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PRELIMINARIES

We consider (continuous-time) simple random walk on Z9, d > 3.
For M cc Z9, we denote

» the equilibrium measure of M by

enm(x) := Iy (x)Px(Hy = o0), ¥x € M,

» and the capacity of M as
cap(M) := Z ek (x).
xeM

Some remarks:
» The equilibrium measure of M is concentrated on 0;M.
> cap(B(0, V) = O(N4-2).

> Alternative definition of capacity:

cap(M) = inf{D(f,f); f > 1 on M and f has finite support}.
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governed by a non-negative parameter u, which we denote by 7%,
and the complement (i.e. the VACANT SET) by V¥ = Z9\7".

We wish to investigate the distribution of Z" through a “window”
M cc zq.
» Take N, ~ Pois(ucap(M)).
» Start N, i.i.d. random walks (X¢)isq, i = 1,..., Ny, with
initial distribution ep(+)/cap(M) (i.e., the normalised
equilibrium measure).

> IV N M ~ UM Range ((X{)e=0) N M.

Characterisation of P, the law of ZV:

P[ZY N M = )] = e~ucap(M),
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We denote the space of continuous-time doubly-infinite
nearest-neighbour paths tending to infinity at both sides by

W := {w : nearest-neighbour path, with t_IQOO | Xe(w)| = oo},
and the quotient space of W modulo time shift by
W*=W/ ~,
where ~ is the equivalence class of time shifts.

Random interlacements at level u, are a Poisson point process on
W*, with intensity measure uv, where v is the unique ergodic and
translation-invariant measure on W* such that the trace of this
PPP on Z9 has the same distribution as Z" defined above.
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PERCOLATION ON VACANT SET

The phase transition of percolation on VY is non-trivial.

Theorem (Sznitman 07, Sidoravicius-Sznitman 08’, Teixeira
08', Sznitman 09’)

Let
Uy = inf{u > 0; 3k < oo, s.t. YL >0, P[0 L B(0,L)] < r-e L},

there exists u,, such that 0 < u, < Uy, < 00, and
» for all u < u,, V¥ has a unique infinite cluster, P,—a.s.;

» for all u > u,, V¥ has no infinite cluster, P,—a.s..

Conjecture

Do the two critical parameters actually coincide, i.e.,

Usse = Uy !
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For any K compact subset of RY we denote
» Ky = {x € Z% d(NK, x) < 1} the discrete blow-up of K,

» Ay = {Kn v oo} the event “no path in VY connects Ky with
infinity”.

When u > u,, P[Ay] — 1 as N — co. How big is P[Ay] when
U< Ugs !

Theorem (L.-Sznitman 13')

. 1 1
lim inf 7 log P[A] > ——(v/tiex — v/ui)cappa(K),

where caprq(K) denotes the Brownian capacity of K.
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» We need to find a law P of “tilted random interlacements”
(which are Poissonian “clouds” of tilted random walks) such
that P[Ay] — 1 as N — oo and need to minimise the relative
entropy H(P|P).

» The tilted random walk should appear more “often” around
the set Ky in a way that the occupation-time profile should
resemble that of random interlacements of level u,..

» To this end, we take a tilted random walk with generator

2d2 RO}

le|=1

and reversibility measure 7(x) = f2(x), where f is to be
chosen carefully in order to minimise the relative entropy.
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Thanks for your attention!



