$$
T_m^k := \inf \left\{ n > T_m^{k-1} : \#\{ x \in \mathbb{Z}^d : \xi(x, n) \ge m \} = k \right\}.
$$

3: Main Results

We completely solve the open question of Erdős and Révész:

Theorem. For $d = 2$, with probability 1,

$$
\limsup_{n \to \infty} \# \mathcal{K}^{(2)}(n) = 3.
$$

P $\sqrt{ }$ $L^1_m,\ldots,L^j_m\notin S_{(T)}$ $g_m^j, T_m^{j+1})$ \setminus $\approx P$ $\sqrt{ }$ $L_m^j \notin S_{(T)}$ $g_m^j, T_m^{j+1})$ \setminus $\approx P\big(0 \notin S_{(0,\infty)}\big) = \gamma_d.$ \Rightarrow F $\sqrt{2}$ M_m^k \setminus $\approx \gamma_d^k \approx m^{-1}$ for $k = \frac{\log m}{-\log \gamma}$ $-\log \gamma_d$. • Again use (generalized) Borel-Cantelli to conclude.

We derive **sharp** asymptotics of Erdős-Révész (1991).

Theorem. For
$$
d \ge 3
$$
, writing $\gamma_d := P(0 \notin S_{(0,\infty)})$,

$$
\limsup_{n \to \infty} \frac{\#K^{(d)}(n)}{\log \log n} = -\frac{1}{\log \gamma_d} \quad a.s.
$$

• Ding-Shen (2018): a.s., $\limsup_{n\to\infty}$ # $\mathcal{K}^{(1)}(n) = 3$. For $d \geq 3$:

• Erdős-Révész (1991): a.s., $\limsup_{n\to\infty} \#\mathcal{K}^{(d)}(n) = \infty$.

3.5: Improved Bound on 2D Max Local Time

An improvement of Dembo-Peres-Rosen-Zeitouni (2001) by refining arguments from Rosen (2005):

Proposition. $(d = 2)$ For any $\beta > \frac{3}{5}$ 5 *, w.h.p.,* $\xi^*(n) \geq \frac{1}{\pi}$ π $(\log n)^2 - (\log n)^{1+\beta}.$

Remark. Conjectural precise asymptotics:

 $\sqrt{\xi^*(n)} - \frac{1}{\sqrt{n}}$ $\overline{\pi}$ $\log n + \frac{1}{\sqrt{2}}$ $\overline{\pi}$ $\log \log n$ $\xrightarrow{\text{law}}$ Gumbel^{*}.

5: Lower Bound for d = 2

Large deviation bound on the stopping time T_m^1 : $\xi^*(n) \sim$ $(\log n)^2$ π $\Rightarrow T_m^1$ $\sum_{m}^{1} \sim e^{\pi^{1/2} m^{1/2}} \stackrel{\text{Proposition}}{\longrightarrow}$ $\stackrel{\text{position}}{\Longrightarrow} T^1_m \leq e^{2m^{1/2}}$ w.h.p. Same (if not better) bound applies to $T_m^2 - T_m^1$ and $T_m^3 - T_m^2$. The escape probability bound $P\left[0 \notin S_{[1,e^{2m^{1/2}}]}\right]$ $\sum m^{-1/2}$ heuristically implies

 $P(\star) \approx P(\star, \Delta) \lesssim P(M(m, \alpha + \varepsilon \neq \emptyset)) \cdot m^{-\alpha} \lesssim m^{-\kappa + 2\varepsilon}.$

Use generalized Borel-Cantelli to conclude.

6: The d ≥ 3 **Case**

• By Csáki-Földes-Révész-Shi (2005), it is much harder to produce a pair of nearby thick points than to produce an isolated one \Longrightarrow

- Csáki, E., Földes, A., Révész, P., Rosen, J. and Shi, Z. (2005). Frequently visited sets for random walks. *Stoc. Proc. Appl.*
- Dembo, A., Peres, Y., Rosen, J. and Zeitouni, O. (2001). Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk. *Acta Math.*

 $P(L_m^1, L_m^2 \notin S(T_m^2, T_m^3) | \mathcal{F}_T)$ 2 \bar{m} $\sum_{m} P(L_m^1 \notin S(T_m^1, T_m^2) | \mathcal{F}_T)$ 1 \bar{m} $\geq m^{-1}.$

- Ding, J. and Shen, J. (2018). Three favorite sites occurs infinitely often for onedimensional simple random walk. *Ann. Probab.*
- Erdős, P. and Révész, P. (1984). On the favourite points of a random walk. In *Mathematical Structure–Computational Mathematics–Mathematical Modelling*.
- Erdős, P. and Révész, P. (1991). Three problems on the random walk in \mathbb{Z}^d . *Studia Sci*. *Math. Hungar.*
- Hao, C., Li, X., Okada, I. and Zheng, Y. (2024+) Favorite Sites for Simple Random Walk in Two and More Dimensions. arXiv:2409.00995.
- •Rosen, J. (2005). A random walk proof of the Erdős-Taylor conjecture, *Period. Math. Hungar.*

2: Number of Favorite Sites

Easy to deduce for every $d \geq 1$,

$$
P(\#\mathcal{K}^{(d)}(n)=2\;\;i.o.)=P(\#\mathcal{K}^{(d)}(n)=1\;\;i.o.)=1.
$$

Erdős-Révész (1984):

Can $\#\mathcal{K}^{(d)}(n) = r$ occur infinitely often for $r \geq 3$?

For $d=1$:

- •Tóth (2001): a.s., $\limsup_{n\to\infty} \#\mathcal{K}^{(1)}(n) \leq 3$.
-

4: Upper Bound for d = 2

Claim. Probability of creating one more favorite site with local time m is $O(m^{-\kappa})$ for some $\kappa > 1/3$. [We conjecture the optimal exponent is 1/2.] • Analysis for 2nd favorite site (same for 3rd, 4th) using escape probability control:

- $-$ For $\left| L_m^2 L_m^1 \right|$ \overline{m} $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ large, $P(M_m^2, |L_m^2 - L_m^1)$ \overline{m} $| \geq \exp(m^{\kappa}) \leq m^{-\kappa}.$ $-$ For $\left| L_m^2 - L_m^1 \right|$ \overline{m} | small, on $\star := \left\{ M_m^2, \left| L_m^2 - L_m^1 \right| \right\}$ \overline{m} $\vert \approx \exp(m^\alpha) \rbrace$ for some $\alpha \in (0, \kappa)$, $\Delta := \{ \xi(L_m^2, T_m^1) > m - m^{\alpha + \varepsilon}$ occurs w.h.p.} \Diamond Let $M(m, \alpha) := \{x : \xi(x, T_m^1) \in (m - m^{\alpha}, m)\}\$ be the set of "nearfavorite" sites at time T_m^1 .
- \Diamond By **Lemma** and escape probability control, for all $\alpha \in (0, \kappa)$,
	-

Use **Claim** and Borel-Cantelli to conclude.

Lemma. For
$$
\kappa \in (\frac{1}{3}, \frac{7}{20})
$$
 and all $\alpha \in (0, \kappa)$,
\n
$$
P(M(m, \alpha) \neq \emptyset) \lesssim \frac{(\log m)^2}{m^{\kappa - \alpha}}.
$$

Key ideas to prove **Lemma**:

1.Decomposition of local time into lazy (two-step excursions) and non-lazy parts. The law of the former is "almost" locally determined by the latter.

2.Entropic repulsion by analogy with some urn models.

3.A variant of **Proposition** dictates w.h.p. regular behavior of non-lazy local time of near-favorite sites.

7: References

•Tóth, B. (2001). No more than three favorite sites for simple random walk. *Ann. Probab.*