Exercises for random matrices (30 points)

Please solve **ONE** of the following three exercises, and send the solution (scanned PDF or photo) to yukun.he@math.uzh.ch by 17:00, Jan 24, 2020. Please also write your name (in Chinese) and student ID in the email.

1 Cumulant expansion

If h is a real-valued random variable with $\mathbb{E}e^h < \infty$, we denote by $\mathcal{C}_k(h)$ the kth cumulant of h, i.e.

$$\mathcal{C}_k(h) := \left(\partial_{\lambda}^k \log \mathbb{E} \mathrm{e}^{\lambda h}\right)\Big|_{\lambda=0}$$

Let $f : \mathbb{R} \to \mathbb{C}$ be a smooth function, and denote by $f^{(k)}$ its kth derivative. Show that, for every fixed $\ell \in \mathbb{N}$, we have

$$\mathbb{E}[h \cdot f(h)] = \sum_{k=0}^{\ell} \frac{1}{k!} \mathcal{C}_{k+1}(h) \mathbb{E}[f^{(k)}(h)] + \mathcal{R}_{\ell+1}, \qquad (1.1)$$

assuming that all expectations in (1.1) exist, where $\mathcal{R}_{\ell+1}$ is a remainder term (depending on f and h), such that for any t > 0,

$$\mathcal{R}_{\ell+1} = O(1) \cdot \left(\mathbb{E} \sup_{|x| \le |h|} \left| f^{(\ell+1)}(x) \right|^2 \cdot \mathbb{E} \left| h^{2\ell+4} \mathbf{1}_{|h|>t} \right| \right)^{1/2} + O(1) \cdot \sup_{|x| \le t} \left| f^{(\ell+1)}(x) \right| \cdot \mathbb{E} |h|^{\ell+2} \cdot \mathbb{E} |h|$$

2 Fluctuating averaging

Let $H = H^T \in \mathbb{R}^{N \times N}$ be a Gaussian Orthogonal Ensemble, i.e. the upper triangular entries $(H_{ij} : 1 \leq i \leq j \leq N)$ are independent, and

$$\sqrt{N}H_{ij} \stackrel{d}{=} \mathcal{N}(0, 1 + \delta_{ij}).$$

For fixed $\tau > 0$, we define the spectral domain

$$\mathbf{S} := \{ z = E + \mathrm{i}\eta : E \in \mathbb{R}, \eta \ge N^{-1+\tau} \} \,.$$

Let $G(z) := (H - z)^{-1}$, $\underline{G} := N^{-1} \operatorname{Tr} G$, and

$$m(z) := \int \frac{\rho(x)}{x-z} \mathrm{d}x,$$

where $\rho(x) = \frac{1}{2\pi} \sqrt{(4-x^2)_+}$. Let $z \in \mathbf{S}$, suppose that we have

$$\max_{i,j} |G_{ij}(z) - m(z)\delta_{ij}| \prec \phi.$$

Show that

$$\mathbb{E}|1+z\underline{G}+\underline{G}^2|^2 \prec (1+\phi)^{12} \Big(\frac{\mathrm{Im}\,m+\phi}{N\eta}\Big)^2$$

at z.

The last resort 3

Let us adopt the notations in Question 2. Suppose we have

$$\sup_{z \in \mathbf{S}} N\eta |\underline{G}(z) - m(z)| \prec 1.$$

Note that this implies

$$\sup_{z \in \mathbf{S}} N\eta |\underline{G}(z) - \mathbb{E}\underline{G}(z)| \prec 1.$$

Show that, for any fixed $n \in \mathbb{N}_+$, we have

$$G^n \prec \eta^{1-n}$$

as well as

$$\underline{G^n} - \mathbb{E}\underline{G^n} \prec \frac{1}{N\eta^n}$$

uniformly for all $z = E + i\eta \in \mathbf{S}$. (Be careful that $\underline{G^n} = N^{-1} \operatorname{Tr}(G^n)$.) *Hint:* the Helffer-Sjöstrand formula holds for $f : \mathbb{R} \to \mathbb{C}$ smooth satisfying $|f^{(k)}(x)| = O(1 + i)$ $|x|^{-2}$) whenever $k \in \mathbb{N}$.