On Faltings heights of abelian varieties
with complex multiplication
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ABSTRACT. This expository article introduces some conjectures
and theorems related to the Faltings heights of abelian varieties
with complex multiplication. The topics include the Colmez con-
jecture, the averaged Colmez conjecture, and the André-Oort con-
jecture.
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1. Introduction

The celebrated Gross—Zagier formula is an equality between the cen-
tral derivative of certain Rankin-Selberg L-function of modular form
of weight two and the Néron—Tate height of certain Heegner cycle
on an modular curve. It is an astonishing identity of type “deriva-
tive = height.”

In this survey, we introduce Colmez’s conjectural equality between
the Faltings height of a CM abelian variety and the logarithmic de-
rivative of the relevant Artin L-function, which is another identity of
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type “derivative = height.” We will also introduce some known results
related to this conjecture. The topics of this survey include the follow-
ing:

(1) the definition of Faltings height by Faltings [Fa],

(2) the Colmez conjecture by Colmez [Col,

(3) the averaged Colmez conjecture proved by Yuan—Zhang [Y 7]
and Andreatta-Goren-Howard-Madapusi-Pera | | in-
dependently.

(4) the proof of the André-Oort conjecture assuming the averaged
Colmez conjecture by Tsimerman [T's].

Acknowledgements. This article is written for the International Congress of Chinese
Mathematicians 2016 held in Beijing. The author would like to thank the hospitality
of the Morningside Center of Mathematics. The author is supported by the NSF
grant DMS-1601943.

2. Faltings heights

To define the Faltings height of an abelian variety over a number
field, we start with the arithmetic degree of a hermitian line bundle in
the setting of Arakelov geometry.

2.1. Arithmetic degrees. Let F' be a number field, and denote
by Op its ring of integers. Recall that a line bundle £ (i.e. invertible
sheaf) over Spec(Or) corresponds to an Op-module, locally free of rank
one. By abuse of notations, we also write £ for this Op-module.

By a hermitian line bundle over Spec(Op), we mean a pair £ =
(L]l -], consisting of a line bundle £ over Spec(Or) and a collection
-1l ={ll - llo}s, where || - ||, is a metric of the complex line £, =
L ®, C for each embedding o : F' — C. The metrics are required to be
invariant under the action of the complex conjugate.

The arithmetic degree of the hermitian line bundle £ = (£, - ||) is
defined to be

deg(L) = log #(L/s0p) — > log||s]l,.
o:F—C

Here s € L is a nonzero element, and we will see that the definition
is independent of the choice of s. In fact, for any (nonzero) prime
ideal p C Op, define a Fj-metric on £ ®o, O, by setting [|s]|, =
N(p)~4(). Then the definition is equivalent to the more symmetric

formula
deg(L — ) logislly — > log|s]ls.

pCOF o:F—C



ON FALTINGS HEIGHTS OF ABELIAN VARIETIES WITH COMPLEX MULTIPLICATIOS

Then we see that the definition is independent of the choice of s € L
since a different choice is of the form as for some a € F*, which does
not change the arithmetic degree by the product formula of absolute
values of F.

One can take inverse and tensor products of hermitian line bundles,
and the arithmetic degree is additive under these operations.

2.2. Faltings heights. Let A be an abelian variety of dimension
g over a number field F'. Denote by O the integer ring of I’ as before.
Let A be the Néron model of A over Op. The Hodge bundle of A is
defined to be
WA= E*Qil/op = W*Qil/oF,

where m : A — Spec(Op) denotes the structure morphism and € :
Spec(Or) — A denotes the identity section. Then w4 is a line bundle
over Spec(Op).
There is a canonical hermitian metric || - || = {|| - ||+ }» on w4 given
1

by
a o
(2m)9 /AU((C)

where o : ' — C is any embedding and
a€wyq®, C=T(A,(C), QL(C)/(C)

ladle = :

is any global holomorphic g-form on the complex torus A,(C). Note
that we have used the normalizing factor 1/(27)?, while the normalizing
factor 1/29 was used by Faltings [Fa, §3].

The pair W4 = (w4, ||-||) forms a hermitian line bundle over Spec(Op).
Define the unstable Faltings height of A to be

W(A) = deg(@.4)-

1
[F: Q]
We put the word “unstable” in the name because the height may de-

crease under base change unless A has a semistable reduction over F.
Therefore, define the stable Faltings height of A to be

h(A) = W' (Ap)

where F’ is a finite extension of F' such that Ap has everywhere
semistable reduction over Ops. The definition does not depend on the
choice of F’, and is invariant under base change.

The Colmez conjecture is about the stable Faltings height. For
simplicity, when we say “Faltings height” in the following, we always
mean “stable Faltings height.”
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REMARK 2.1. Let A be an abelian variety of dimension g over a
number field F'. By replacing F' by a finite extension if necessary, we
can assume that A has semistable reduction over F' and that the class
of wy in Cl(Op) is trivial. Thus we can write wy = Opa for some
a € T'(Spec(Op),w4) = T'(A, Qi/OF). If g =1, a is the usual Néron
differential over the elliptic curve. In terms of «, the Faltings height is

just
h(A) = —m(f;(clog <ﬁ /AU(C) o Aa) .

It is a rational linear combination of the logarithms of periods in the
sense of Kontsevich—Zagier [KZ)].

3. The Colmez conjecture

The goal of this section is to introduce the Colmez conjecture. We
have already defined Faltings height, so the major work here is to de-
scribe the Artin L-function appeared in the conjecture. We will also
recall the classical Chowla—Selberg formula, which can be considered
as a special case of the Colmez conjecture.

3.1. Abelian varieties with complex multiplication. We first
recall the basics of abelian varieties with complex multiplications. Most
results below can be found in [Mi, §10]. For a complete treatment, we
refer to Shimura [Sh].

Let E/F be an CM extension; i.e., F' is a totally real number field,
and F is a totally imaginary quadratic field extension of F'. Denote
g=[F:Q] and ¢: F — FE the nontrivial element of Gal(E/F).

By a CM type of E, we mean a subset ® of Hom(F, C) such that

dNd° =0, &Ud° =Hom(E,C).

In other words, ® is a subset of Hom(E, C) which picks exactly one
element in each conjugate pair of elements of Hom(E, C). We also say
that (E,®) is a CM type.

By an abelian variety with complex multiplication by E, we mean
an abelian variety A of dimension g over C, together with an injection
i: F — Endc(A) ®z Q of rings. One can verify that there is a unique
CM type @ of E such that

tr(i(e)|Lie(a)) = ¥ o(a), Va € E.
ocd
In this case, we also say that A is of CM type (E,®). If moreover the
maximal order Og acts on A, i.e., i((Og) C Endc(A), then we say that
Ais of CM type (Og, ®).
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For convenience, for any subfield & C C, we say that an abelian
variety A over k has complex multiplication by F (resp. is of CM type
(E,®), of CM type (Og, ®)) if the base change Ac over C satisfies this
property.

The following are some basic results of the theory of abelian vari-
eties with complex multiplication:

(1) Let (E,®) be a CM type with [E: Q] = 2g. Let Og — CY be
the injection given by the (distinct) elements of ®. Then Op
is a lattice of CY under this injection, and the quotient C9/Og
is an abelian variety with CM type (Og, ®).

(2) Any two abelian varieties of the same CM type (F,®) are
isogenous over C.

(3) Any abelian variety with complex multiplication is defined over
a number field.

(4) Any abelian variety with complex multiplication over a num-
ber field has potentially good reduction everywhere.

We refer to [M1i, §10] for the proofs.

Let A be an abelian variety of CM type (Og, ®) over C. Then A
is defined over a number field H, so it makes sense to consider the
Faltings height h(A) € R, which is independent of the choice of H. By
[Co, Theorem 0.3(ii)], the height h(A) depends only on the CM type
®. We denote it by h(Ag) to emphasize the dependence on ®.

3.2. Colmez conjecture. Colmez [Co] associates an Artin char-
acter to the CM type (E, ®) as follows. Denote by Q“M the compositum
of all CM fields over Q. By [Sh, Lem. 18.2], the compositum of two CM
fields is also a CM field, and the Galois closure of a CM field is also a
CM field. Therefore, QM is Galois over Q. Denote G = Gal(Q°M/Q).
The complex conjugate ¢ is an element in the center of G. Fix inclu-
sions Q™ ¢ Q ¢ C. Then G acts on Hom(E,C) = Hom(E, Q™) by
its action on QM. Define a function A% 4 : G — C by

A%@(O‘) = / |® N (o' ®)|dr.
G

Here the integral uses the Haar measure on G with total volume 1,
and the integrand is the order of the intersection of the two subsets
of Hom(E,Q"M). The integral is essentially a finite sum by compact-
ness, and A%@ takes only finitely many values. See [Co, §0.4] for an
equivalent definition of A} 4.

By definition, we have

AYo(o) + AL glco) =g, o€d.
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Define a function fg : G — C by

fal0) = A (o) ~ 3o

Then we have
fo(o) + fo(co) =0, o€G.

By definition, fe is a class function on G, i.e., it is a function on
the conjugacy classes of G. Omne can write fg uniquely as a linear
combination of characters associated to finite-dimensional irreducible
representations m of G over C, and then use these irreducible repre-
sentations to define L-functions. Alternatively, for the sake of analytic
continuation, by Brauer’s induction theorem, we can write

fo= ) apndGagennn(X),  auiy € C.
(Mx)

Here the pair (M, x) consists of a finite extension M of Q in Q°™ and
a continuous homomorphism y : Gal(Q®™/M) — C*. By abuse of
notation, Indgal(QCM /an(x) means the character of the induced repre-
sentation in the summation. The summation has only finitely many
nonzero terms. Define

Zas) = 3w ot ogutfa) = Y aun g

(M,x) (M.x)

Here 11, is the conductor of  for the functional equation. The definition
is independent of the choice of the decomposition of fg.

Finally, the Colmez conjecture ([Co, Thm. 0.3, Conj. 0.4]) is as
follows:

CONJECTURE 3.1 (Colmez conjecture). For any CM type (E, ®),

M(As) = ~Z(f2.0) — 3 log (fo).

The above equation is equivalent to the conjectural formula of [Co,
Thm. 0.3, Conj. 0.4] on the Faltings height. In fact, to convert our
equation to the one in the loc. cit., use

Z(f@,o) = Z(A%@,O) N %g. i/(((())))

1
= Z(A%4,0) — 5910g(2ﬂ)~

1
This gives an extra term §glog(27r) on the right-hand side, which is

also equal to the difference of the Faltings heights due to the different
normalizing factors of Hermitian metrics.
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Now we check that the function Z(fs,s) is holomorphic at s = 0,
so that Z(fg,0) is well-defined. Go back to the decomposition

fo = Z a(M,x)Indgal(QCM/M)<X)-
(M,x)
Note that M is either a CM field or a totally real field by [Sh, Lem.
18.2]. We first claim that we can choose a decomposition such that
all M are totally real. In fact, if M is a CM field, denote by M, its
maximal totally real subfield. Then we have an isomorphism

Gal(Q™ /M) = Gal(Q™M /M) x {1,c}.

Gal(QM /M.
GalEQChle-)‘—) (X)

is a direct sum of two 1-dimensional characters. Thus we can replace
M by M, by using these two characters. Now we assume that every M
in the decomposition is totally real. By fo(co) = —fo(0) and x(co) =
x(c)x (o), we can assume that x(c) = —1 for every x by removing the
ones with x(c) = 1. It is reduced to the classical statement that if N
1s a totally imaginary abelian extension of a totally real field M and
X : Gal(N/M) — C* is a character with x(c) = —1, then L(x,s) is
holomorphic and nonzero at s = 0. Note that L(y,s) is holomorphic
and nonzero at s = 1 by decomposing (y(s) into the product of L(w, s)
for all characters w of Gal(N/M). This gives the result at s = 0 by
the functional equation, since the gamma factor is holomorphic and
nonzero at s =0, 1.

The conjecture is known in the the following cases. If ' = Q,
the conjecture is equivalent to the classical Chowla-Selberg formula
[CS] proved in 1949, which will be discussed in the next subsection.
If £/Q is abelian, the conjecture was proved by Colmez [Co] up to
rational multiples of log 2, and the rational multiples were eliminated
by Obus [ODb] later. If [E : Q] = 4, the conjecture was proved by Yang

As a consequence, the 2-dimensional representation Ind

9
In history, there are a lot of works to prove, reformulate or generalize

the Chowla—Selberg formula. A very interesting geometric proof of
the Chowla—Selberg formula was discovered by Gross [Gr]. He also
made a conjecture with Deligne for the periods of motives with complex
multiplication by an abelian field. Anderson [An] reformulated the
conjecture of Deligne and Gross in terms of the logarithmic derivatives
of odd Dirichlet L-functions at s = 0. All these treatments were only up
to algebraic numbers. Finally, motivated by a far-reaching conjectural
product formula from the p-adic Hodge theory, Colmez [Co] used the
Faltings height, instead of just the archimedean periods, to formulate
the precise conjecture.
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3.3. Chowla—Selberg formula. Here we review the classical Chowla—
Selberg formula following the treatment of Weil [We|. Let E be an
imaginary quadratic field of discriminant —d < 0, class number h, and
w = |0f|. Fix an embedding £ C C. For any fractional ideal a of Og,
denote

F(a) = A(a)A(a™") = N(a)™|A(a)?,
where
Aa) = go(a)’ - 27g3(a)”
is the modular discriminant of a. By definition, F'(a) depends only on
the ideal class of a. In the case a = wiZ + weZ with 7 = wy /ws € H,
one has
F(a) = d=°(2Im(7))*|A(7)]%,

where
Alr) = 2m)2q[J(1— ¢, q=€""
n=1

The Chowla—Selberg formula takes many classical forms. One form

in [We, p. 92] is |
o= () 10 (;)

aeCl(Op)

In the last line of [We, p. 91], the formula takes the form

=(0 1
EEEOS = Ton leog F(a).

This is close to the setting of the current paper. In fact, by ¢’(0)/¢(0) =
log(27), the left-hand side has the main term L'(0,7n)/L(0,7n). Here
n:(Z/dZ)* — {£1} is the quadratic character associated to E. By the
Kodaira spencer map on the modular curve Xy(1), the right-hand side
is the sum of —2h(A) and some minor terms, where A is an elliptic curve
with CM by Opg. Therefore, the Chowla—Selberg formula is equivalent
to

1L(,0) 1

h(A) = —= —~ — —log(d).

Here L(n, s) is the usual Dirichlet L-function (without the gamma fac-
tors).

ExXAMPLE 3.2. If E = Q(i), then the Chowla-Selberg formula is
equivalent to

Al) = T(3)™
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REMARK 3.3. Recall that the class number formula gives
L(0,m) = 2h/w.

The Chowla—Selberg formula can be viewed as an arithmetic version
of this formula. The relation of these two formulas is like the relation
between the Waldspurger formula and the Gross—Zagier formula stated
in [ , §1.3-1.4].

4. The averaged Colmez conjecture

The Colmez conjecture is far-reaching due to the generality of the
CM type. For example, the Artin L-function in the conjecture is very
mysterious. However, after we average the equality in the conjecture
over all CM types ® of a fixed CM extension E/F, the right-hand
side is essentially given by the logarithmic derivative of the L-function
of the quadratic character associated to the quadratic extension E/F.
More precisely, we have the following result.

THEOREM 4.1 (averaged Colmez conjecture). Let E/F be a CM
extension, 1 be the corresponding quadratic character of Ay./F* asso-
ciated to the extension E/F, and dp (resp. dg/p) be the absolute dis-
criminant of F' (resp. the norm of the relative discriminant of E/F).
Then

1 1L(n,0) 1
% gh(z‘b) =T Lm0) Zlog(dE/FdF)a

where ® runs through the set of all CM types of E/F. Here L(n,s) is
the L-function without the Gamma factors.

The averaged formula was explicitly conjectured in [Co, p. 634]. It
is proved independently by Yuan—Zhang [Y 7] and Andreatta—Goren—
Howard-Madapusi-Pera in | |. These two proofs are very dif-
ferent. The proof of | | is based on the idea of Yang [Yal, ]
(on the Colmez conjecture for g = 2) and computes arithmetic inter-
section numbers over high-dimensional Shimura varieties of orthogonal
type. The proof of [YZ] is inspired by the work of Yuan-Zhang—Zhang
[ | (on the Gross—Zagier formula) and computes arithmetic inter-
section numbers over Shimura curves.

In the following, we will sketch the main ideas of the proof of [YZ].
The proof will take two separate steps. The first step expresses the
averaged Faltings height in terms of the height of a single CM point on
a quaternionic Shimura curve. The second step proves that the height
of the single CM point is given by the expected logarithmic derivative.
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4.1. Step 1: averaged Faltings height vs. quaternionic
height. Let E/F be the CM extension as before. Take a quaternion
algebra B over F' with an embedding £ — B over F'. Assume that B is
indefinite at exactly one archimedean place of F. Let U C B*(Ay) be

a maximal compact subgroup containing the image of 62 in B*(Ay).
Consider the Shimura curve

Sh(B*,U) = B*\H* x B*(A;)/U.

By the theory of canonical models (cf. [De]), Sh(B*,U) descends to
a smooth curve X over F. Assume that B is not a matrix algebra
over I so that X is projective over F'. Based on [BC, Cal, we have
a canonical integral model X of X over Op. Note that X is the the
coarse moduli space of the corresponding Deligne-Mumford stack, and
our treatment can be also written in terms of the stack.

Let £ = (L,| - ||) be the arithmetic Hodge bundle of X', which is
a hermitian Q-line bundle in the setting of Arakelov geometry. Here
L is the relative dualizing sheaf of X over Op modified by some “ram-
ification divisor,” and the hermitian metric at an archimedean place
o : F — C is the Petersson metric

ld7||s = 2TIm(7)
in terms of the complex uniformization of the Shimura curve.
Let P € X(E®) be the algebraic point of X represented by the
pair [7p, 1] in terms of the complex uniformization, where 75 € H is the
unique fixed point of E*. The height of P is defined by

hz(P) = deg(L|7),

1
[F(P) : F]
where F/(P) denotes a field of definition of P and P : Spec(Op(p)) — X
denotes the extension of P to X. The arithmetic degree is defined as
in §2.1. The first step is to prove the following result.

THEOREM 4.2. Let dg be the norm of the product of finite primes
of O over which B is ramified. Assume that there is no finite place of
F ramified simultaneously in B and E. Then

1 1 1

This theorem is proved by several manipulations of heights in Part
[ of [YZ]. Note that X is not of PEL type, so it does not parametrize
abelian variety naturally.

Let A/H be an abelian variety of CM type (Og, ®) over a number
field H. Assume that A has semistable reduction over H, which can be
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achieved by enlarging H if necessary. Then it actually has everywhere
good reduction by the CM theory. As a consequence, the Néron model
A of A is an abelian scheme over Op. Recall that the Faltings height
h(A) is defined to be the arithmetic degree of the Hodge bundle

wy = det Q4.

Here
Q_A - 6*934/01-[ = W*Q}L‘/OH

is a vector bundle on Spec(Op) of rank g = dim A, where 7 : A —
Spec(Op) denotes the structure morphism and € : Spec(Og) — A
denotes the identity section.

We further assume that H contains the Galois closure of E. Con-
sidering the action of Og on {24, we can decompose it into a direct sum
of line bundles on Spec(Opg). Accordingly, we have a decomposition

h(As) = 3 h(®,7)

TED

up to some error term coming from ramifications of the number fields
involved.

Let (@1, P) be a nearby pair of CM types in the sense that |®; N
®y| = g — 1. Let 7; be the complement of ®; N Py in ®; for i = 1, 2.
Define

1
h(q)l, (I)Q) = é(h(q)b 7'1) + h(@g,’?’g)).
It suffices to compute the average of h(®q, ®y) over all nearby pairs
(®1, D). In [YZ], we have actually proved

1 1
g h(Py,P;) = §hz(P) - Zlog(dB)‘

This is surprising since the right-hand side is independent of the choice
of (®1,®). To prove the last formula, (P, o) is further reduced to
the height of a CM point on the Shimura curve of certain unitary group
U(1,1). By some delicate local comparison of the unitary Shimura
curve with the quaternionic Shimura curve, we eventually relate the
heights on these two Shimura curves.

4.2. Step 2: Compute the quaternionic height. The second
step is to prove the following result.

THEOREM 4.3. In the setting of Theorem 4.1 and Theorem 4.2,

_L,<7]70) 1 dB

+ —log ——.

hz(P) =
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This theorem is proved by extending the method of the proof of the
Gross—Zagier formula in | |. Recall that the Gross—Zagier formula
is an identity between the derivative of L-series of a Hilbert modu-
lar form of parallel weight two and the height of a CM point on a
modular abelian variety of GL(2)-type. This formula is proved by a
comparison of the analytic kernel Pr1’(0, g, ¢) and the geometric ker-
nel 27(g, (1,1), ¢) parametrized by certain modified Schwartz functions
¢ € S(B x AX). Here B is obtained from B(A) by changing every
archimedean component to the Hamiltonian algebra. More precisely,
we have proved that the difference

D(gv¢):Pr[/(07g7¢)_22(97(171>7¢)7 gGGL2(AF)

is perpendicular to cusp forms. The matching of the “main terms”
of D(g, ¢) eventually implies the Gross—Zagier formula; On the other
hand, the matching of the “degenerate terms” implies Theorem 4.3.

On the analytic side, the function I(s, g, ¢) is a mixed Eisenstein—
theta series, i.e. a finite linear combination of automorphic forms of
the form 6(g)E(s,g). Here the theta series 6(g) and the Eisenstein
series F(s, g) each has weight one. The main contribution of I'(0, g, ¢)
to Theorem 4.3 is given by the intertwining part of the constant term
of £'(0,g). Via analytic continuation, the intertwining part of E(s, g)
is equal to a simple multiple of L(s,n)/L(s + 1,n). Hence, its con-
tribution in 1'(0, g, ¢) gives the logarithmic derivative L'(0,7)/L(0,n).
Here the functional equation can be used to convert L'(1,71)/L(1,7) to
L(0,7)/L(0, 7).

On the geometric side, the series

Z(g7 (17 1)7925) = <Z<g7¢>PO’PO>NT

is a Néron-Tate height pairing. Here P° = P — £, where £ is the nor-
malized Hodge bundle, i.e., a rational multiple of the Hodge bundle
L which has degree one on the geometrically connected component of
X containing P. Here Z(g, ¢) is Kudla’s generating function, which is
an automorphic form with coefficients in Pic(X?) ®z C. A primitive
version of the generating function is the classical series Y oo Tng"
of Hecke correspondences on the square of the usual modular curve.
In terms of Arakelov geometry, we can compute (Z(g, ¢)P°, P°)yr in
terms of arithmetic intersection numbers. The divisor Z(g, ¢)P is lit-
erally a sum of CM points of X, and it contains a multiple of P, which
is our “degenerate term.” The contribution of this degenerate term in
Z(g,(1,1),¢) is a multiple of

(P, P) = —deg(L|3) = —[F(P) : P]- hz(P).



ON FALTINGS HEIGHTS OF ABELIAN VARIETIES WITH COMPLEX MULTIPLICATIOIS

Here the left-hand side is certain arithmetic intersection number on X,
and the first equality is a version of the arithmetic adjunction formula.
Finally, the matching of these two “degenerate terms” in D(g, ¢)
gives the desired height formula in Theorem 4.3. To get this matching,
we have the matching of the “main terms” of D(g, ¢) by explicit local
computations, which is mostly done in | |. By the modularity of
D(g, ¢) and the theory of pseudo-theta functions in [YZ], the matching
of the “main terms” implies the matching of the “degenerate terms.”

5. The André—Oort conjecture

By the recent work of Tsimerman [1's], which is based on the pre-
vious works of Pila et al, the averaged Colmez conjecture implies the
André-Oort conjecture for the Siegel modular variety. In this section,
we give a sketch of this implication.

CONJECTURE 5.1 (André-Oort conjecture, | , O0]). Let X be
a Shimura variety over C. Let Y C X be a closed subvariety which
contains a Zariski dense subset of special points of X. Then Y is a
special subvariety.

There are enormous progresses on the conjecture made by André,
Edixhoven, Klingler, Ullmo, Yafaev, Pila, Zannier, Tsimerman et al.
We describe some of them as follows, and refer to [Sc, | for more
detailed descriptions. Klingler—Ullmo—Yafaev [UY, ] proved the
conjecture assuming the generalized Riemann hypothesis for CM fields.
Pila [Pi] proved the conjecture when X is a power of modular curves.
Tsimerman [1's] proved the conjecture when X is a Siegel modular va-
riety (and thus all Shimura varieties of abelian type) assuming the
averaged Colmez conjecture (cf. Theorem 4.1). Consequently, the
André-Oort conjecture is proved for all Shimura varieties of abelian
type.

In the following, we sketch the proof of Tsimerman [T's]. From av-
eraged Colmez conjecture to the André-Oort conjecture (for the Siegel
modular variety), there is an intermediate conjecture proposed by Edix-
hoven, which we will start with.

5.1. Edixhoven’s conjecture implies André—Oort conjec-
ture. Let S; be the Siegel modular variety over Q, i.e. the coarse
moduli space of principally polarized abelian varieties of dimension g.
Let € S,(Q) be a special point. Then = corresponds to a principally
polarized abelian variety A, over Q, isogenous to a product of abelian
varieties with complex multiplication as defined in §3.1. Denote by R,

the center of the endomorphism algebra Endg(A,), which is an order
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in a direct sum of CM fields. Then it makes sense to talk about the
discriminant disc(R,) € Z of R,. In | , Problem 14], the following
statement is proposed as a question.

CONJECTURE 5.2 (Edixhoven’s conjecture). There is a positive real
number c, depending only on g such that

[Q(z) : Q] > |disc(R,)|™

for any special point x € S,(Q).

If g =1, then A, is an elliptic curve with complex multiplication
by R,. In this case, Q(z) is almost the ring class field of R,, whose
degree is given by the class number of R,. Then the conjecture follows
from the classical Brauer—Siegel theorem (cf. [Br]). If ¢ > 1, such an
argument does not work since Q(z) is much more complicated than the
ring class field.

The key result of our interest here is Pila—Tsimerman [T, Theo-
rem 7.1], which asserts that Edixhoven’s conjecture implies the André-
Oort conjecture for the case X = S;. The proof of this theorem
is built up on the works of Bombieri, Pila, Zannier, Wilkie et al.
We refer to [PT, Sc, Ts] for more details, while we sketch some of
the ideas here. The setup is to consider the complex uniformization
7 Hy = Sy(C). Take a “nice” fundamental domain F, C H, of S,(C)
and denote G, = F, N 7~ 1(Y(C)). A special point z € Y(Q) gives
roughly [Q(x) : Q] special points of Y (Q) by the Galois action, and
these points lift to algebraic points of G, of degree at most 2g. By
Conjecture 5.2, they give “many” algebraic points of GG,. This suggests
that connected components of G, “behave like” hermitian symmet-
ric subdomains of H,. In fact, a fundamental theorem of Pila-Wilkie
[P'W] implies that G, contains a semi-algebraic set of H,. Finally, the
hyperbolic Ax-Lindemann theorem proved in [PT] finishes the argu-
ment.

Therefore, it remains to prove Edixhoven’s conjecture, which is the
main theorem of Tsimerman [T's]. We sketch it in the following.

5.2. Averaged Colmez conjecture implies Edixhoven’s con-
jecture. Tsimerman’s proof is a combination of a few important the-
orems. We describe it in a few steps.

Step 1: reduce to simple case. Note that A, is isogenous to a prod-
uct of abelian varieties with complex multiplication by CM fields. It
can actually be reduced to a (simple) abelian variety with complex
multiplication by a maximal order. This is done in the proof of [T's,
Theorem 5.1]. Then the goal becomes to prove that if E/F is a CM
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extension and A is an abelian variety of primitive CM type (Og, ®),
then
[Q(A) : Q] = [dgl|*
Here ¢, depends only on g = [F': Q|. Here Q(A) is the intersection of
all subfields of C to which A can be descended to.
Step 2: bound Faltings height. The goal here is to prove

h(A) < ‘dE‘Og(l).

Assuming the averaged Colmez conjecture in Theorem 4.1, the bound
is a consequences of the following bounds:

(1) 0< L(1,) < Jdp[5),

(2) /(1,) < |dp ),

(3) h(A) = Oy(1).
Note we can switch —L'(0,7)/L(0,n) to L'(1,1n)/L(1,n) by the func-
tional equation. Part (1) follows from the classical Brauer—Siegel the-
orem (cf. [Br]). Part (2) follows form a standard subconvexity bound
in analytic number theory. Part (3) holds for any abelian variety A’
over Q of dimension g, which is a result of Bost [30].

Step 3: isogeny of large degree. We claim that there is an abelian

variety B over C of CM type (Og, ®) such that

deg(A, B) > |dE|1/4’°9(1).

Here deg(A, B) denotes the smallest value among the degrees of all
isogenies between A and B over C. Note that any isogeny between
A and B over C can be descended to a number field. To prove the
claim, denote by S(Op, ®) the set of the isomorphism classes of abelian
varieties over C with CM type (Og, ®). There is a bijection Cl(Og) —
S(Op, ®) sending a fractional ideal Z of Og to C9/Z, so

|S(OE,(I))| =hg > ]’LE/hF > |dE|1/4_Og(1).

Here the last equality follows from the Brauer-Siegel theorem again.
With the lower bound of |S(Og, ®)|, the claim can be obtained by an
easy argument.

Step 4: isogeny theorem. The last step is of an application of the
powerful isogeny theorem of Masser-Wiistholz | | from diophantine
geometry. We are need the version of the theorem proved in in | ,
Theorem 1.4], which asserts that for any isogenous abelian varieties A
and B of dimension g over a number field H, we have

deg(A, B) < max{h(A), [H : Q]}%*W.

Combine it with the inequality in Step 3, and note the upper bound of
h(A) in Step 2. This finishes the proof.
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