A lower bound for disconnection by random interlacements

Xinyi Li, ETH Zurich
joint with A.-S. Sznitman

June 25, 2014

PRELIMINARIES

We consider (continuous-time) simple random walk on $\mathbb{Z}^{d}, d \geq 3$.
For $M \subset \subset \mathbb{Z}^{d}$, we denote

- the equilibrium measure of M by

$$
e_{M}(x):=1_{M}(x) P_{x}\left(\widetilde{H}_{M}=\infty\right), \forall x \in M,
$$

PRELIMINARIES

We consider (continuous-time) simple random walk on $\mathbb{Z}^{d}, d \geq 3$.
For $M \subset \subset \mathbb{Z}^{d}$, we denote

- the equilibrium measure of M by

$$
e_{M}(x):=1_{M}(x) P_{x}\left(\widetilde{H}_{M}=\infty\right), \forall x \in M,
$$

- and the capacity of M as

$$
\operatorname{cap}(M):=\sum_{x \in M} e_{K}(x)
$$

PRELIMINARIES

We consider (continuous-time) simple random walk on $\mathbb{Z}^{d}, d \geq 3$.
For $M \subset \subset \mathbb{Z}^{d}$, we denote

- the equilibrium measure of M by

$$
e_{M}(x):=1_{M}(x) P_{x}\left(\widetilde{H}_{M}=\infty\right), \forall x \in M,
$$

- and the capacity of M as

$$
\operatorname{cap}(M):=\sum_{x \in M} e_{K}(x)
$$

Some remarks:

- The equilibrium measure of M is concentrated on $\partial_{i} M$.

PRELIMINARIES

We consider (continuous-time) simple random walk on $\mathbb{Z}^{d}, d \geq 3$.
For $M \subset \subset \mathbb{Z}^{d}$, we denote

- the equilibrium measure of M by

$$
e_{M}(x):=1_{M}(x) P_{x}\left(\widetilde{H}_{M}=\infty\right), \forall x \in M,
$$

- and the capacity of M as

$$
\operatorname{cap}(M):=\sum_{x \in M} e_{K}(x)
$$

Some remarks:

- The equilibrium measure of M is concentrated on $\partial_{i} M$.
- $\operatorname{cap}(B(0, N))=O\left(N^{d-2}\right)$.

PRELIMINARIES

We consider (continuous-time) simple random walk on $\mathbb{Z}^{d}, d \geq 3$.
For $M \subset \subset \mathbb{Z}^{d}$, we denote

- the equilibrium measure of M by

$$
e_{M}(x):=1_{M}(x) P_{x}\left(\widetilde{H}_{M}=\infty\right), \forall x \in M
$$

- and the capacity of M as

$$
\operatorname{cap}(M):=\sum_{x \in M} e_{K}(x)
$$

Some remarks:

- The equilibrium measure of M is concentrated on $\partial_{i} M$.
- $\operatorname{cap}(B(0, N))=O\left(N^{d-2}\right)$.
- Alternative definition of capacity:
$\operatorname{cap}(M)=\inf \{D(f, f) ; f \geq 1$ on M and f has finite support $\}$.

RANDOM INTERLACEMENTS, LOCAL PICTURE

Random interlacements can be regarded as a random subset of \mathbb{Z}^{d}, governed by a non-negative parameter u, which we denote by \mathcal{I}^{u}, and the complement (i.e. the VACANT SET) by $\mathcal{V}^{u}=\mathbb{Z}^{d} \backslash \mathcal{I}^{u}$.

RANDOM INTERLACEMENTS, LOCAL PICTURE

Random interlacements can be regarded as a random subset of \mathbb{Z}^{d}, governed by a non-negative parameter u, which we denote by \mathcal{I}^{u}, and the complement (i.e. the VACANT SET) by $\mathcal{V}^{u}=\mathbb{Z}^{d} \backslash \mathcal{I}^{u}$.

We wish to investigate the distribution of \mathcal{I}^{u} through a "window" $M \subset \subset \mathbb{Z}^{d}$.

RANDOM INTERLACEMENTS, LOCAL PICTURE

Random interlacements can be regarded as a random subset of \mathbb{Z}^{d}, governed by a non-negative parameter u, which we denote by \mathcal{I}^{u}, and the complement (i.e. the VACANT SET) by $\mathcal{V}^{u}=\mathbb{Z}^{d} \backslash \mathcal{I}^{u}$.

We wish to investigate the distribution of \mathcal{I}^{u} through a "window" $M \subset \subset \mathbb{Z}^{d}$.

- Take $N_{u} \sim \operatorname{Pois}(u \operatorname{cap}(M))$.

RANDOM INTERLACEMENTS, LOCAL PICTURE

Random interlacements can be regarded as a random subset of \mathbb{Z}^{d}, governed by a non-negative parameter u, which we denote by \mathcal{I}^{u}, and the complement (i.e. the VACANT SET) by $\mathcal{V}^{u}=\mathbb{Z}^{d} \backslash \mathcal{I}^{u}$.

We wish to investigate the distribution of \mathcal{I}^{u} through a "window" $M \subset \subset \mathbb{Z}^{d}$.

- Take $N_{u} \sim \operatorname{Pois}(u c a p(M))$.
- Start N_{u} i.i.d. random walks $\left(X_{t}\right)_{t \geq 0}^{i}, i=1, \ldots, N_{u}$, with initial distribution $e_{M}(\cdot) / \operatorname{cap}(M)$ (i.e., the normalised equilibrium measure).

RANDOM INTERLACEMENTS, LOCAL PICTURE

Random interlacements can be regarded as a random subset of \mathbb{Z}^{d}, governed by a non-negative parameter u, which we denote by \mathcal{I}^{u}, and the complement (i.e. the VACANT SET) by $\mathcal{V}^{u}=\mathbb{Z}^{d} \backslash \mathcal{I}^{u}$.

We wish to investigate the distribution of \mathcal{I}^{u} through a "window" $M \subset \subset \mathbb{Z}^{d}$.

- Take $N_{u} \sim \operatorname{Pois}(u c a p(M))$.
- Start N_{u} i.i.d. random walks $\left(X_{t}\right)_{t \geq 0}^{i}, i=1, \ldots, N_{u}$, with initial distribution $e_{M}(\cdot) / \operatorname{cap}(M)$ (i.e., the normalised equilibrium measure).
- $\mathcal{I}^{u} \cap M \sim \cup_{i=1}^{N_{u}} \operatorname{Range}\left(\left(X_{t}^{i}\right)_{t \geq 0}\right) \cap M$.

RANDOM INTERLACEMENTS, LOCAL PICTURE

Random interlacements can be regarded as a random subset of \mathbb{Z}^{d}, governed by a non-negative parameter u, which we denote by \mathcal{I}^{u}, and the complement (i.e. the VACANT SET) by $\mathcal{V}^{u}=\mathbb{Z}^{d} \backslash \mathcal{I}^{u}$.

We wish to investigate the distribution of \mathcal{I}^{u} through a "window" $M \subset \subset \mathbb{Z}^{d}$.

- Take $N_{u} \sim \operatorname{Pois}(u c a p(M))$.
- Start N_{u} i.i.d. random walks $\left(X_{t}\right)_{t \geq 0}^{i}, i=1, \ldots, N_{u}$, with initial distribution $e_{M}(\cdot) / \operatorname{cap}(M)$ (i.e., the normalised equilibrium measure).
- $\mathcal{I}^{u} \cap M \sim \cup_{i=1}^{N_{u}} \operatorname{Range}\left(\left(X_{t}^{i}\right)_{t \geq 0}\right) \cap M$.

Characterisation of \mathbb{P}, the law of \mathcal{I}^{u} :

$$
\mathbb{P}\left[\mathcal{I}^{u} \cap M=\emptyset\right]=e^{-u \operatorname{cap}(M)}
$$

RANDOM INTERLACEMENTS, GLOBAL PICTURE

We denote the space of continuous-time doubly-infinite nearest-neighbour paths tending to infinity at both sides by

$$
W:=\left\{w: \text { nearest-neighbour path, with } \lim _{t \rightarrow \pm \infty}\left|X_{t}(w)\right|=\infty\right\}
$$

RANDOM INTERLACEMENTS, GLOBAL PICTURE

We denote the space of continuous-time doubly-infinite nearest-neighbour paths tending to infinity at both sides by

$$
W:=\left\{w: \text { nearest-neighbour path, with } \lim _{t \rightarrow \pm \infty}\left|X_{t}(w)\right|=\infty\right\}
$$ and the quotient space of W modulo time shift by

$$
W^{*}=W / \sim
$$

where \sim is the equivalence class of time shifts.

RANDOM INTERLACEMENTS, GLOBAL PICTURE

We denote the space of continuous-time doubly-infinite nearest-neighbour paths tending to infinity at both sides by

$$
W:=\left\{w: \text { nearest-neighbour path, with } \lim _{t \rightarrow \pm \infty}\left|X_{t}(w)\right|=\infty\right\}
$$

and the quotient space of W modulo time shift by

$$
W^{*}=W / \sim
$$

where \sim is the equivalence class of time shifts.
Random interlacements at level u, are a Poisson point process on W^{*}, with intensity measure $u \nu$, where ν is the unique ergodic and translation-invariant measure on W^{*} such that the trace of this PPP on \mathbb{Z}^{d} has the same distribution as \mathcal{I}^{u} defined above.

PERCOLATION ON VACANT SET

The phase transition of percolation on \mathcal{V}^{u} is non-trivial.

PERCOLATION ON VACANT SET

The phase transition of percolation on \mathcal{V}^{u} is non-trivial.
Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')
Let
$u_{* *}=\inf \left\{u \geq 0 ; \exists k<\infty\right.$, s.t. $\left.\forall L \geq 0, \mathbb{P}\left[0 \stackrel{\mathcal{D}^{u}}{\leftrightarrow} B(0, L)\right] \leq \kappa \cdot e^{-L^{1 / k}}\right\}$,
there exists u_{*}, such that $0<u_{*} \leq u_{* *}<\infty$, and

PERCOLATION ON VACANT SET

The phase transition of percolation on \mathcal{V}^{u} is non-trivial.
Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')
Let
$u_{* *}=\inf \left\{u \geq 0 ; \exists k<\infty\right.$, s.t. $\left.\forall L \geq 0, \mathbb{P}\left[0 \stackrel{\nu^{u}}{\leftrightarrow} B(0, L)\right] \leq \kappa \cdot e^{-L^{1 / k}}\right\}$,
there exists u_{*}, such that $0<u_{*} \leq u_{* *}<\infty$, and

- for all $u<u_{*}, \mathcal{V}^{u}$ has a unique infinite cluster, \mathbb{P}_{u}-a.s.;

PERCOLATION ON VACANT SET

The phase transition of percolation on \mathcal{V}^{u} is non-trivial.

Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')
Let
$u_{* *}=\inf \left\{u \geq 0 ; \exists k<\infty\right.$, s.t. $\left.\forall L \geq 0, \mathbb{P}\left[0 \stackrel{\mathcal{L}^{u}}{\leftrightarrow} B(0, L)\right] \leq \kappa \cdot e^{-L^{1 / k}}\right\}$,
there exists u_{*}, such that $0<u_{*} \leq u_{* *}<\infty$, and

- for all $u<u_{*}, \mathcal{V}^{u}$ has a unique infinite cluster, \mathbb{P}_{u}-a.s.;
- for all $u>u_{*}, \mathcal{V}^{u}$ has no infinite cluster, \mathbb{P}_{u}-a.s..

PERCOLATION ON VACANT SET

The phase transition of percolation on \mathcal{V}^{u} is non-trivial.

Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')
Let
$u_{* *}=\inf \left\{u \geq 0 ; \exists k<\infty\right.$, s.t. $\left.\forall L \geq 0, \mathbb{P}\left[0 \stackrel{\mathcal{L}^{u}}{\leftrightarrow} B(0, L)\right] \leq \kappa \cdot e^{-L^{1 / k}}\right\}$,
there exists u_{*}, such that $0<u_{*} \leq u_{* *}<\infty$, and

- for all $u<u_{*}, \mathcal{V}^{u}$ has a unique infinite cluster, \mathbb{P}_{u}-a.s.;
- for all $u>u_{*}, \mathcal{V}^{u}$ has no infinite cluster, \mathbb{P}_{u}-a.s..

Conjecture
Do the two critical parameters actually coincide, i.e.,

$$
u_{* *}=u_{*} ?
$$

DISCONNECTION BY RANDOM INTERLACEMENTS

For any K compact subset of \mathbb{R}^{d}, we denote

- $K_{N}=\left\{x \in \mathbb{Z}^{d} ; d_{\infty}(N K, x) \leq 1\right\}$ the discrete blow-up of K,

DISCONNECTION BY RANDOM INTERLACEMENTS

For any K compact subset of \mathbb{R}^{d}, we denote

- $K_{N}=\left\{x \in \mathbb{Z}^{d} ; d_{\infty}(N K, x) \leq 1\right\}$ the discrete blow-up of K,
- $A_{N}=\left\{K_{N} \stackrel{\nu^{u}}{\leftrightarrow} \infty\right\}$ the event "no path in \mathcal{V}^{u} connects K_{N} with infinity".

DISCONNECTION BY RANDOM INTERLACEMENTS

For any K compact subset of \mathbb{R}^{d}, we denote

- $K_{N}=\left\{x \in \mathbb{Z}^{d} ; d_{\infty}(N K, x) \leq 1\right\}$ the discrete blow-up of K,
- $A_{N}=\left\{K_{N} \stackrel{\mathcal{V}^{u}}{\leftrightarrow} \infty\right\}$ the event "no path in \mathcal{V}^{u} connects K_{N} with infinity".

When $u>u_{* *}, \mathbb{P}\left[A_{N}\right] \rightarrow 1$ as $N \rightarrow \infty$. How big is $\mathbb{P}\left[A_{N}\right]$ when $u<u_{* *}$?

DISCONNECTION BY RANDOM INTERLACEMENTS

For any K compact subset of \mathbb{R}^{d}, we denote

- $K_{N}=\left\{x \in \mathbb{Z}^{d} ; d_{\infty}(N K, x) \leq 1\right\}$ the discrete blow-up of K,
- $A_{N}=\left\{K_{N} \stackrel{\mathcal{V}^{u}}{\leftrightarrow} \infty\right\}$ the event "no path in \mathcal{V}^{u} connects K_{N} with infinity".

When $u>u_{* *}, \mathbb{P}\left[A_{N}\right] \rightarrow 1$ as $N \rightarrow \infty$. How big is $\mathbb{P}\left[A_{N}\right]$ when $u<u_{* *}$?

Theorem (L.-Sznitman 13')

$$
\liminf _{N \rightarrow \infty} \frac{1}{N^{d-2}} \log \mathbb{P}\left[A_{N}\right] \geq-\frac{1}{d}\left(\sqrt{u_{* *}}-\sqrt{u}\right)^{2} \operatorname{cap}_{\mathbb{R}^{d}}(K)
$$

where $\operatorname{cap}_{\mathbb{R}^{d}}(K)$ denotes the Brownian capacity of K.

IDEA OF PROOF

- We need to find a law $\widetilde{\mathbb{P}}$ of "tilted random interlacements" (which are Poissonian "clouds" of tilted random walks) such that $\widetilde{\mathbb{P}}\left[A_{N}\right] \rightarrow 1$ as $N \rightarrow \infty$ and need to minimise the relative entropy $H(\widetilde{\mathbb{P}} \mid \mathbb{P})$.

IDEA OF PROOF

- We need to find a law $\widetilde{\mathbb{P}}$ of "tilted random interlacements" (which are Poissonian "clouds" of tilted random walks) such that $\widetilde{\mathbb{P}}\left[A_{N}\right] \rightarrow 1$ as $N \rightarrow \infty$ and need to minimise the relative entropy $H(\widetilde{\mathbb{P}} \mid \mathbb{P})$.
- The tilted random walk should appear more "often" around the set K_{N} in a way that the occupation-time profile should resemble that of random interlacements of level $u_{* *}$.

IDEA OF PROOF

- We need to find a law $\widetilde{\mathbb{P}}$ of "tilted random interlacements" (which are Poissonian "clouds" of tilted random walks) such that $\widetilde{\mathbb{P}}\left[A_{N}\right] \rightarrow 1$ as $N \rightarrow \infty$ and need to minimise the relative entropy $H(\widetilde{\mathbb{P}} \mid \mathbb{P})$.
- The tilted random walk should appear more "often" around the set K_{N} in a way that the occupation-time profile should resemble that of random interlacements of level $u_{* *}$.
- To this end, we take a tilted random walk with generator

$$
\widetilde{L} h(x)=\frac{1}{2 d} \sum_{|e|=1} \frac{f(x+e)}{f(x)}(h(x+e)-h(x))
$$

and reversibility measure $\pi(x)=f^{2}(x)$, where f is to be chosen carefully in order to minimise the relative entropy.

IDEA OF PROOF

IDEA OF PROOF

Thanks for your attention!

