A lower bound for disconnection by simple random walk

Xinyi Li, ETH Zurich

December 4, 2015, Montréal

What we talk about when we talk about disconnection

- Consider (continuous-time) simple random walk (X_t)_{t≥0} on Z^d, d ≥ 3, started from 0. Denote its law by P₀.
- Trace: $\mathcal{I} = X_{[0,\infty)}$. Vacant set: $\mathcal{V} = \mathbb{Z}^d \setminus \mathcal{I}$.
- ▶ For compact $K \subset \mathbb{R}^d$ and $N \in \mathbb{N}$, look at its discrete blow-up

$$K_{\mathsf{N}} \stackrel{\simeq}{=} \{ x \in \mathbb{Z}^d ; d_{\infty}(\mathsf{N}\mathsf{K}, x) \leq 1 \}.$$

• Event of interest $A_N \stackrel{\triangle}{=} \left\{ K_N \stackrel{\checkmark}{\longleftrightarrow} \infty \right\}$: "no path in \mathcal{V} connects K_N with infinity".

The asymptotic lower bound

• Question is trivial if d = 1 or d = 2 (recurrence).

Theorem (L. 14')

One has the following asymptotic lower bound:

$$\liminf_{N\to\infty}\frac{1}{N^{d-2}}\log P_0[A_N]\geq -\frac{u_{**}}{d}\mathrm{cap}_{\mathbb{R}^d}(K).$$

- cap_{ℝ^d}(K): the Brownian capacity of K.
 = inf E(g, g), where infimum runs over all compactly supported non-negative g ∈ H¹ such that g ≥ 1 on K.
- u_{**} ∈ (0,∞) is one of the critical thresholds for the percolation on the vacant set of *random interlacements*.
- Is the lower bound tight?

The same lower bound for a slightly different setup

• Let
$$S_N \stackrel{\triangle}{=} B_{\infty}(0, N) \cap \mathbb{Z}^d$$
.

• Fix M > 1 and consider $B_N \stackrel{\triangle}{=} \{S_N \stackrel{\mathcal{V}}{\nleftrightarrow} \partial S_{MN}\}.$

▶ Proof for the lower bound of $P_0[A_N]$ also works for $P_0[B_N]$. Theorem (L. 14')

$$\liminf_{N \to \infty} \frac{1}{N^{d-2}} \log P_0[B_N] \geq -\frac{u_{**}}{d} \mathrm{cap}_{\mathbb{R}^d}([-1,1]^d).$$

An accompanying upper bound

Theorem (L. 14')
$$\liminf_{N \to \infty} \frac{1}{N^{d-2}} \log P_0[B_N] \ge -\frac{u_{**}}{d} \operatorname{cap}_{\mathbb{R}^d}([-1, 1]^d).$$

Theorem (Sznitman 14')

$$\limsup_{N\to\infty}\frac{1}{N^{d-2}}\log P_0[B_N]\leq -\frac{\overline{u}}{d}\mathrm{cap}_{\mathbb{R}^d}([-1,1]^d).$$

- ► u
 interlacements.
- ▶ $0 < \overline{u} \le u_{**} < \infty$.
- Conjecture: $\overline{u}(=u_*) = u_{**}$?

Change of measure

• A useful classical inequality: for $\widetilde{\mathbb{P}} \ll \mathbb{P}$ and A s.t. $\widetilde{\mathbb{P}}[A] \neq 0$,

$$\mathbb{P}[A] \geq \widetilde{\mathbb{P}}[A] \exp(-(H(\widetilde{\mathbb{P}}|\mathbb{P}) + c)/\widetilde{\mathbb{P}}[A]).$$

- If $\widetilde{\mathbb{P}}[A] \approx 1$, then $\mathbb{P}[A] \gtrsim \exp(-H(\widetilde{\mathbb{P}}|\mathbb{P}))$.
- ► Hence, we need a family of tilted probability measures P_N, corresponding to (possibly non-homogeneous) Markov chains, such that

•
$$\widetilde{P}_N[A_N] \approx 1;$$

• $H(\widetilde{P}_N|P_0)$ is minimized.

A la recherche de la Connectivity Decay

• Let $K^{\delta} \stackrel{\triangle}{=} B(K, \delta)$ and write K_N^{δ} for its discrete blow-up.

- Let $\Gamma \stackrel{\triangle}{=} \partial K_N^{\delta/2}$ be a "strip" between ∂K_N and ∂K_N^{δ} .
- ► Note that $A_N^c = \{K_N \stackrel{\mathcal{V}}{\leftrightarrow} \infty\} \Longrightarrow \{K_N \stackrel{\mathcal{V}}{\leftrightarrow} \partial K_N^\delta\}$ $\implies \bigcup_{x \in \Gamma} \{x \stackrel{\mathcal{V}}{\leftrightarrow} \partial B(x, N^{1/3})\}.$
- ► $|\Gamma| = O(N^{d-1}).$ ► Hence, $\widetilde{P}_N[\{x \stackrel{\mathcal{V}}{\leftrightarrow} \partial M\}] \le e^{-N^c} \implies \widetilde{P}_N[A_N^c] \le e^{-N^{c'}}.$

Deus ex machina: Random Interlacements

- How "much" tilting to ensure $\widetilde{P}_N[A_N] \ge 1 \exp(-N^{c'})$?
- Random interlacements: The natural model for the study of traces left by random walk.
- ► Random subset I^u ⊂ Z^d, d ≥ 3: the traces of a Poissonian random collection of infinite trajectories, with intensity parameter u > 0.
- ▶ The connectivity decay we need: for $d \ge 3$, $\exists u_{**}(d) \in (0,\infty)$ such that

For all u > u_{**}, the connectivity of the vacant set V^u ≜ Z^d\I^u decays stretched-exponentially fast, i.e., ∃c > 0, s.t. P^u[0 ^{V^u} ∂B(0, N)] < e^{-N^c};

▶ and for all u ∈ (0, u_{**}) the connectivity decays slower than any stretched exponential function, i.e., such c does not exist.

Only local couplings needed

- Only need to find couplings of \widetilde{P}_N and $\mathbb{P}^{u_{**}+\epsilon}$ on all $M = B_{\infty}(x, N^{1/3})$ for $x \in \Gamma$, i.e., on M, with high probability
 - $\mathcal{I} \cap M \supset \mathcal{I}^{u_{**}+\epsilon} \cap M$, or
 - $\mathcal{V} \cap M \subset \mathcal{V}^{u_{**}+\epsilon} \cap M$, equivalently.

The tilted random walk

Generator of a (possibly non-homogeneous) MC

$$\overline{L}h(x) = \frac{1}{2d} \sum_{|e|=1} \frac{f(x+e)}{f(x)} \big(h(x+e) - h(x) \big),$$

where f is to be chosen to our advantage.

- If $f \equiv C$, \overline{L} is the generator of simple random walk.
- Transition rate from x to x + e: f(x + e)/f(x).
- MC lands more often on the vertices where f is larger.
- Reversibility measure: $\pi(x) = f^2(x)$.
- Construction of the tilted random walk \widetilde{P}_N :
 - Let MC run with the generator \overline{L} up to some T_N deterministic;
 - After T_N it is "released" and runs as SRW happily ever after.
- $H(\widetilde{P}_N|P_0)$ is proportional to T_N and the discrete Dirichlet form of f.
- Need to minimize both T_N and the Dirichlet form!

Mount Roraima: NOT the best choice of f

The story of f

• Let $U \stackrel{\triangle}{=} B(0, R)$ for large R and U_N be its discrete blow-up.

- Let f = 1 on K_N^{δ} , f = 0 outside U_N .
- In U_N\K^δ_N, choose f as discretized Brownian potential of K^δ w.r.t U: best choice to minimize Dirichlet form!

Mount Fuji, the optimal shape of f

The story of f reloaded; denouement

- Let f = 1 on K_N^{δ} , f = 0 outside U_N .
- ▶ In $U_N \setminus K_N^{\delta}$, choose f as discretized Brownian potential of K^{δ} w.r.t U.

- Choose *T_N* such that: on *K^δ_N*, the expected occupation time of the tilted walk equals that of random interlacements with intensity *u*_{**} + *ε*.
- This ensures the feasibility of the couplings!
- ▶ In the asymptotic lower bound $\exp(-u_{**} \operatorname{cap}_{\mathbb{R}^d}(K)N^{d-2}/d)$,
 - u_{**} will appear from the choice of T_N , taking $\epsilon \to 0$;
 - cap_{ℝ^d}(K) and d will appear from the limit of the Dirichlet form of f, taking R → ∞ and δ → 0.
 - N^{d-2} comes from both terms.

Comparison with results for Random Interlacements

Theorem (L.-Sznitman 13', Sznitman 14') Consider $u \in (0, u_{**})$. Similar to the definition of A_N and B_N , let $A_N^u \stackrel{\bigtriangleup}{=} \{K_N \stackrel{\mathcal{V}^u}{\leftrightarrow} \infty\}$ and $B_N^u \stackrel{\bigtriangleup}{=} \{S_N \stackrel{\mathcal{V}^u}{\leftrightarrow} \partial S_{MN}\}$. Then, $\liminf_{N \to \infty} \frac{1}{N^{d-2}} \log \mathbb{P}^u[A_N^u] \ge -\frac{1}{d}(\sqrt{u_{**}} - \sqrt{u})^2 \operatorname{cap}_{\mathbb{R}^d}(K)$,

and

$$\limsup_{N\to\infty} \frac{1}{N^{d-2}} \log \mathbb{P}^u[B_N^u] \leq -\frac{1}{d} (\sqrt{u} - \sqrt{u})^2 \mathrm{cap}_{\mathbb{R}^d} ([-1,1]^d).$$

- If u > u_{**}, P^u[A_N] → 1 as N → ∞. Hence the problem is non-trivial only when u < u_{**}.
- Intuitively, the case for SRW is a limiting case (u → 0) of the disconnection problem for random interlacements.
- Proof of lower bound includes similar tiltings, but with different scheme.

Thanks for your attention!