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Abstract. This expository article introduces some recent applications of Arakelov

geometry to algebraic dynamics. We present two results in algebraic dynamics,

and introduce their proofs assuming two results in Arakelov geometry.
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1. Introduction

Algebraic dynamics studies iterations of algebraic endomorphisms on algebraic
varieties. To clarify the object of this expository article, we make an early definition.

Definition 1.1. A polarized algebraic dynamical system over a field K consists
of a triple (X, f, L) where:

• X is a projective variety over K,
• f : X → X is an algebraic morphism over K,
• L is an ample line bundle on X polarizing f in the sense that f∗L ∼= L⊗q

for some integer q > 1.
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2 XINYI YUAN

In this article, we may abbreviate “polarized algebraic dynamical system” as
“algebraic dynamical system” or “dynamical system”.

The canonical height hf = hL,f on X(K), a function naturally defined using
Arakelov geometry, describes concisely many important properties of an algebraic
dynamical system. For example, preperiodic points are exactly the points of canoni-
cal height zero. Note that the canonical height can be defined even K is not a global
field following the work of Moriwaki and Yuan–Zhang. But we will mainly focus
on the number field case in this article.

Hence, it is possible to study algebraic dynamics using Arakelov geometry. The
aim of this article is to introduce the relation between these two seemingly different
subjects. To illustrate the idea, we are going to introduce mainly the following four
theorems:

(1) Rigidity of preperiodic points (Theorem 2.9),
(2) Equidistribution of small points (Theorem 6.2),
(3) A non-archimedean Calabi–Yau theorem, uniqueness part (Theorem 3.3),
(4) An arithmetic bigness theorem (Theorem 8.7).

The first two results lie in algebraic dynamics, and the last two lie in Arakelov
geometry. The logic order of the implications is:

(2) + (3) =⇒ (1), (4) =⇒ (2).

For more details on the arithmetic of algebraic dynamics, we refer to [Zh06,
Sil07, BR10, CL10a]. For introductions to complex dynamics, we refer to [Mil06,
Sib99, DS10].
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2. Algebraic theory of algebraic dynamics

Here we make some basic definitions for an algebraic dynamical system, and
state the rigidity of preperiodic points.

2.1. Algebraic dynamical systems. Recall that an algebraic dynamical sys-
tem is a triple (X, f, L) over a field K as in Definition 1.1. The ampleness of L
implies that the morphism f is finite, and the degree is qdimX . Denote by K the
algebraic closure of K as always.

Definition 2.1. A point x ∈ X(K) is said to be preperiodic if there exist two
integers a > b ≥ 0 such that fa(x) = f b(x). It is said to be periodic if we can
further take b = 0 in the equality. Denote by Prep(f) (resp. Per(f)) the set of
preperiodic (resp. periodic) points of X(K). Here we take the convention that
f0(x) = x.

Remark 2.2. The sets Prep(f) and Per(f) are stable under base change.
Namely, for any field extensionM ofK, we have Prep(fM ) = Prep(f) and Per(fM ) =
Per(f). Here fM represents the dynamical system (XM , fM , LM ) over M . More
generally, the set Prep(f)a,b of points x ∈ X(K) with fa(x) = f b(x) is stable under
base change. We leave it as an exercise.
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The following basic theorem is due to Fakhruddin [Fak03]. In the case X = Pn
and char(K) = 0, it is a consequence of Theorem 4.8, an equidistribution theorem
due to Briend–Duval [BD99].

Theorem 2.3 (Fakhruddin). The set Per(f) is Zariski dense in X.

It implies the more elementary result that Prep(f) is Zariski dense in X. Now
we give some examples of dynamical systems.

Example 2.4. Abelian variety. Let X = A be an abelian variety over K,
f = [2] be the multiplication by 2, and L be a symmetric and ample line bundle on
A. Recall that L is called symmetric if [−1]∗L ∼= L, which implies [2]∗L ∼= L⊗4. It
is obvious that L is not unique. It is easy to see that Prep(f) = A(K)tor is exactly
the set of torsion points.

Example 2.5. Projective space. Let X = Pn, and f : Pn → Pn be any
finite morphism of degree greater than one. Then f = (f0, f1, · · · , fn), where
f0, f1, · · · , fn are homogeneous polynomials of degree q > 1 without non-trivial
common zeros. The polarization is automatically given by L = O(1) since f∗O(1) =
O(q). We usually omit mentioning the polarization in this case. The set Prep(f)
could be very complicated in general, except for those related to the square map,
the Lattès map, and the Chebyshev polynomials introduced below.

Example 2.6. Square map. Let X = Pn and f(x0, · · · , xn) = (x2
0, · · · , x2

n).
Set L = O(1) since f∗O(1) = O(2). Then Prep(f) is the set of points (x0, · · · , xn)
with each coordinate xj equal to zero or a root of unity.

Example 2.7. Lattès map. Let E be an elliptic curve over K, and π : E → P1

be any finite separable morphism. For example, π can be the natural double cover
ramified exactly at the 2-torsion points. Then any endomorphism of E descends to
an endomorphism f on P1, and thus gives a dynamical system on P1 if the degree
is greater than 1. In that case, Prep(f) = π(E(K)tor).

Example 2.8. Chebyshev polynomial. Let d be a positive integer. The
d-th Chebyshev polynomial Td be the unique polynomial satisfying

cos(dθ) = Td(cos(θ)), ∀θ.
Equivalently, Td is the unique polynomial satisfying

td + t−d

2
= Td

(
t+ t−1

2

)
, ∀t.

Then Td has degree d, integer coefficients and leading term 2d−1. For each d > 1,
Td : P1 → P1 gives an algebraic dynamical system. It is easy to see that the
iteration Tnd = Tdn , and

Prep(Td) = {cos(rπ) : r ∈ Q}.

2.2. Rigidity of preperiodic points. Let X be a projective variety over a
field K, and L be an ample line bundle on X. Denote

H(L) = {f : X → X | f∗L ∼= L⊗q for some integer q > 1}.
Obviously H(L) is a semigroup in the sense that it is closed under composition
of morphisms. For any f ∈ H(L), the triple (X, f, L) gives a polarized algebraic
dynamical system.
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Theorem 2.9 ([BDM09], [YZ10a]). Let X be a projective variety over any
field K, and L be an ample line bundle on X. For any f, g ∈ H(L), the following
are equivalent:

(a) Prep(f) = Prep(g);
(b) gPrep(f) ⊂ Prep(f);
(c) Prep(f) ∩ Prep(g) is Zariski dense in X.

The theorem is proved independently by Baker–DeMarco [BDM09] in the
case X = P1, and by Yuan–Zhang [YZ10a] in the general case. The proofs of
these two papers in the number field case are actually the same, but the extensions
to arbitrary fields are quite different. See §7.2 for some details on the difference.
The major extra work for the high-dimensional case in [YZ10a] is the Calabi–Yau
theorem, which is essentially trivial in the one-dimensional case.

Remark 2.10. Assuming that K is a number field, the following are some
previously known results:

(1) Mimar [Mim97] proved the theorem in the case X = P1.
(2) Kawaguchi–Silverman [KS07] obtains the result in the case that f is a

square map on Pn. They also obtain similar results on Lattès maps. Their
treatment gives explicit classification of g.

A result obtained in the proof of Theorem 2.9 is the following analytic version:

Theorem 2.11 ([YZ10a]). Let K be either C or Cp for some prime number
p. Let X be a projective variety over K, L be an ample line bundle on X, and
f, g ∈ H(L) be two polarized endomorphisms with Prep(f) = Prep(g). Then the
equilibrium measures µf = µg on Xan. In particular, the Julia sets of f and g are
the same in the complex case.

Here µf denotes the equilibrium measure of (X, f, L) on Xan. See §4.2 for the
definition. For the notion of Julia sets, we refer to [DS10].

2.3. Morphisms with the same preperiodic points. The conditions of
Theorem 2.9 are actually equivalent to the equality of the canonical heights of
those two dynamical systems. We will prove that in the number field case. Hence,
two endomorphisms satisfying the theorem have the same arithmetic properties. It
leads us to the following result:

Corollary 2.12. Let (X, f, L) be a dynamical system over any field K. Then
the set

H(f) = {g ∈ H(L) : Prep(g) = Prep(f)}
is a semigroup, i.e., g ◦ h ∈ H(f) for any g, h ∈ H(f).

Proof. By Theorem 2.9, we can write:

H(f) = {g ∈ H(L) | gPrep(f) ⊂ Prep(f)}.

Then it is easy to see that H(f) is a semigroup. �

Example 2.13. Centralizer. For any (X, f, L), denote

C(f) = {g ∈ H(L) | g ◦ f = f ◦ g}.
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Then C(f) is a sub-semigroup of H(f). Take any x ∈ Prep(f), and we are going
to prove x ∈ Prep(g). By definition, there exist a > b ≥ 0 such that x lies in

Prep(f)a,b = {y ∈ X(K) : fa(y) = f b(y)}.

The commutativity implies gc(x) ∈ Prep(f)a,b for any integer c ≥ 0. It is easy to
see that Prep(f)a,b is a finite set. It follows that gc(x) = gd(x) for some c 6= d, and
thus x ∈ Prep(g).

We refer to [Er90, DS02] for a classification of commuting morphisms on Pn.
In fact, this was a reason for Fatou and Julia to study complex dynamical systems.

Example 2.14. Abelian variety. In the abelian case (A, [2], L), the semigroup
H(f) = H(L) is the set of all endomorphisms on A polarized by L.

There is a more precise description. Assume that the base field K is alge-
braically closed for simplicity. Denote by End(A) the ring of all endomorphisms on
A in the category of algebraic varieties, and by End0(A) the ring of all endomor-
phisms on A in the category of group varieties. Then End0(A) consists of elements
of End(A) fixing the origin 0 of A, and End(A) = End0(A) oA(K) naturally. One
can check that H(L) = H0(L) oA(K)tor where H0(L) is semigroup of elements of
End0(A) polarized by L.

The following list is more or less known in the literature. See [KS07] for the
case of number fields. All the results can be verified by Theorem 2.11.

Example 2.15. Square map. Let X = PnC and f be the square map. Then

H(f) = {g(x0, · · · , xn) = σ(ζ0xr0, · · · , ζnxrn) :

r > 1, ζj root of unity, σ ∈ Sn+1}.

Here Sn+1 denotes the permutation group acting on the coordinates.

Example 2.16. Lattès map. If f is a Lattès map on P1
C descended from an

elliptic curve, then H(f) consists of all the Lattès maps of degree greater than one
descended from the same elliptic curve.

Example 2.17. Chebyshev polynomial. For the Chebyshev polynomial Td
(with d > 1) on P1

C, we have

H(f) = {±Te : e ∈ Z≥2}.

If f is not of the above special cases, we expect that H(f) is much “smaller”.

Conjecture 2.18. Fix two integers n ≥ 1 and d > 1, and let Mn,d be the
moduli space of finite morphisms f : Pn → Pn of degree d. Then

H(f) = {f, f2, f3, · · · }

for generic f ∈Mn,d(C).

The conjecture is more or less known in the literature for n = 1. For example,
it is known for polynomial maps on P1 by the classification of Schmidt–Steinmetz
[SS95]. In general, we may expect that the techniques of [Er90, DS02] can have
some consequences on this conjecture.
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3. Analytic metrics and measures

Let K be a complete valuation field, and denote by | · | its absolute value. If
K is archimedean, then it is isomorphic to R or C by Ostrowski’s theorem. If K is
non-archimedean, the usual examples are:

• p-adic field Qp,
• finite extensions of Qp,
• the completion Cp of algebraic closure Qp,
• the field k((t)) of Laurent series over a field k.

3.1. Metrics on line bundles. Let K be as above, X be a projective variety
over K, and L be a line bundle on X. A K-metric ‖ · ‖ on L is a collection of
a K-norm ‖ · ‖ over the fiber L(x) = LK(x) of each algebraic point x ∈ X(K)
satisfying the following two conditions:

• The metric is continuous in the sense that, for any section s of L on a
Zariski open subset U of X, the function ‖s(x)‖ is continuous in x ∈ U(K).

• The metric is Galois invariant in the sense that, for any section s as above,
one has ‖s(xσ)‖ = ‖s(x)‖ for any σ ∈ Gal(K/K).

If K = C, then the metric is just the usual continuous metric of L(C) on X(C)
in complex geometry. If K = R, it is a continuous metric of L(C) on X(C) invariant
under complex conjugation.

In both cases, we say that the metric is semipositive if its Chern form

c1(L, ‖ · ‖) =
∂∂

πi
log ‖s‖+ δdiv(s)

is semipositive in the sense of currents. Here s is any non-zero meromorphic section
of L(C).

Next, assume that K is non-archimedean. We are going to define the notion of
algebraic metrics and semipositive metrics.

Suppose (X ,M) is an integral model of (X,Le) for some positive integer e, i.e.,
• X is an integral scheme projective and flat over OK with generic fiber XK

isomorphic to X,
• M is a line bundle over X such that the generic fiber (XK ,MK) is iso-

morphic to (X,Le).
Any point x of X(K) extends to a point x̄ of X (OK) by taking Zariski closure. Then
the fiber M(x) is an OK-lattice of the one-dimensional K-vector space Le(x). It
induces a K-norm ‖ · ‖′ on Le(x) by the standard rule that

M(x) = {s ∈ Le(x) : ‖s‖′ ≤ 1}.

It thus gives a K-norm ‖ · ‖ = ‖ · ‖′1/e on L(x). Patching together, we obtain a
continuous K-metric on L, and we call it the algebraic metric induced by (X ,M).

This algebraic metric is called semipositive if M is relatively nef in the sense
that M has a non-negative degree on any complete vertical curve on the special
fiber of X . In that case, L is necessarily nef on X.

The induced metrics are compatible with integral models. Namely, if we further
have an integral model (X ′,M′) of (X,Le) dominating (X ,M), then they induce
the same algebraic metric on L. Here we say that (X ′,M′) dominates (X ,M) if
there is a morphism π : X ′ → X , extending the identity map on the generic fiber,
such that π∗M =M′.
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A K-metric ‖ ·‖ on L is called bounded if there exists one algebraic metric ‖ ·‖0
on L such that the continuous function ‖·‖/‖·‖0 on (the non-compact space) X(K)
is bounded. If it is true for one algebraic metric, then it is true for all algebraic
metrics. We leave it as an exercise. For convenience, in the archimedean case we
say that all continuous metrics are bounded.

Now we are ready to introduce the notion of semipositive metrics in the sense
of Zhang [Zh95b].

Definition 3.1. Let K be a non-archimedean and (X,L) be as above. A
continuous K-metric ‖ · ‖ on L is said to be semipositive if it is a uniform limit
of semipositive algebraic metrics on L, i.e., there exists a sequence of semipositive
algebraic K-metrics ‖ · ‖m on L such that the continuous function ‖ · ‖m/‖ · ‖ on
X(K) converges uniformly to 1.

In the following, we will introduce a measure c1(L, ‖ · ‖)n on the analytic space
Xan associated to X. We will start with review the definition of the Berkovich
analytification in the non-archimedean case.

3.2. Berkovich analytification. If K = R,C, then for any K-variety X,
define Xan to be the complex analytic space X(C). It is a complex manifold if X
is regular.

In the following, let K be a complete non-archimedean field with absolute value
| · |. For any K-variety X, denote by Xan the Berkovich space associated to X.
It has many good topological properties in spite of its complicated structure. It is
a Hausdorff and locally path-connected topological space with π0(Xan) = π0(X).
Moreover, it is compact if X is proper.

We will briefly recall the definition and some basic properties here. For more
details, we refer to Berkovich’s book [Be90]. We also refer to the book Baker–
Rumely [BR10] for an explicit description of (P1)an.

3.2.1. Construction of the Berkovich analytification. We first consider the affine
case. Let U = Spec(A) be an affine scheme of finite type over K, where A is a
finitely generated ring over K. Then Uan is defined to be the set of multiplicative
semi-norms on A extending the absolute value of K. Namely, Uan is the set of
maps ρ : A→ R≥0 satisfying:

• (compatibility) ρ|K = | · |,
• (triangle inequality) ρ(a+ b) ≤ ρ(a) + ρ(b), ∀a, b ∈ A,
• (multiplicativity) ρ(ab) = ρ(a)ρ(b), ∀a, b ∈ A.

Any f ∈ A defines a map

|f | : Uan −→ R, ρ 7−→ |f |ρ := ρ(f)

Endow Uan with the coarsest topology such that |f | is continuous for all f ∈ A.
For an general K-variety X, cover it by affine open subvarieties U . Then Xan

is obtained by patching the corresponding Uan in the natural way. Each Uan is an
open subspace of Xan by definition.

3.2.2. Maps to the variety. Denote by |X| the underlying space of the scheme
X, and by |X|c the subset of closed points of |X|. There is a natural surjective
map Xan → |X|. Every point of |X|c has a unique preimage, and thus there is a
natural inclusion |X|c ↪→ Xan.

It suffices to describe these maps for the affine case U = Spec(A). Then the
map Uan → |U | is just ρ 7→ ker(ρ). The kernel of ρ : A→ R≥0 is a prime ideal of A
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by the multiplicativity. Let x ∈ |U |c be a closed point corresponding to a maximal
idea mx of A. Then A/mx is a finite field extension of K, and thus has a unique
valuation extending the valuation of K. This extension gives the unique preimage
of x in Uan.

3.2.3. Shilov boundary. Let X be an integral model of X over OK . That is,
X is an integral scheme, projective and flat over OK with generic fiber XK = X.
Further assume that X is normal. Then this integral model will determine some
special points on Xan.

Let η be an irreducible component of the special fiber X of X . It is a Weil
divisor on X and thus gives an order function vη : K(X)× → Z by vanishing order
on η. Here K(X) denotes the function field of X, which is also the function field of
X . It defines a point in Xan, locally represented by the semi-norm ρη = e−avη(·).
Here a > 0 is the unique constant such that ρη|K agrees with the absolute value | · |
of K. We call the point ρη ∈ Xan the Shilov boundary corresponding to η following
[Be90].

Alternatively, one can define a (surjective) reduction map r : Xan → |X | by
the integral model. Then ρη is the unique preimage of the generic point of η in Xan

under the reduction map.

3.3. Monge–Ampère measure and Chambert-Loir measure. Let K be
any valuation field, X be a projective variety over K of dimension n, L be a line
bundle on X, and ‖ · ‖ be a semipositive metric on L. There is a semipositive
measure c1(L, ‖ · ‖)n on the analytic space Xan with total volume∫

Xan
c1(L, ‖ · ‖)n = degL(X).

When K = R or K = C, then Xan is just X(C). If both X and ‖·‖ are smooth,
then

c1(L, ‖ · ‖)n = ∧nc1(L, ‖ · ‖)
is just the usual Monge–Ampère measure on Xan in complex analysis. In general,
the wedge product can still be regularized to define a semipositive measure on Xan.

In the following, assume that K is non-archimedean. We are going to introduce
the measure c1(L, ‖ · ‖)n on Xan constructed by Chambert-Loir [CL06].

First consider the case that algebraic case that the metric (L, ‖ ·‖) was induced
by a single normal integral model (X ,M) of (X,L⊗e) over OK . Denote by |X |g
the set of irreducible components of X . Recall that any η ∈ |X |g corresponds to a
Shilov boundary ρη ∈ Xan. Define

c1(L, ‖ · ‖)n =
1
en

∑
η∈|X|g

degM|η (η) δρη

Here δρη is the Dirac measure supported at ρη.
Now let ‖·‖ be a general semipositive metric. It is a uniform limit of semipositive

metrics ‖ · ‖m induced by integral models. We can assume that these models are
normal by passing to normalizations. Then we define

c1(L, ‖ · ‖)n = lim
m
c1(L, ‖ · ‖m)n.

Chambert-Loir checked that the sequence converges weakly if K contains a count-
able and dense subfield. The general case was due to Gubler [Gu08].
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Example 3.2. Standard metric. Assume that (X,L) = (PnK , O(1)). The
standard metric on O(1) is given by

‖s(z0, · · · , zn)‖ =
|
∑n
i=0 aizi|

max{|z0|, · · · , |zn|}
, s ∈ H0(PnKv , O(1)).

Here
∑
i aixi is the linear form representing the section s. The quotient does not

depend on the choice of the homogeneous coordinate (z0, · · · , zn). The metric is
semipositive.

If K is archimedean, the metric is continuous but not smooth. The Monge–
Ampère measure c1(L, ‖ · ‖)n on Pn(C) is the push-forward of the probability Haar
measure on the standard torus

Sn = {(z0, · · · , zn) ∈ Pn(C) : |z0| = · · · = |zn|}.
If K is non-archimedean, then the metric is the algebraic metric induced by the

standard integral model (PnOK ,O(1)) over OK . It follows that the Chambert-Loir
measure c1(L, ‖ · ‖)n = δξ where ξ is the Gauss point, i.e., the Shilov boundary
corresponding to the (irreducible) special fiber of the integral model PnOK .

3.4. Calabi–Yau Theorem. Calabi [Ca54, Ca57] made the following fa-
mous conjecture:

Let ω ∈ H1,1(X,C) be a Kähler class on a compact complex manifold X of
dimension n, and Ω be a positive smooth (n, n)-form on X such that

∫
X
ωn =

∫
X

Ω.
Then there exists a Kähler form ω̃ in the class ω such that ω̃n = Ω.

Calabi also proved that the Kähler form is unique if it exists. The existence
of the Kähler form, essentially a highly non-linear PDE, is much deeper, and was
finally solved by the seminal work of S. T. Yau [Yau78]. Now the whole result is
called the Calabi–Yau theorem.

We can write the theorem in a more algebraic way in the case that the Kähler
class ω is algebraic, i.e., it is the cohomology class of a line bundle L. Then L is
necessarily ample. There is a bijection

{positive smooth metrics on L}/R×>0

−→ {Kähler forms in the class ω}
given by

‖ · ‖ 7−→ c1(L, ‖ · ‖).
Thus the Calabi–Yau theorem becomes:

Let L be an ample line bundle on a projective manifold X of dimension n, and
Ω be a positive smooth (n, n)-form on X such that

∫
X

Ω = degL(X). Then there
exists a positive smooth metric ‖ · ‖ on L such that Ω = c1(L, ‖ · ‖)n. Furthermore,
the metric is unique up to scalar multiples.

Now it is easy to translate the uniqueness part to the non-archimedean case.

Theorem 3.3 (Calabi–Yau theorem, uniqueness part). Let K be a valuation
field, X be a projective variety over K, and L be an ample line bundle over X. Let
‖ · ‖1 and ‖ · ‖2 be two semipositive metrics on L. Then

c1(L, ‖ · ‖1)dimX = c1(L, ‖ · ‖2)dimX

if and only if
‖ · ‖1
‖ · ‖2

is a constant.

Remark 3.4. The “if” part of the theorem is trivial by definition.
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For archimedean K, the positive smooth case is due to Calabi as we mentioned
above, and the continuous semipositive case is due to Kolodziej [Ko03]. After-
wards Blocki [Bl03] provided a very simple proof of Kolodziej’s result. The non-
archimedean case was formulated and proved by Yuan–Zhang [YZ10a] following
Blocki’s idea.

The non-archimedean version of the existence part is widely open, though the
one-dimensional case is trivial. In high-dimensions, we only know the case of totally
degenerate abelian varieties by the work of Liu [Liu10]. In general, the difficulty
lies in how to formulate the problem, where the complication is made by the big
difference between positivity of a metric and positivity of its Chambert-Loir mea-
sures.

4. Analytic theory of algebraic dynamics

Let K be a complete valuation field as in §3, and let (X, f, L) be a dynam-
ical system over K. In this section, we introduce invariant metrics, equilibrium
measures, and some equidistribution in this setting.

4.1. Invariant metrics. Fix an isomorphism f∗L = L⊗q. Then there is a
unique continuous K-metric ‖ · ‖f on L invariant under f such that

f∗(L, ‖ · ‖f ) = (L, ‖ · ‖f )⊗q

is an isometry.
We can construct the metric by Tate’s limiting argument as in §5.2. In fact,

take any bounded K-metric ‖ · ‖0 on L. Set

‖ · ‖f = lim
m→∞

((fm)∗‖ · ‖0)1/q
m

.

Proposition 4.1. The limit is uniformly convergent, and independent of the
choice of ‖ · ‖0. Moreover, the invariant metric ‖ · ‖f is semipositive.

Proof. The archimedean case is classical, and the non-archimedean case is
due to [Zh95b]. Denote

‖ · ‖m = ((fm)∗‖ · ‖0)1/q
m

.

Since both ‖ · ‖1 and ‖ · ‖0 are metrics on L, their quotient is a continuous function
on X(K). There exist a constant C > 1 such that

C−1 < ‖ · ‖1/‖ · ‖0 < C.

In the non-archimedean case, it follows from the boundedness of the metrics; in the
archimedean case, it follows from the continuity of the quotient and the compactness
of X(K). By

‖ · ‖m+1/‖ · ‖m = ((fm)∗(‖ · ‖1/‖ · ‖0))1/q
m

,

we have
C−1/qm < ‖ · ‖m+1/‖ · ‖m < C1/qm .

Thus ‖ · ‖m is a uniform Cauchy sequence. Similar argument can prove the inde-
pendence on ‖ ·‖0. Furthermore, if we take ‖ ·‖0 to be semipositive (and algebraic),
then each ‖ · ‖m is semipositive, and thus the limit is semipositive.

�
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4.2. Equilibrium measure. Recall that we have an invariant semipositive
metric ‖ · ‖f on L. By §3, one has a semipositive measure c1(L, ‖ · ‖f )dimX on the
analytic space Xan. It is the Monge–Ampère measure in the archimedean case, and
the Chambert-Loir measure in the non-archimedean case.

The total volume of this measure is degL(X), so we introduce the normalization

µf =
1

degL(X)
c1(L, ‖ · ‖f )dimX .

It is called the equilibrium measure associated to (X, f, L). It is f -invariant in the
sense that

f∗µf = qdimXµf , f∗µf = µf .

The first property follows from the invariance of ‖ · ‖f , and the second property
follows from the first one.

An alternative construction is to use Tate’s limiting argument from any initial
probability measure on Xan induced from a semipositive metric on L.

Remark 4.2. The invariant metric ‖ ·‖f depends on the choice of isomorphism
f∗L = L⊗q. Different isomorphisms may change the metric by a scalar. However,
it does not change the Chambert-Loir measure. So the equilibrium measure µf
does not depend on the choice of the isomorphism.

Example 4.3. Square map. The metric and the measure introduced in Ex-
ample 3.2 are the invariant metric and measure for the square map on PnK .

Example 4.4. Abelian variety. Let X = A be an abelian variety over K,
f = [2] be the multiplication by 2, and L be a symmetric and ample line bundle on
A. We will see that the equilibrium measure µf does not depend on L.

(1) If K = C, then µf is exactly the probability Haar measure on A(C).
(2) Assume that K is non-archimedean. For the general case, we refer to

[Gu10]. Here we give a simple description of the case that K is a discrete
valuation field and A has a split semi-stable reduction, i.e., the identity
component of the special fiber of the Néron model is the extension of an
abelian variety by Gr

m for some 0 ≤ r ≤ dim(A). Then Aan contains
the real torus Sr = Rr/Zr naturally as its skeleton in the sense that Aan

deformation retracts to Sr. The measure µf is the push-forward to Aan

of the probability Haar measure on Sr.

Example 4.5. Good reduction. Assume that K is non-archimedean, and
(X, f, L) has good reduction over K. Namely, there is a triple (X , f̃ ,L) over OK
extending (X, f, L) with X projective and smooth over OK . Then µf is the Dirac
measure of the Shilov boundary corresponding to the (irreducible) special fiber of
X .

4.3. Some equidistribution results. Here we introduce two equidistribu-
tion results in the complex setting. We will see that the equidistribution of small
points almost subsumes these two theorems into one setting if the dynamical system
is defined over a number field.

We first introduce the equidistribution of backward orbits. Let (X, f, L) be a
dynamical system of dimension n over C. For any point x ∈ X(C), consider the
pull-back

q−nm(fm)∗δx =
1
qnm

∑
z∈f−m(x)

δz.
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Here δz denotes the Dirac measure, and the summation over f−m(x) are counted
with multiplicities. Dinh and Sibony proved the following result:

Theorem 4.6 ([DS03, DS10]). Assume that X is normal. Then there is a
proper Zariski closed subset E of X such that, for any x ∈ X(C), the sequence
{q−nm(fm)∗δx}m≥1 converges weakly to µf if and only if x /∈ E.

Remark 4.7. By a result of Fakhruddin [Fak03], all dynamical systems (X, f, L)
can be embedded to a projective space. So the above statement is equivalent to
[DS10, Theorem 1.56]. We refer to [Br65, FLM83, Ly83] for the case X = P1.

Now we introduce equidistribution of periodic points. Let (X, f, L) over C be
as above. For any m ≥ 1, denote by Pm the set of periodic points in X(C) of period
m counted with multiplicity. Consider

δPm =
1
|Pm|

∑
z∈Pm

δz.

The following result is due to Briend and Duval.

Theorem 4.8 ([BD99]). In the case X = Pn, the sequence {δPm}m≥1 con-
verges weakly to µf .

We refer to [FLM83, Ly83] for historical works on the more classical case of
X = P1. As remarked in [DS10], one can replace Pm by the same set without
multiplicity, or by the subset of repelling periodic points of period m.

In the non-archimedean case, both theorems are proved over P1 by Favre and
Rivera-Letelier in [FR06]. The high-dimensional case is not known in the literature,
but it is closely related to the equidistribution of small points if the dynamical
system is defined over number fields. See §6.2 for more details.

5. Canonical height on algebraic dynamical systems

In this section we introduce the canonical height of dynamical systems over
number fields using Tate’s limiting argument. We will also see an expression in the
spirit of Néron in Theorem 5.7. Here we restrict to number field, but all results are
true for function fields of curves over finite fields.

For any number field K, denote by MK the set of all places of K and normalize
the absolute values as follows:

• If v is a real place, take | · |v to be the usual absolute value on Kv = R;
• If v is a complex place, take | · |v to be the square of the usual absolute

value on Kv ' C;
• If v is a non-archimedean place, the absolute value |·|v on Kv is normalized

such that |a|v = (#OKv/a)−1 for any a ∈ OKv .

In that way, the valuation satisfies the product formula∏
v∈MK

|a|v = 1, ∀ a ∈ K×.

5.1. Weil’s height machine. We briefly recall the definition of Weil heights.
For a detailed introduction we refer to [Se89].
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Let K be a number field, and Pn be the projective space over K. The standard
height function h : Pn(K)→ R is defined to be

h(x0, x1, · · · , xn) =
1

[E : K]

∑
w∈ME

log max{|x0|w, |x1|w, · · · , |xm|w},

where E is a finite extension of K containing all the coordinates xi, and the summa-
tion is over all places w of E. By the product formula, the definition is independent
of both the choice of the homogeneous coordinate and the choice of E. Then we
have a well-defined function h : Pn(K)→ R.

Example 5.1. Height of algebraic numbers. We introduce a height func-
tion h : Q→ R by

h(x) =
1

deg(x)

log |a0|+
∑

z∈C conj to x

log max{|z|, 1}

 .

Here a0 ∈ Z>0 is the coefficient of the highest term of the minimal polynomial of x
in Z[t], deg(x) is the degree of the minimal polynomial, and the summation is over
all roots of the minimal polynomial.

In particular, if x = a/b ∈ Q represented by two coprime integers a, b ∈ Z, then

h(x) = max{log |a|, log |b|}.

It is easy to verify that the height is compatible with the standard height on P1
Q

under the identification P1(Q) = Q ∪ {∞}.

Let X be a projective variety over K, and L be any ample line bundle on X. Let
i : X → Pn be any morphism such that i∗O(1) = L⊗d for some d ≥ 1. We obtain a
height function hL,i = 1

dh◦ i : X(K)→ R as the composition of i : X(K)→ Pn(K)
and 1

dh : Pn(K)→ R. It depends on the choices of d and i.
More generally, let L be any line bundle on X. We can always write L = A1 ×

A
⊗(−1)
2 for two ample line bundles A1 and A2 on X. For k = 1, 2, let ik : X → Pnk

be any two morphisms such that i∗kO(1) = A⊗dkk for some dk ≥ 1. We obtain a
height function hL,i1,i2 = hA1,i1 − hA2,i2 : X(K)→ R. It depends on the choices of
(A1, A2, i1, i2). However, the following result asserts that it is unique up to bounded
functions.

Theorem 5.2 (Weil’s height machine). The above construction L 7→ hL,i1,i2
gives a group homomorphism

H : Pic(X) −→ {functions φ : X(K)→ R}
{bounded functions φ : X(K)→ R}

.

Here the group structure on the right-hand side is the addition. In particular, the
coset of hL,i1,i2 on the right-hand side depends only on L.

We call a function hL : X(K) → R a Weil height corresponding to L if it lies
in the class of H(L) on the right-hand side of the homorphism in the theorem. It
follows that hL,i1,i2 is a Weil height corresponding to L. A basic and important
property of the Weil height is the following Northcott property.
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Theorem 5.3 (Northcott property). Let K be a number field, X be a projective
variety over K, and L be an ample line bundle over X. Let hL : X(K)→ R be any
Weil height corresponding to L. Then for any real numbers A,B, the set

{x ∈ X(K) : deg(x) < A, hL(x) < B}
is finite.

Here deg(x) denotes the degree of the residue field K(x) of x over K. The
theorem is easily reduced to the original height h : Pn(K) → R, for which the
property can be obtained explicitly.

5.2. Canonical height. Let (X, f, L) be a dynamical system over a number
field K. We are introducing the canonical height following [CS93].

Let hL : X(K) → R be any Weil height corresponding to L. The canonical
height hf = hL,f : X(K)→ R with respect to f is defined by Tate’s limit argument

hL,f (x) = lim
N→∞

1
qN

hL(fN (x)).

Theorem 5.4. The limit hf (x) always exists and is independent of the choice
of the Weil height hL. It has the following basic properties:

(1) hf (f(x)) = qhf (x) for any x ∈ X(K),
(2) hf (x) ≥ 0 for any x ∈ X(K), and the equality holds if and only if x is

preperiodic.
The function hf : X(K) → R is the unique Weil height corresponding to L and
satisfying (1).

Proof. The theorem easily follows from Theorem 5.2 and Theorem 5.3. �

Example 5.5. Square map. For the square map on Pn, the canonical height
is exactly the standard height function h : Pn(K)→ R. To prove this, it suffices to
verify that the standard height function satisfies Theorem 5.4 (1) under the square
map.

Example 5.6. Néron–Tate height. The prototype of canonical height is the
case of abelian variety (A, [2], L) as in Example 2.4. In that case, the canonical
height hL,[2], usually denoted ĥL and called the Néron–Tate height, is quadratic
with respect to the group law. See [Se89] for example.

5.3. Decomposition to local heights. Let (X, f, L) be a dynamical system
over a number field K as above. Fix an isomorphism f∗L = L⊗q with q > 1. By
last section, for each v of K, we have an f -invariant semipositive Kv-metric ‖ · ‖f,v
on the line bundle LKv over XKv .

The data Lf = (L, {‖ · ‖f,v}v∈MK
) give an adelic line bundle in the sense of

Zhang [Zh95b]. We will review the notion of adelic line bundles in §9.1, but we do
not need it here for the moment.

Theorem 5.7. For any x ∈ X(K), one has

hf (x) = − 1
deg(x)

∑
v∈MK

∑
z∈O(x)

log ‖s(z)‖f,v.

Here s is any rational section of L regular and non-vanishing at x, and O(x) =
Gal(K/K)x is the Galois orbit of x naturally viewed as a subset of X(Kv) for every
v.



ALGEBRAIC DYNAMICS, CANONICAL HEIGHTS AND ARAKELOV GEOMETRY 15

Proof. We will see that it is a consequence of Lemma 9.6 and Theorem 9.8.
�

Remark 5.8. The result is a decomposition of global height into a sum of local
heights −

∑
z∈O(x) log ‖s(z)‖f,v. It is essentially a generalization of the historical

work of Néron [Ne65].

6. Equidistribution of small points

6.1. The equidistribution theorem. Let (X, f, L) be a polarized algebraic
dynamical system over a number field K.

Definition 6.1. Let {xm}m≥1 be an infinite sequence of X(K).
(1) The sequence is called generic if any infinite subsequence is Zariski dense

in X.
(2) The sequence is called hf -small if hf (xm)→ 0 as m→∞.

Fix a place v of K. For any x ∈ X(K), the Galois orbit O(x) = Gal(K/K)x ⊂
X(K) is a natural subset of X(Cv). Denote its image under the natural inclusion
X(Cv) ↪→ Xan

Cv by Ov(x). Define the probability measure on Xan
Cv associated to the

Galois orbit of x by

µx,v :=
1

deg(x)

∑
z∈Ov(x)

δz.

Recall that, associated to the dynamical system (XCv , fCv , LCv ), we have the
equilibrium measure

µf,v =
1

degL(X)
c1(LCv , ‖ · ‖f,v)dimX

on Xan
Cv . Here ‖ · ‖f,v is the f -invariant metric depending on an isomorphism f∗L =

L⊗q.

Theorem 6.2. Let (X, f, L) be a polarized algebraic dynamical system over a
number field K. Let {xm} be a generic and hf -small sequence of X(K). Then for
any place v of K, the probability measure µxm,v converges weakly to the equilibrium
measure µf,v on Xan

Cv .

The theorem was first proved for abelian varieties at archimedean places v
by Szpiro–Ullmo–Zhang [SUZ97], and was proved by Yuan [Yu08] in the full
case. The function field analogue was due to Faber [Fa09] and Gubler [Gu08]
independently. For a brief history, we refer to §6.3.

6.2. Comparison with the results in complex case. Theorem 6.2 is closely
related to the equidistribution results in §4.3. Let (X, f, L) be a dynamical system
of dimension n over a number field K. Fix an embedding K ⊂ C so that we can
also view it as a complex dynamical system by base change.

We first look at the equidistribution of periodic points in Theorem 4.8. Recall
that Pm is the set of periodic points in X(K) of period m. It is stable under the
action of Gal(K/K), and thus splits into finitely many Galois orbits. Take one
xm ∈ Pm for each m. Then {xm}m is hf -small automatically. Once {xm}m is
generic, the Galois orbit of xm is equidistributed. A good control of the proportion
of the “non-generic” Galois orbits in Pm would recover the equidistribution of Pm
by Theorem 6.2.
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Now we consider the equidistribution of backward orbits in Theorem 4.6. The
situation is similar. For fixed x ∈ X(K), the preimage f−m(x) is stable under the
action of Gal(K/K), and thus splits into finitely many Galois orbits. Take one
xm ∈ f−m(x) for each m. Then {xm}m is hf -small since hf (xm) = q−mhf (x) by
the invariant property of the canonical height. Once {xm}m is generic, its Galois
orbit is equidistributed. To recover the equidistribution of f−m(x), one needs to
control the “non-generic” Galois orbits in f−m(x). For that, we would need to
exclude x from the exceptional set E.

6.3. Brief history on equidistribution of small points. In the following
we briefly review the major historical works related to the equidistribution. Due
to the limitation of the knowledge of the author and the space of this article, the
following list is far from being complete.

The study of the arithmetic of algebraic dynamics was started with the in-
troduction of the canonical height on abelian varieties over number fields, also
known as the Néron–Tate height, by Néron [Ne65] and an unpublished work of
Tate. The generalizations to polarized algebraic dynamical systems was treated by
Call–Silverman [CS93] using Tate’s limiting argument and by Zhang [Zh95b] in
the framework of Arakelov geometry. In Zhang’s treatment, canonical heights of
subvarieties are also defined.

The equidistribution of small points originated in the landmark work of Szpiro–
Ullmo–Zhang [SUZ97]. One major case of their result is for dynamical systems on
abelian varieties. The work finally lead to the solution of the Bogomolov conjecture
by Ullmo [Ul98] and Zhang [Zh98a]. See [Zh98b] for an exposition of the history
of the Bogomolov conjecture.

After the work of [SUZ97], the equidistribution was soon generalized to the
square map on projective spaces by Bilu [Bi97], to almost split semi-abelian vari-
eties by Chambert-Loir [CL00], and to all one-dimensional dynamical systems by
Autissier [Au01].

All these works are equidistribution at complex analytic spaces with respect to
embeddings σ : K ↪→ C. From the viewpoint of number theory, the equidistribution
is a type of theorem that a global condition (about height) implies a local result
(at σ). The embedding σ is just an archimedean place of K. Hence, it is natural
to seek a parallel theory for equidistribution at non-archimedean places assuming
the same global condition.

The desired non-archimedean analogue on P1, after the polynomial case consid-
ered by Baker–Hsia [BH05], was accomplished by three independent works: Baker–
Rumely [BR06], Chambert-Loir [CL06], and Favre–Rivera-Letelier [FR06]. In the
non-archimedean case, the v-adic manifold X(Kv) is totally disconnected and ob-
viously not a good space to study measures. The Berkovich analytic space turns
out the be the right one. In fact, all these three works considered equidistribution
over the Berkovich space, though the proofs are different.

Chambert-Loir [CL06] actually introduced equilibrium measures on Berkovich
spaces of any dimension, and his proof worked for general dimensions under a posi-
tivity assumption which we will mention below. Following the line, Gubler [Gu07]
deduced the equidistribution on totally degenerate abelian varieties, and proved the
Bogomolov conjecture for totally degenerate abelian varieties over function fields
as a trophy. Gubler’s equidistribution is on the tropical variety, which is just the
skeleton of the Berkovich space.
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Another problem raised right after [SUZ97] was to generalize the results to ar-
bitrary polarized algebraic dynamical systems (X, f, L). The proof in [SUZ97] uses
a variational principle, and the key is to apply the arithmetic Hilbert–Samuel for-
mula due to Gillet–Soule [GS90] to the perturbations of the invariant line bundle.
For abelian varieties, the invariant metrics are strictly positive and the pertur-
bations are still positive, so the arithmetic Hilbert–Samuel formula is applicable.
However, for a general dynamical systems including the square map, the invariant
metrics are only semipositive and the perturbations may cause negative curvatures.
In that case, one can not apply the arithmetic Hilbert–Samuel formula. The proof
of Bilu [Bi97] takes full advantage of the explicit form of the square map. The
works [Au01, CL06] still use the variational principle, where the key is to use a
volume estimate on arithmetic surfaces obtained in [Au01] to replace the arithmetic
Hilbert–Samuel formula.

Finally, Yuan [Yu08] proved an arithmetic bigness theorem (cf. Theorem 8.7),
naturally viewed as an extension of the arithmetic Hilbert–Samuel formula. The
theorem is inspired by a basic result of Siu [Siu93] in algebraic geometry. In
particular, it makes the variational principle work in the general case. Hence, the
full result of equidistribution of small points, for all polarized algebraic dynamical
systems and at all places, was proved in [Yu08].

The function field analogue of the result in [Yu08] was obtained by Faber
[Fa09] and Gubler [Gu08] independently in slightly different settings. It is also
worth mentioning that Moriwaki [Mo00] treated equidistribution over finitely gen-
erated fields over number fields based on his arithmetic height.

7. Proof of the rigidity

Now we are ready to treat Theorem 2.9. We will give a complete proof for the
case of number fields, which is easily generalized to global fields. The general case
is quite technical, and we only give a sketch.

7.1. Case of number field. Assume that K is a number field. We are going
to prove the following stronger result:

Theorem 7.1. Let X be a projective variety over a number field K, and L be
an ample line bundle on X. For any f, g ∈ H(L), the following are equivalent:

(a) Prep(f) = Prep(g).
(b) gPrep(f) ⊂ Prep(f).
(c) Prep(f) ∩ Prep(g) is Zariski dense in X.
(d) Lf ' Lg in the sense that, at every place v of K, there is a constant

cv > 0 such that ‖ · ‖f,v = cv‖ · ‖g,v. Furthermore,
∏
v cv = 1, and cv = 1

for all but finitely many v.
(e) hf (x) = hg(x) for any x ∈ X(K).

Remark 7.2. Kawaguchi–Silverman [KS07] proves that (d)⇔ (e) for X = Pn.

Remark 7.3. In (d) we do not get the simple equality Lf = Lg mainly because
the invariant metrics depend on the choice of isomorphisms f∗L = L⊗q and g∗L =
L⊗q

′
. One may pose a rigidification on L to remove this ambiguity.
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7.1.1. Easy implications. Here we show

(d)⇒ (e)⇒ (a)⇒ (b)⇒ (c).

First, (d) ⇒ (e) follows from the formula

hf (x) = − 1
deg(x)

∑
v∈MK

∑
z∈O(x)

log ‖s(z)‖f,v, x ∈ X(K).

See Theorem 5.7.
Second, (e) ⇒ (a) since preperiodic points are exactly points with canonical

height equal to zero.
Third, (a) ⇒ (b) and (a) ⇒ (c) since Prep(f) is Zariski dense by Theorem 2.3.
It is also not hard to show (b) ⇒ (c). Take any point x ∈ Prep(f). Consider

the orbit A = {x, g(x), g2(x), · · · }. All points of A are defined over the residue field
K(x) of x. Condition (b) implies A ⊂ Prep(f), and thus points of A has bounded
height. By the Northcott property, A is a finite set. In another word, x ∈ Prep(g).
It follows that

Prep(f) ⊂ Prep(g).

Then (c) is true since Prep(f) is Zariski dense in X.
7.1.2. From (c) to (d). Assume that Prep(f) ∩ Prep(g) is Zariski dense in X.

We can choose a generic sequence {xm} in Prep(f)∩Prep(g). The sequence is small
with respect to both f and g since the canonical heights hf (xm) = hg(xm) = 0 for
each m.

By Theorem 6.2, for any place v ∈MK , we have

µxm,v → dµf,v, µxm,v → dµg,v.

It follows that dµf,v = dµg,v as measures on Xan
Cv , or equivalently

c1(L, ‖ · ‖f,v)dimX = c1(L, ‖ · ‖g,v)dimX .

By the Calabi–Yau theorem in Theorem 3.3, we obtain constants cv > 0 such that

‖ · ‖f,v = cv‖ · ‖g,v.

Here cv = 1 for almost all v. To finish the proof, we only need to check that the
product c =

∏
v cv is 1.

In fact, by the height formula in Theorem 5.7 we have

hf (x) = hg(x)− log c, ∀ x ∈ X(K).

Then c = 1 by considering any x in Prep(f) ∩ Prep(g). It finishes the proof.

7.2. Case of general field. Now assume that K is an arbitrary field, and
we will explain some ideas of extending the above proof. Readers who care more
about number fields may skip the rest of this section.

It is standard to use Lefshetz principle to reduce K to a finitely generated field.
In fact, Theorem 2.9 depends only on the data (X, f, g, L). Here X is defined by
finitely many homogeneous polynomials, f and g are also defined by finitely many
polynomials, and L is determined by a Cech cocycle in H1(X,O∗X) which is still
given by finitely many polynomials. Let K0 be the field generated over the prime
field (Q or Fp) by the coefficients of all these polynomials. Then (X, f, g, L) is
defined over K0, and we can replace K by K0 in Theorem 2.9.
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In the following, assume that K is a finitely generated field over a prime field
k = Q or Fp. The key of the proof is a good notion of canonical height for dynamical
systems over K.

7.2.1. Geometric height. Let (X, f, L) be a dynamical system over K as above.
Fix a projective variety B over k with function field K, and fix an ample line bundle
H on B. The geometric canonical height will be a function hHf : X(K)→ R.

Let (π : X → B,L) be an integral model of (X,L), i.e., π : X → B is a
morphism of projective varieties over k with generic fiber X, and L is a line bundle
on X with generic fiber L. It gives a “Weil height” hHL : X(K)→ R by

hHL (x) =
1

deg(x)
(π∗H)dimB−1 · L · x.

Here x denotes the Zariski closure of x in X. Take the convention that hHf (x) = 0
if d = 0. The canonical height hHf is defined using Tate’s limiting argument

hHf (x) = lim
N→∞

1
qN

hHL (fN (x)), x ∈ X(K).

It converges and does not depend on the choice of the integral model.
If k = Fp, then hHf satisfies Theorem 5.4 (1) (2). The proof of Theorem 2.9 is

very similar to the case of number fields.
If k = Q, then hHf (x) = 0 does not imply x ∈ Prep(f) due to the failure of

Northcott’s property for this height function. However, it is proved to be true
by Baker [Ba09] in the case that f is non-isotrivial on X = P1. With this result,
Baker–DeMarco [BDM09] proves Theorem 2.9 using the same idea of number field
case.

7.2.2. Arithmetic height. Assume that K is finitely generated over k = Q. We
have seen that the geometric height is not strong enough to satisfy Northcott’s
property. Moriwaki [Mo00, Mo01] introduced a new class of height functions on
X(K) which satisfies Northcott’s property. The notion is further refined by Yuan–
Zhang [YZ10b]. In the following, we will introduce these height functions, and we
refer to §8.1 for some basic definitions in arithmetic intersection theory.

Fix an arithmetic variety B over Z with function field K, and fix an ample
hermitian line bundle H on B. Moriwaki’s canonical height is a function hHf :
X(K)→ R defined as follows.

Let (π : X → B,L) be an integral model of (X,L), i.e., π : X → B is a
morphism of arithmetic varieties over Z with generic fiber X, and L is a hermtian
line bundle on X with generic fiber L. It gives a “Weil height” hHL : X(K)→ R by

hHL (x) =
1

deg(x)
(π∗H)dimB−1 · L · x

Here x denotes the Zariski closure of x in X . The the canonical height hHf is still
defined using Tate’s limiting argument

hHf (x) = lim
N→∞

1
qN

hHL (fN (x)), x ∈ X(K).

It converges and does not depend on the choice of the integral model (X ,L). The
height function hHf satisfies Northcott’s property and Theorem 5.4 (1) (2).
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With this height function, Yuan–Zhang [YZ10a] proves Theorem 2.9. The
proof uses the corresponding results of number field case by considering the fibers
of XQ → BQ. The proof is very techinical and we refer to [YZ10b].

In the end, we briefly introduce the arithmetic height function of [YZ10b].
Let (π : X → B,L) and x ∈ X(K) be as above. Still denote by fN (x) the Zariski
closure of fN (x) in X . Consider the generically finite map π : fN (x) → B. If
it is flat, we obtain a hermitian line bundle π∗(L|fN (x)

) ∈ P̂ic(B) as the norm of

L|
fN (x)

. Normalize it by LN = 1
qN
π∗(L|fN (x)

). The limiting behavior of LN gives
information on the height of x.

The idea of [YZ10b] is to introduce a canonical topological group P̂ic(K)int,
containing P̂ic(B)Q for all integral models B of K, such that {LN}N converges in
P̂ic(K)int. Denote the limit by hf (x). If any of π : fN (x)→ B is not flat, we may
need to blow-up B to get flatness. Then LN is still defined, and the limit hf (x) still
exists in P̂ic(K)int. In summary, we get a well-defined canonical height function

hf : X(K)→ P̂ic(K)int.

The height is independent of the integral models B and (X ,L). It is vector-valued,
but still satisfies Northcott’s property and Theorem 5.4 (1) (2) by a natural inter-
pretation. It refines hHf in that

hHf (x) = hf (x) · HdimB−1
, x ∈ X(K).

The advantage is that it does not require the polarization H.

8. Positivity in arithmetic intersection theory

In algebraic geometry, the linear series of a line bundle is closely related to pos-
itivity properties of the line bundle in intersection theory. The involved positivity
notions of line bundles include effectivity, ampleness, nefness and bigness. We refer
to Lazarsfeld [La04] for a thorough introduction in this area.

Most of these positivity results can be proved (by much more effort) in the
setting of Arakelov geometry, an intersection theory over arithmetic varieties de-
veloped by Arakelov [Ar74] and Gillet–Soulé [GS90].

In this section, we are going to review some of these arithmetic analogues.
More precisely, we are going to introduce the intersection numbers of hermitian
line bundles following [De87, GS90], the notion of ample hermitian line bundles
following Zhang [Zh95a], and some results on the arithmetic volumes by Yuan
[Yu08, Yu09]. The prototypes of most of these results can be found in [La04].

8.1. Top intersections of hermitian line bundles. Let X be an arithmetic
variety of dimension n+1, i.e., an integral scheme, projective and flat over Spec(Z)
of relative dimension n.

A metrized line bundle L = (L, ‖ · ‖) on X is an invertible sheaf L over X
together with an R-metric ‖ · ‖ on LR in the sense of §3. Namely, it is a continuous
metric of L(C) on X (C) invariant under the complex conjugation. We call L a
hermitian line bundle if the metric is smooth. Denote by P̂ic(X ) the group of
isometry classes of hermitian line bundles on X .

The smoothness of the metric is clear if the generic fiber XQ is smooth. In
general, the metric ‖ · ‖ is called smooth if the pull-back metric f∗‖ · ‖ on f∗LC
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under any analytic map f : {z ∈ Cn : |z| < 1} → X (C) is smooth in the usual
sense.

Now we introduce the top intersection

P̂ic(X )n+1 −→ R.

The intersection number is defined to be compatible with birational morphisms
of arithmetic varieties, so we can assume that X is normal and XQ is smooth by
pull-back to a generic desingularization of X .

Let L1,L2, · · · ,Ln+1 be n+1 hermitian line bundles on X , and let sn+1 be any
non-zero rational section of L on X . The intersection number is defined inductively
by

L1 · L2 · · · Ln+1

= L1 · L2 · · · Ln · div(sn+1)−
∫

div(sn+1)(C)

log ‖sn+1‖c1(L1) · · · c1(Ln).

The right-hand side depends on div(sn+1) linearly, so it suffices to explain the case
that D = div(sn+1) is irreducible.

If D is horizontal in the sense that it is flat over Z, then

L1 · L2 · · · Ln ·D = L1|D · L2|D · · · Ln|D
is an arithmetic intersection on D. The integration on the right-hand side needs
regularization if D(C) is not smooth.

If D is a vertical divisor in the sense that it is a variety over Fp for some prime
p, then the integration is zero, and

L1 · L2 · · · Ln ·D = (L1|D · L2|D · · · Ln|D) log p.

Here the intersection is the usual intersection on the projective variety D.
One can check that the definition does not depend on the choice of sn+1 and is

symmetric and multi-linear. Similarly, we have a multilinear intersection product

P̂ic(X )d × Zd(X ) −→ R.

Here Zd(X ) denotes the group of Chow cycles of codimension n+1−d on X (before
linear equivalence). For D ∈ Zd(X ), the intersection

L1 · L2 · · · Ld ·D = L1|D · L2|D · · · Ld|D
is interpreted as above.

Example 8.1. If dimX = 1, the intersection is just a degree map

d̂eg : P̂ic(X ) −→ R.

If X is normal, then it is isomorphic to Spec(OK) for some number field K. Then
L1 is just an OK-module locally free of rank one. The Hermitian metric ‖ · ‖ on
L1(C) = ⊕σ:K→CLσ(C) is a collection {‖ · ‖σ}σ of metrics on the complex line
Lσ(C). The degree is just

d̂eg(L1) = log #(L1/OKs)−
∑

σ:K→C
log ‖s‖σ.

Here s is any non-zero element of L1.
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8.2. Arithmetic linear series and arithmetic volumes. Let L be a her-
mitian line bundle on an arithmetic variety X of dimension n+1. The corresponding
arithmetic linear series is the finite set

H0(X ,L) =
{
s ∈ H0(X ,L) : ‖s‖sup ≤ 1

}
.

Here
‖s‖sup = sup

z∈X (C)

‖s(z)‖

is the usual supremum norm on H0(X ,L)C. A non-zero element of H0(X ,L) is
called an effective section of L on X , and L is called effective if H0(X ,L) is nonzero.

Denote
h0(L) = log #H0(X ,L).

The volume of L is defined as

vol(L) = lim sup
N→∞

h0(NL)
Nn+1/(n+ 1)!

.

Here NL denotes L⊗N by the convention that we write tensor product additively.
To see the finiteness of H0(X ,L), denote

B(L) = {s ∈ H0(X ,L)R : ‖s‖sup ≤ 1}.
It is the corresponding unit ball in H0(X ,L)R of the supremum norm. Then

H0(X ,L) = H0(X ,L) ∩B(L)

is the intersection of a lattice with a bounded set in H0(X ,L)R, so it must be finite.
To better study h0 and vol, we introduce their “approximations” χ and volχ.

Pick any Haar measure on H0(X ,L)R. Define

χ(L) = log
vol(B(L))

vol(H0(X ,L)R/H0(X ,L))
,

It is easy to see that the quotient is independent of the choice of the Haar measure.
We further introduce

volχ(L) = lim sup
N→∞

χ(NL)
Nn+1/(n+ 1)!

.

By Minkowski’s theorem on lattice points, we immediately have

h0(L) ≥ χ(L)− h0(LQ) log 2.

Here h0(LQ) = dimH0(XQ,LQ) is the usual one. It follows that

vol(L) ≥ volχ(L).

We will see that the other direction is true in the ample case.
One can verify that both vol and volχ are homogeneous of degree n+ 1 in the

sense that vol(mL) = mn+1vol(L) and volχ(mL) = mn+1volχ(L) for any positive
integer m. Hence, vol and volχ extend naturally to functions on P̂ic(X )Q by the
homogeneity. See [Mo09, Ik10].

Remark 8.2. Chinburg [Chi91] considered a similar limit defined from an
adelic set. He called the counterpart of exp(−volχ(L)) the (inner) sectional capacity.
It measures “how many” algebraic points the adelic set can contain. See also
[RLV00, CLR03].
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8.3. Ample hermitian line bundles. As in the algebro-geometric case,
H0(X , NL) generates NL under strong positivity conditions on L.

Following Zhang [Zh95a], a hermitian line bundle L is called ample if it satisfies
the following three conditions:

• LQ is ample on XQ;
• L is relatively semipositive, i.e., the Chern form c1(L) of L is semipositive

and L is relatively nef in the sense that deg(L|C) ≥ 0 for any closed curve
C in any special fiber of X over Spec(Z);

• L is horizontally positive, i.e., the intersection number LdimY · Y > 0 for
any horizontal irreducible closed subvariety Y of X .

One version of the main result of [Zh95a] is the following arithmetic Nakai–
Moishezon theorem:

Theorem 8.3 (Arithmetic Nakai–Moishezon, Zhang). Let L be an ample her-
mitian line bundle on an arithmetic variety X with a smooth generic fiber XQ. Then
for any hermitian line bundle E over X , the Z-module H0(X , E+NL) has a Z-basis
contained in H0(X , E +NL) for N large enough.

We also have the following arithmetic version of the Hilbert–Samuel formula.

Theorem 8.4 (Arithmetic Hilbert–Samuel, Gillet–Soulé, Zhang). Let L be a
hermitian line bundle on an arithmetic variety of dimension n+ 1.

(1) If LQ is ample and L is relatively semipositive, then volχ(L) = Ln+1
.

(2) If L is ample, then vol(L) = Ln+1
.

In both cases, the “lim sup” defining vol(L) and volχ(L) are actually limits.

The result for volχ is a consequence of the arithmetic Riemann–Roch theorem
of Gillet–Soulé [GS92] and an estimate of analytic torsions of Bismut–Vasserot
[BV89]. It is further refined by Zhang [Zh95a]. The result for vol is obtained
from that for volχ by the Riemann–Roch theorem on lattice points in Gillet–Soulé
[GS92] and the arithmetic Nakai–Moishezon theorem by Zhang [Zh95a] described
above. See [Yu08, Corollary 2.7] for more details.

Remark 8.5. In both cases, we can remove the condition that LQ is ample.
Note that LQ is necessarily nef under the assumption that L is relatively semipos-
itive. The extensions can be obtained easily by Theorem 8.7 below.

There are three conditions in the definition of ampleness, where the third one
is the most subtle. The following basic result asserts that the third one can be
obtained from the first two after rescaling the norm.

Lemma 8.6. Let L = (L, ‖ · ‖) be a hermitian line bundle on an arithmetic
variety X with LQ ample and L relatively semipositive. Then the hermitian line
bundle L(α) = (L, ‖ · ‖e−α) is ample for sufficiently large real number α.

Proof. Since LQ is ample, we can assume there exist sections s1, · · · , sr ∈
H0(X ,L) which are base-point free over the generic fiber. Let α be such that
‖si‖supe

−α < 1 for all i = 1, · · · , r. We claim that L(α) is ample.
We need to show that (L(α)|Y)dimY > 0 for any horizontal irreducible closed

subvariety Y. Assume that X is normal by normalization. We can find an sj such
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that div(sj) does not contain Y. Then

(L(α)|Y)dimY = (L(α)|div(sj)|Y )dimY−1 −
∫
Y(C)

log(‖sj‖e−α) c1(L)dimY−1

> (L(α)|div(sj)|Y )dimY−1.

Now the proof can be finished by induction on dimY. �

8.4. Volumes of hermitian line bundles. The following arithmetic version
of a theorem of [Siu93] implies the equidistribution of small points in algebraic
dynamics.

Theorem 8.7 (Yuan [Yu08]). Let L and M be two ample hermitian line bun-
dles over an arithmetic variety X of dimension n+ 1. Then

volχ(L −M) ≥ Ln+1 − (n+ 1) Ln · M.

Note that the difference of two ample line bundles can be any line bundle, so the
theorem is applicable to any line bundle. It is sharp when M is “small”. Another
interesting property of the volume function is the log-concavity property.

Theorem 8.8 (Log-concavity, Yuan [Yu09]). Let L and M be two effective
hermitian line bundles over an arithmetic variety X of dimension n+ 1. Then

vol(L+M)
1

n+1 ≥ vol(L)
1

n+1 + vol(M)
1

n+1 .

The following consequence is the form we will use to prove the equidistribution
theorem.

Corollary 8.9 (Differentiability). Let L and M be two hermitian line bundle
on an arithmetic variety of dimension n+ 1.

(1) If LQ is ample and L is relatively semipositive, then

volχ(L+ tM) = (L+ tM)n+1 +O(t2), t→ 0.

Therefore,

d
dt
|t=0volχ(L+ tM) = (n+ 1)Ln · M.

(2) If L is ample, then

vol(L+ tM) = (L+ tM)n+1 +O(t2), t→ 0.

Therefore,

d
dt
|t=0vol(L+ tM) = (n+ 1)Ln · M.

Proof. We prove the results by the following steps.
(a) Changing L to L(α) = (L, ‖ · ‖e−α) for any real number α does not affect

the result in (1). It follows from the simple facts

volχ(L(α) + tM) = volχ(L+ tM) + α(n+ 1)vol(LQ + tMQ),

(L(α) + tM)n+1 = (L+ tM)n+1 + α(n+ 1)(LQ + tMQ)n.

Here the classical volume vol(LQ + tMQ) on the generic fiber equals the
intersection number (LQ + tMQ)n since LQ + tMQ is ample for small |t|.
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(b) It suffices to prove (1) for L ample. In fact, assume that LQ is ample and
L is relatively semipositive. By Lemma 8.6, L(α) is ample for some real
number α. Then it follows from (a).

(c) Assuming that L is ample, then

vol(L+ tM) ≥ volχ(L+ tM) ≥ (L+ tM)n+1 +O(t2).

It suffices to consider the case t > 0 by replacing M by −M. As in
the classical case, any hermitian line bundle can be written as the tensor
quotient of two ample hermitian line bundles. Thus M = A1 − A2 for
ample hermitian line bundles A1 and A2. It follows that L + tM =
(L+tA1)−tA2 is the difference of two ample Q-line bundles. By Theorem
8.7,

volχ(L+ tM) ≥ (L+ tA1)n+1 − (n+ 1) (L+ tA1)n · tA2

= (L+ tM)n+1 +O(t2).

(d) Assuming that L is ample, then

vol(L+ tM)
1

n+1 + vol(L − tM)
1

n+1 ≥ 2 vol(L)
1

n+1 +O(t2).

In fact, by (c),

vol(L+ tM)
1

n+1 ≥
(
(L+ tM)n+1 +O(t2)

) 1
n+1

= (Ln+1
)

1
n+1

(
1 + t

Ln · M
Ln+1 +O(t2)

)
.

The result remains true if we replace t by −t. Take the sum of the esti-
mates for vol(L+ tM) and vol(L − tM).

(e) Assuming that L is ample, then

vol(L+ tM)
1

n+1 + vol(L − tM)
1

n+1 ≤ 2 vol(L)
1

n+1 .

Note that (c) implies that both L + tM and L − tM are effective when
|t| is small. Apply Theorem 8.8 to L+ tM and L − tM.

(f) The equalities in (d) and (e) are in opposite directions. They forces the
equality

vol(L+ tM) = (L+ tM)n+1 +O(t2).

It follows that

volχ(L+ tM) = (L+ tM)n+1 +O(t2).

�

Remark 8.10. The inequality in (c) is due to [Yu08], which is sufficient for
the equidistribution. The proof of the other direction using the log-concavity is due
to [Che08c]. The abstract idea is that vol(L+ tM)n+1 is a concave function in t

by the log-concavity, and (c) asserts that l(t) = t(n+ 1)Ln ·M is a line supporting
the graph of the concave function, so the line must be a tangent line.

These results are naturally viewed in the theory of arithmetic big line bundles.
A hermitian line bundle L on X is called big if vol(L) > 0. To end this section, we
mention some important properties of the volume function:
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• Rumely–Lau–Varley [RLV00] proved that “lim sup” in the definition of
volχ(L) is a limit if LQ is ample. They actually treated the more general
setting proposed by Chinburg [Chi91].

• Moriwaki [Mo09] proved the continuity of “vol” at big line bundles.
• Chen [Che08a] proved that “lim sup” in the definition of vol(L) is always

a limit for any L. See [Yu09] for a different proof using Okounkov bodies.
• Chen [Che08b] and Yuan [Yu09] independently proved the arithmetic

Fujita approximation theorem for any big L.
• Chen [Che08c] proved the differentiability of “vol” at big line bundles.

Corollary 8.9 is just a special case, but it extends to the general case by
the above arithmetic Fujita approximation theorem.

• Ikoma [Ik10] claimed a proof of the continuity of “volχ”.

9. Adelic line bundles

The terminology of hermitian line bundles is not enough for the proof of The-
orem 6.2. The reason is that the dynamical system can rarely be extended to an
endomorphism of a single integral model over OK . The problem is naturally solved
by the notion of adelic line bundles introduced by Zhang [Zh95a, Zh95b].

9.1. Basic definitions. Let K be a number field, X be a projective variety of
dimension n over K, and L be a line bundle on X. Recall that we have considered
local analytic metrics in §3.

An adelic metric on L is a coherent collection {‖ · ‖v}v of bounded Kv-metrics
‖ · ‖v on LKv over XKv over all places v of K. That the collection {‖ · ‖v}v is
coherent means that, there exist a finite set S of non-archimedean places of K and
a (projective and flat) integral model (X ,L) of (X,L) over Spec(OK) − S, such
that the Kv-norm ‖ · ‖v is induced by (XOKv ,LOKv ) for all v ∈ Spec(OK)− S.

In the above situation, we write L = (L, {‖ · ‖v}v) and call it an adelic line
bundle on X. We further call L the generic fiber of L.

Let (X ,M) be a hermitian integral model of (X,L⊗e) for some positive integer
e, i.e., X is an arithmetic variety over OK , and M = (M, ‖ · ‖) is a hermitian line
bundle on X , such that the generic fiber (XK ,MK) = (X,L⊗e). Then (X ,M)
induces an adelic metric {‖ · ‖v}v on L. The metrics at non-archimedean places are
clear from §3. The metrics at archimedean places are just given by the hermitian
metric. In fact, we have

X (C) =
∐

σ:K↪→C
Xσ(C), M(C) =

∐
σ:K↪→C

Mσ(C).

The left-hand sides denote C-points over Z, and the right-hand sides denote C-
points over OK via σ : OK → C. Then the hermitian metric on M(C) becomes a
collection of metrics ‖ · ‖′σ on Mσ(C) = L⊗eσ (C) over all σ. Then ‖ · ‖′1/eσ gives the
archimedean part of the adelic metric. Such an induced metric is called algebraic,
and it is called relatively semipositive if L is relatively semipositive.

An adelic metric {‖ · ‖v}v on an ample line bundle L over X is called relatively
semipositive if the adelic metric is a uniform limit of relatively semipositive alge-
braic adelic metrics. Namely, there exists a sequence {{‖ · ‖m,v}v}m of relatively
semipositive algebraic adelic metrics on L, and a finite set S of non-archimedean
places of K, such that ‖ · ‖m,v = ‖ · ‖v for any v ∈ Spec(OK)− S and any m, and
such that ‖ · ‖m,v/‖ · ‖v converges uniformly to 1 at all places v. In that case, we
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also say that the adelic line bundle L = (L, {‖ · ‖v}v) is relatively semipositive. It
implies that the Kv-metric ‖ · ‖v on LKv is semipositive in the sense of §3.

An adelic line bundle is called integrable if it is isometric to the tensor quotient
of two relatively semipositive adelic line bundles. Denote by P̂ic(X)int the group
of isometry classes of integrable adelic line bundles.

Example 9.1. Let (X, f, L) be a dynamical system over a number field K. Fix
an isomorphism f∗L = L⊗q as in the definition. For any place v of K, let ‖ · ‖f,v be
the invariant Kv-metric of LKv on XKv . Then Lf = (L, {‖ · ‖f,v}v) is a relatively
semipositive adelic line bundle. It is f -invariant in the sense that f∗Lf = L

⊗q
f .

9.2. Extension of the arithmetic intersection theory. Let X be a pro-
jective variety of dimension n over a number field K. By Zhang [Zh95b], the
intersection of hermitian line bundles in §8.1 extends to a symmetric multi-linear
form

P̂ic(X)n+1
int −→ R.

Let L1, · · · , Ln+1 be integrable adelic line bundles on X, and we are going to
define the number L1 ·L2 · · ·Ln+1. It suffices to assume that every Lj is semipositive
by linearity. For each j = 1, · · · , n + 1, assume that the metric of Lj on Lj is the
uniform limit of adelic metrics {{‖ · ‖j,m,v}v}m, and each {‖ · ‖j,m,v}v is induced by
a semipositive integral model (Xj,m,Mj,m) of (X,L⊗ej,m).

We may assume that X1,m = · · · = Xn+1,m for each m. In fact, let Xm be an
integral model of X dominating Xj,m for all j in the sense that there are birational
morphisms πj,m : Xm → Xj,m inducing the identity map on the generic fiber. Such
a model always exists. For example, we can take Xm be the the Zariski closure of
the image of the composition

X ↪→ Xn+1 ↪→ X1,m ×OK X2,m ×OK · · · ×OK Xn+1,m.

Here the first map is the diagonal embedding, and the second map is the injection
onto the generic fiber. Then replace (Xj,m,Mj,m) by (Xm, π∗j,mMj,m). It is easy
to check that they induce the same adelic metrics.

Go back to the sequence of metrics {‖·‖j,m,v}v induced by (Xm,Mj,m). Define

L1 · L2 · · ·Ln+1 = lim
m→∞

1
e1,m · · · en+1,m

M1,m · M2,m · · ·Mn+1,m.

It is easy to verify that the limit exists and depends only on L1, · · · , Ln+1. See
Zhang [Zh95b].

Similarly, we get an intersection pairing

P̂ic(X)d+1
int × Zd(X) −→ R

by setting
L1 · L2 · · ·Ld+1 ·D = L1|D · L2|D · · ·Ld+1|D.

Here Zd(X) denotes the group of d-dimensional Chow cycles.

Example 9.2. Let L be an integrable adelic line bundle on X. Fix a place v0
and a constant α ∈ R. Change the metric ‖ · ‖v0 of L to e−α‖ · ‖v0 . Denote the new
adelic line bundle by L(α). Then it is easy to check that

(L(α))n+1 = L
n+1

+ (n+ 1) degL(X)α.
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Example 9.3. If X = Spec(K), then the line bundle L1 on X is just a vector
space over K of dimension one. We simply have

d̂eg(L1) = −
∑
v

log ‖s‖v.

Here s is any non-zero element of L1, and the degree is independent of the choice
of s by the product formula. One may compare it with example 8.1.

9.3. Extension of the volume functions. It is routine to generalize the
definitions in §8.2 to the adelic line bundles.

Let K be a number field, X be a projective variety of dimension n over K, and
L = (L, {‖ · ‖v}v) be an adelic line bundle on X. Define

H0(X,L) = {s ∈ H0(X,L) : ‖s‖v,sup ≤ 1, ∀v},
h0(L) = log #H0(X,L),

vol(L) = lim sup
N→∞

h0(NL)
Nn+1/(n+ 1)!

.

Here for any place v of K,

‖s‖v,sup = sup
z∈X(Kv)

‖s(z)‖v

is the usual supremum norm on H0(X,L)Kv . Elements of H0(X,L) are called
effective sections of L.

Similarly, for any place v of K, denote

Bv(L) = {s ∈ H0(X,L)Kv : ‖s‖v,sup ≤ 1}.

Further denote

B(L) =
∏
v

Bv(L) ⊂ H0(X,L)AK .

Here AK is the adele ring of K. Then we introduce

χ(L) = log
vol(B(L))

vol(H0(X,L)AK/H
0(X,L))

+
1
2
h0(L) log |dK |,

volχ(L) = lim sup
N→∞

χ(NL)
Nn+1/(n+ 1)!

.

Here dK is the discriminant of K. The definition of χ(L) does not depend on the
choice of a Haar measure on H0(X,L)AK .

One easily checks that the definitions are compatible with the hermitian case
if the adelic line bundle is algebraic. Furthermore, it is easy to see that h0, χ, volχ
commute with uniform limit of adelic line bundles. The same is true for vol with
some extra argument using an adelic version of the Riemann–Roch of Gillet–Soulé
[GS91]. As in the hermitian case, some adelic version of Minkowski’s theorem gives
vol(L) ≥ volχ(L).

It is easy to generalize Corollary 9.4 for volχ to the adelic case, though we do
not know if it is true for vol. We rewrite the statement here, since it will be used
for the equidistribution.
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Corollary 9.4. Let X be a projective variety of dimension n over a number
field K, and L,M be two integrable adelic line bundles on X. Assume that L is
relatively semipositive and that the generic fiber L is ample. Then

volχ(L+ tM) = (L+ tM)n+1 +O(t2), t→ 0.

Remark 9.5. One may naturally define ampleness of adelic line bundles to
generalize Theorem 8.3, 8.4, 8.7, 8.8 and Lemma 8.6.

9.4. Heights defined by adelic line bundles.
9.4.1. Weil height. Let L = (L, {‖·‖v}v) be an adelic line bundle on a projective

variety X over a number field K. Define the height function hL : X(K) → R
associated to L by

hL(x) =
1

deg(x)
L · xgal, x ∈ X(K).

Here xgal is the closed point of X corresponding to the algebraic point x.
If L is integrable, the height of any closed subvariety Y of XK associated to L

is defined by

hL(Y ) =
L

dimY+1 · Ygal

(dimY + 1) degL(Ygal)
.

Here Ygal is the closed K-subvariety of X corresponding to Y , i.e. the image of the
composition Y → XK → X. In particular, the height of the ambient variety X is

hL(X) =
L

dimX+1

(dimX + 1) degL(X)
.

We see that heights are just normalized arithmetic degrees.

Lemma 9.6. For any x ∈ X(K), one has

hL(x) = − 1
deg(x)

∑
v∈MK

∑
z∈O(x)

log ‖s(z)‖v.

Here s is any rational section of L regular and non-vanishing at x, and O(x) =
Gal(K/K)x is the Galois orbit of x naturally viewed as a subset of X(Kv) for every
v.

Proof. It follows from the definitions. See also Example 9.3. �

Theorem 9.7. For any adelic line bundle L, the height function hL : X(K)→
R is a Weil height corresponding to the line bundle L on X.

Proof. We prove the result by three steps.
(1) Let (X,L) = (PnK , O(1)), and endow L with the standard adelic metric

described in Example 3.2. By Lemma 9.6, it is easy to check that the
height function hL : Pn(K) → R is exactly the standard height function
h : Pn(K)→ R in §5.1.

(2) Go back to general X. We claim that, for any two adelic line bundles
L1 = (L1, {‖·‖1,v}v) and L2 = (L2, {‖·‖2,v}v) with generic fiber L1 = L2,
the difference hL1

− hL1
is bounded. In fact, we have ‖ · ‖1,v = ‖ · ‖2,v for

almost all v, and ‖ · ‖1,v/‖ · ‖2,v is bounded for the remaining places. The
claim follows from Lemma 9.6.
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(3) By linearity, it suffices to prove the theorem for the case that L is very
ample. Let i : X ↪→ Pm be an embedding with i∗O(1) = L. By (2), it
suffices to consider the case L = i∗O(1) where O(1) is the line bundle O(1)
endowed with the standard metric. Recall that hL,i = h ◦ i is the Weil
height induced by the embedding. By (1), it is easy to see that hL,i = hL.
It proves the result.

�

9.4.2. Canonical height. Now we consider the dynamical case. Let (X, f, L) be
a dynamical system over a number field K. By §5.2, we have the canonical height
function hf = hL,f : X(K) → R. Recall that Lf is the f -invariant adelic line
bundle.

Theorem 9.8. hL,f = hLf .

Proof. By Theorem 9.7, hLf is a Weil height corresponding to L. Further-

more, hLf (f(x)) = qhLf (x) by f∗Lf = L
⊗q
f . Then hLf = hL,f by the uniqueness

of hL,f in Theorem 5.4. �

Remark 9.9. Following Lemma 9.6, we can decompose canonical heights of
points in terms of local heights. See Theorem 5.7.

By the theorem, it is meaningful to denote by hf the height hLf of subvarieties
of XK . The following result is a generalization of Theorem 5.4.

Proposition 9.10. Let Y be a closed subvariety of XK . Then the following
are true:

(1) hf (f(Y )) = qhf (Y ).
(2) hf (Y ) ≥ 0, and the equality holds if Y is preperiodic in the sense that
{Y, f(Y ), f2(Y ), · · · } is a finite set.

Proof. The arithmetic intersection satisfies the projection formula, which
gives (1) by f∗Lf = L

⊗q
f . The inequality hf (Y ) ≥ 0 follows from the construction

that Lf is a uniform limit of adelic metrics induced by ample hermitian models.
The last property follows from (1). �

Remark 9.11. The adelic line bundle Lf is “nef” in the sense that it is rela-
tively semipositive, and it has non-negative intersection with any closed subvariety
of X.

Remark 9.12. The converse that hf (Y ) = 0 implies Y is preperiodic is not
true. It was an old version of the dynamical Manin–Mumford conjecture. See
Ghioca–Tucker–Zhang [GTZ10] for a counter-example by Ghioca and Tucker, and
some recent formulations of the dynamical Manin–Mumford conjecture.

10. Proof of the equidistribution

10.1. Equidistribution in terms of adelic line bundles. We introduce
an equidistribution theorem for relatively semipositive adelic line bundles, which
includes the dynamical case by taking the invariant adelic line bundle.

Let X be a projective variety of dimension n over a number field K and let
L = (L, {‖ · ‖v}v) be an adelic line bundle. Similar to 6.1, we make a definition of
smallness.
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Definition 10.1. An infinite sequence {xm}m≥1 of X(K) is called hL-small
if hL(xm)→ hL(X) as m→∞.

Note that we require the limit of the heights to be hL(X). It is compatible with
the dynamical case since hf (X) = 0 in the dynamical case by Proposition 9.10.

Recall that an infinite sequence of X(K) is called generic if any infinite subse-
quence is Zariski dense in X. We further recall that

µx,v =
1

deg(x)

∑
z∈Ov(x)

δz

is the probability measure on the analytic space Xan
Cv at a place v of K associated

to the Galois orbit of a point x ∈ X(K). Denote by

µL,v =
1

degL(X)
c1(LCv , ‖ · ‖v)n

the normalized Monge–Ampère/Chambert-Loir measure on Xan
Cv .

Theorem 10.2. Let X be a projective variety over a number field K and let
L = (L, {‖ · ‖v}v) be a relatively semipositive adelic line bundle on X with L ample.
Let {xm} be a generic and hL-small sequence of X(K). Then for any place v of
K, the probability measure µxm,v converges weakly to the measure µL,v on Xan

Cv .

The theorem is proved by Yuan [Yu08], and it implies Theorem 6.2 immedi-
ately. The case that v is archimedean and ‖·‖v is strictly positive was due to Szpiro–
Ullmo–Zhang [SUZ97], which implies their equidistribution on abelian varieties.
The result is further generalized to the case that L is big and v is archimedean by
Berman–Boucksom [BB10]. If L is big and v is non-archimedean, a similar result
is true by Chen [Che08c].

10.2. Fundamental inequality. Let X be a projective variety of dimension
n over a number field K, and L = (L, {‖ · ‖v}v) be an adelic line bundle on X.
Following Zhang [Zh95a, Zh95b], the essential minimum of the height function
hL is

eL(X) = sup
Y⊂X

inf
x∈X(K)−Y (K)

hL(x).

Here the sup is taken over all closed subvarieties Y of X.
Let {xm}m be a generic sequence in X(K). By definition,

lim inf
m→∞

hL(xm) ≥ eL(X).

Furthermore, the equality can be attained by some sequences. Thus we have an
alternative definition

eL(X) = inf
{xm}m generic

lim inf
m→∞

hL(xm).

Theorem 10.3 (fundamental inequality, Zhang). Assume that L is big. Then

eL(X) ≥ volχ(L)
(n+ 1)vol(L)

.

In particular, if L is relatively semipositive and L is ample, then

eL(X) ≥ hL(X).
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Recall that, in the classical sense, L is big if

vol(L) = lim
N→∞

h0(NL)
Nn/n!

> 0.

The existence of the limit follows from Fujita’s approximation theorem. See [La04]
for example.

It is worth noting that, for each d = 1, · · · , n, Zhang [Zh95a, Zh95b] acutally
introduced a number eL,d(X) by restricting codim(Y ) ≥ d in the definition of the
essential minimum. Then the essential minimum is just eL(X) = eL,1(X). The
fundamental inequality is an easy part of his theorem on successive minima.

Remark 10.4. In the setting of Theorem 10.2, the existence of a generic and
hL-small sequence is equivalent to the equality eL(X) = hL(X). The equality is
true in the dynamical case since both sides are zero, but it is very hard to check in
general.

To prove the theorem, we need the following Minkowski type result:

Lemma 10.5. Let K,X,L be as above. Fix a place v0 of K. Then for any ε > 0,
there exists a positive integer N and a non-zero section s ∈ H0(X,NL) satisfying

1
N

log ‖s‖v0,sup ≤ −
volχ(L)

(n+ 1)vol(L)
+ ε

and
log ‖s‖v,sup ≤ 0, ∀ v 6= v0.

Proof. It is a consequence of the adelic version of Minkowski’s theorem. See
[BG06, Appendix C] for example. �

Now we prove Theorem 10.3. Let s ∈ H0(X,NL) be as in the lemma. By
Lemma 9.6, for any x ∈ X(K)− |div(s)|(K),

hL(x) = − 1
N
· 1

deg(x)

∑
v∈MK

∑
z∈O(x)

log ‖s(z)‖v.

Then we immediately have

hL(x) ≥ volχ(L)
(n+ 1)vol(L)

− ε, ∀ x ∈ X(K)− |div(s)|(K).

Let ε→ 0. We obtain the theorem.

10.3. Variational principle. Now we are ready to prove Theorem 10.2. To
illustrate the idea, we first consider the archimedean case. We use the variational
principle of [SUZ97].

Fix an archimedean place v. Let φ be a real-valued continuous function on
Xan

Cv . The goal is to prove

lim
m→∞

∫
Xan

Cv

φµxm,v =
∫
Xan

Cv

φµL,v.

By density, it suffices to assume φ is smooth in the sense that, there exists an
embedding of Xan

Cv into a projective manifold M , such that φ can be extended to a
smooth function on M .
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Denote by O(φ) the trivial line bundle with the trivial metric at all places
w 6= v, and with metric given by ‖1‖v = e−φ at v. Denote L(φ) = L+ O(φ). The
smoothness of φ implies that O(φ) is an integrable adelic line bundle.

Let t be a small positive rational number. By the fundamental inequality,

lim inf
m→∞

hL(tφ)(xm) ≥ volχ(L(tφ))
(n+ 1) degL(X)

.

Here we have used the assumption that {xm}m is generic.
Note that L(tφ) = L+ tO(φ). By the differentiability in Corollary 9.4,

volχ(L(tφ)) = (L(tφ))n+1 +O(t2).

It follows that

(10.1) lim inf
m→∞

hL(tφ)(xm) ≥ hL(tφ)(X) +O(t2).

On the other hand, it is easy to verify that

hL(tφ)(xm) = hL(xm) + t

∫
Xan

Cv

φµxm,v,(10.2)

hL(tφ)(X) = hL(X) + t

∫
Xan

Cv

φµL,v +O(t2).(10.3)

In fact, the first equality follows from Lemma 9.6, and the second equality follows
from

L
n ·O(φ) =

∫
Xan

Cv

φ c1(LCv , ‖ · ‖v)n.

Note that we have assumed

lim
m→∞

hL(xm) = hL(X).

Then (10.1), (10.2) and (10.3) imply

lim inf
m→∞

∫
Xan

Cv

φµxm,v ≥
∫
Xan

Cv

φµL,v.

Replacing φ by −φ in the inequality, we get the other direction. Hence,

lim
m→∞

∫
Xan

Cv

φµxm,v =
∫
Xan

Cv

φµL,v.

It finishes the proof.

10.4. Non-archimedean case. Now we consider Theorem 10.2 for any non-
archimedean place v. The proof is parallel to the archimedean case, except that
we use “model functions” to replace “smooth functions”. The key is that model
functions are dense in the space of continuous functions by a result of Gubler.

To introduce model functions, we consider a slightly general setting. Fix a
projective variety Y over a non-archimedean field k, and consider integral models
of Y over finite extensions of k. Let E be a finite extension of k, and let (Y,M)
be a (projective and flat) integral model of (YE , OYE ) over OE . It induces a metric
‖ · ‖M on OYE . Then − log ‖1‖1/eM , for any positive integer e, is a function on |YE |,
and extends to a unique continuous function on Y an

E . It pull-backs to a function on
Y an

Ck via the natural projection Y an
Ck → Y an

E . Here Ck denotes the completion of the
algebraic closure k of k. The resulting function on Y an

Ck is called a model function
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on Y an
Ck . Alternatively, it is also induced by the integral model (YOCk

,MOCk
) of

(YCk , OYCk
).

Theorem 10.6 (Gubler). The vector space over Q of model functions is uni-
formly dense in the space of real-valued continuous functions on Y an

Ck .

The result is stated in [Gu08, Proposition 3.4] in this form. It is essentially a
combination of Gubler [Gu98, Theorem 7.12] and [Yu08, Lemma 3.5].

Now we are ready to prove Theorem 10.2 when v is non-archimedean. By the
density theorem proved above, it suffices to prove

lim
m→∞

∫
Xan

Cv

φµxm,v =
∫
Xan

Cv

φµL,v.

for any model function φ = − log ‖1‖M induced by anOE-model (X ,M) of (XE , OXE )
for any finite extension E of Kv. By passing to finite extensions of K, it is not hard
to reduce it to the case that E = Kv.

Denote by O(φ) the trivial line bundle with the trivial metric at all places
w 6= v, and with metric given by ‖1‖v = e−φ at v. Denote L(φ) = L+ O(φ). It is
easy to extend (X ,M) to an integral model over OK which induces the adelic line
bundle O(φ). It follows that O(φ) is an integrable adelic line bundle.

Now the proof is the same as the archimedean case. Still consider the variation
L(tφ) = L + tO(φ) for a small rational number t. Note that (10.1) only requires
O(φ) to be integrable, and (10.2) and (10.3) are true by definition.
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