A lower bound for disconnection by simple random walk

Xinyi Li, ETH Zurich

December 4, 2015, Montréal

What we talk about when we talk about disconnection

- Consider (continuous-time) simple random walk $\left(X_{t}\right)_{t \geq 0}$ on $\mathbb{Z}^{d}, d \geq 3$, started from 0 . Denote its law by P_{0}.
- Trace: $\mathcal{I}=X_{[0, \infty)} . \quad$ Vacant set: $\mathcal{V}=\mathbb{Z}^{d} \backslash \mathcal{I}$.
- For compact $K \subset \mathbb{R}^{d}$ and $N \in \mathbb{N}$, look at its discrete blow-up

$$
K_{N} \triangleq\left\{x \in \mathbb{Z}^{d} ; d_{\infty}(N K, x) \leq 1\right\}
$$

- Event of interest $A_{N} \triangleq\left\{K_{N} \stackrel{\mathcal{V}}{\longleftrightarrow} \infty \infty\right.$: "no path in \mathcal{V} connects K_{N} with infinity".

The asymptotic lower bound

- Question is trivial if $d=1$ or $d=2$ (recurrence).

Theorem (L. 14')
One has the following asymptotic lower bound:

$$
\liminf _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log P_{0}\left[A_{N}\right] \geq-\frac{u_{* *}}{d} \operatorname{cap}_{\mathbb{R}^{d}}(K)
$$

- $\operatorname{cap}_{\mathbb{R}^{d}}(K)$: the Brownian capacity of K. $=\inf \mathcal{E}(g, g)$, where infimum runs over all compactly supported non-negative $g \in H^{1}$ such that $g \geq 1$ on K.
- $u_{* *} \in(0, \infty)$ is one of the critical thresholds for the percolation on the vacant set of random interlacements.
- Is the lower bound tight?

The same lower bound for a slightly different setup

- Let $S_{N} \triangleq B_{\infty}(0, N) \cap \mathbb{Z}^{d}$.
- Fix $M>1$ and consider $B_{N} \triangleq\left\{S_{N} \stackrel{\breve{\leftrightarrow}}{\boldsymbol{\sim}} \partial S_{M N}\right\}$.

- Proof for the lower bound of $P_{0}\left[A_{N}\right]$ also works for $P_{0}\left[B_{N}\right]$.

Theorem (L. 14')

$$
\liminf _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log P_{0}\left[B_{N}\right] \geq-\frac{U_{* *}}{d} \operatorname{cap}_{\mathbb{R}^{d}}\left([-1,1]^{d}\right) .
$$

An accompanying upper bound

Theorem (L. 14')

$$
\liminf _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log P_{0}\left[B_{N}\right] \geq-\frac{u_{* *}}{d} \operatorname{cap}_{\mathbb{R}^{d}}\left([-1,1]^{d}\right) .
$$

Theorem (Sznitman 14')

$$
\limsup _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log P_{0}\left[B_{N}\right] \leq-\frac{\bar{u}}{d} \operatorname{cap}_{\mathbb{R}^{d}}\left([-1,1]^{d}\right) .
$$

- \bar{u} : another percolation threshold for the vacant set of random interlacements.
- $0<\bar{u} \leq u_{* *}<\infty$.
- Conjecture: $\bar{u}\left(=u_{*}\right)=u_{* *}$?

Change of measure

- A useful classical inequality: for $\widetilde{\mathbb{P}} \ll \mathbb{P}$ and A s.t. $\widetilde{\mathbb{P}}[A] \neq 0$,

$$
\mathbb{P}[A] \geq \widetilde{\mathbb{P}}[A] \exp (-(H(\widetilde{\mathbb{P}} \mid \mathbb{P})+c) / \widetilde{\mathbb{P}}[A])
$$

- If $\widetilde{\mathbb{P}}[A] \approx 1$, then $\mathbb{P}[A] \gtrsim \exp (-H(\widetilde{\mathbb{P}} \mid \mathbb{P}))$.
- Hence, we need a family of tilted probability measures \widetilde{P}_{N}, corresponding to (possibly non-homogeneous) Markov chains, such that
- $\widetilde{P}_{N}\left[A_{N}\right] \approx 1$;
- $H\left(\widetilde{P}_{N} \mid P_{0}\right)$ is minimized.

A la recherche de la Connectivity Decay

- Let $K^{\delta} \triangleq B(K, \delta)$ and write K_{N}^{δ} for its discrete blow-up.

- Let $\Gamma \triangleq \partial K_{N}^{\delta / 2}$ be a "strip" between ∂K_{N} and ∂K_{N}^{δ}.
- Note that $A_{N}^{c}=\left\{K_{N} \stackrel{\mathcal{L}}{\leftrightarrow} \infty\right\} \Longrightarrow\left\{K_{N} \stackrel{\nu}{\leftrightarrow} \partial K_{N}^{\delta}\right\}$

$$
\Longrightarrow \bigcup_{x \in \Gamma}\left\{x \stackrel{\mathcal{V}}{\leftrightarrow} \partial B\left(x, N^{1 / 3}\right)\right\} .
$$

- $|\Gamma|=O\left(N^{d-1}\right)$.
- Hence, $\widetilde{P}_{N}[\{x \stackrel{\nu}{\leftrightarrow} \partial M\}] \leq e^{-N^{c}} \Longrightarrow \widetilde{P}_{N}\left[A_{N}^{c}\right] \leq e^{-N^{c^{\prime}}}$.

Deus ex machina: Random Interlacements

- How "much" tilting to ensure $\widetilde{P}_{N}\left[A_{N}\right] \geq 1-\exp \left(-N^{\prime}\right)$?
- Random interlacements: The natural model for the study of traces left by random walk.
- Random subset $\mathcal{I}^{u} \subset \mathbb{Z}^{d}, d \geq 3$: the traces of a Poissonian random collection of infinite trajectories, with intensity parameter $u>0$.
- The connectivity decay we need: for $d \geq 3, \exists u_{* *}(d) \in(0, \infty)$ such that
- for all $u>u_{* *}$, the connectivity of the vacant set $\mathcal{V}^{u} \triangleq \mathbb{Z}^{d} \backslash \mathcal{I}^{u}$ decays stretched-exponentially fast, i.e., $\exists c>0$, s.t.

$$
\mathbb{P}^{u}\left[0 \stackrel{\mathcal{L}^{u}}{\leftrightarrows} \partial B(0, N)\right] \leq e^{-N^{c}} ;
$$

- and for all $u \in\left(0, u_{* *}\right)$ the connectivity decays slower than any stretched exponential function, i.e., such c does not exist.

Only local couplings needed

- Only need to find couplings of \widetilde{P}_{N} and $\mathbb{P}^{u_{* *}+\epsilon}$ on all $M=B_{\infty}\left(x, N^{1 / 3}\right)$ for $x \in \Gamma$,i.e., on M, with high probability
- $\mathcal{I} \cap M \supset \mathcal{I}^{u_{* *}+\epsilon} \cap M$, or
- $\mathcal{V} \cap M \subset \mathcal{V}^{u_{* *}+\epsilon} \cap M$, equivalently.

The tilted random walk

- Generator of a (possibly non-homogeneous) MC

$$
\bar{L} h(x)=\frac{1}{2 d} \sum_{|e|=1} \frac{f(x+e)}{f(x)}(h(x+e)-h(x)),
$$

where f is to be chosen to our advantage.

- If $f \equiv C, \bar{L}$ is the generator of simple random walk.
- Transition rate from x to $x+e: f(x+e) / f(x)$.
- MC lands more often on the vertices where f is larger.
- Reversibility measure: $\pi(x)=f^{2}(x)$.
- Construction of the tilted random walk \widetilde{P}_{N} :
- Let MC run with the generator \bar{L} up to some T_{N} deterministic;
- After T_{N} it is "released" and runs as SRW happily ever after.
- $H\left(\widetilde{P}_{N} \mid P_{0}\right)$ is proportional to T_{N} and the discrete Dirichlet form of f.
- Need to minimize both T_{N} and the Dirichlet form!

Mount Roraima: NOT the best choice of f

The story of f

- Let $U \triangleq B(0, R)$ for large R and U_{N} be its discrete blow-up.

- Let $f=1$ on $K_{N}^{\delta}, f=0$ outside U_{N}.
- In $U_{N} \backslash K_{N}^{\delta}$, choose f as discretized Brownian potential of K^{δ} w.r.t U : best choice to minimize Dirichlet form!

Mount Fuji, the optimal shape of f

The story of f reloaded; denouement

- Let $f=1$ on $K_{N}^{\delta}, f=0$ outside U_{N}.
- In $U_{N} \backslash K_{N}^{\delta}$, choose f as discretized Brownian potential of K^{δ} w.r.t U.

- Choose T_{N} such that: on K_{N}^{δ}, the expected occupation time of the tilted walk equals that of random interlacements with intensity $u_{* *}+\epsilon$.
- This ensures the feasibility of the couplings!
- In the asymptotic lower bound $\exp \left(-u_{* *} \operatorname{cap}_{\mathbb{R}^{d}}(K) N^{d-2} / d\right)$,
- $u_{* *}$ will appear from the choice of T_{N}, taking $\epsilon \rightarrow 0$;
- $\operatorname{cap}_{\mathbb{R}^{d}}(K)$ and d will appear from the limit of the Dirichlet form of f, taking $R \rightarrow \infty$ and $\delta \rightarrow 0$.
- N^{d-2} comes from both terms.

Comparison with results for Random Interlacements

Theorem (L.-Sznitman 13', Sznitman 14')
Consider $u \in\left(0, u_{* *}\right)$. Similar to the definition of A_{N} and B_{N}, let $A_{N}^{山} \triangleq\left\{K_{N} \stackrel{\nu / u}{\leftrightarrow} \infty\right\}$ and $B_{N}^{u} \triangleq\left\{S_{N} \stackrel{\nu}{\leftrightarrow} \partial S_{M N}\right\}$. Then,
$\liminf _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log \mathbb{P}^{u}\left[A_{N}^{u}\right] \geq-\frac{1}{d}\left(\sqrt{U_{* *}}-\sqrt{u}\right)^{2} \operatorname{cap}_{\mathbb{R}^{d}}(K)$,
and
$\lim \sup _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log \mathbb{P}^{u}\left[B_{N}^{u}\right] \leq-\frac{1}{d}(\sqrt{\bar{u}}-\sqrt{u})^{2} \operatorname{cap}_{\mathbb{R}^{d}}\left([-1,1]^{d}\right)$.

- If $u>u_{* *}, \mathbb{P}^{u}\left[A_{N}\right] \rightarrow 1$ as $N \rightarrow \infty$. Hence the problem is non-trivial only when $u<u_{* *}$.
- Intuitively, the case for SRW is a limiting case $(u \rightarrow 0)$ of the disconnection problem for random interlacements.
- Proof of lower bound includes similar tiltings, but with different scheme.

Thanks for your attention!

