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1 Introduction

The Colmez conjecture, proposed by Colmez [Co], is a conjecture expressing the Faltings
height of a CM abelian variety in terms of some linear combination of logarithmic derivatives
of Artin L-functions. The aim of this paper to prove an averaged version of the conjecture,
which was also proposed in [Co].

1.1 Statements

First let us recall the definition of Faltings heights introduced by Faltings [Fa]. Let A be an
abelian variety of dimension g over a number field K, and A the relative indentity component
of the Néron model of A over OK . Assume that A is semi-abelian. Denote by Ω(A) = Lie(A)∨

the sheaf of invariant differential 1-forms on A. Let ω̄(A) be a metrized line bundle over
SpecOK , whose finite part is defined as

ω(A) ∶= det Ω(A),

and whose metric ∥ ⋅ ∥v at each archimedean place v of K is given by

∥α∥2
v ∶=

1

(2π)g ∫Av(C)
∣α ∧ ᾱ∣, α ∈ ω(Av) = Γ(Av,Ω

g
Av

).

Then Faltings [Fa, §3] defines a moduli-theoretic height h(A) by

h(A) ∶=
1

[K ∶ Q]
d̂eg ω(A).
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Since A is semi-abelian, this height is invariant under base change.
Now let us state our main result as conjectured by Colmez. Let E be a CM field of

degree [E ∶ Q] = 2g, with the maximal totally real subfield F and a complex conjugation
c ∶ E → E. Let Φ ⊂ Hom(E,C) be a CM-type, i.e., a subset such that Φ ∩ Φc = ∅ and
Φ ∪Φc = Hom(E,C). Let AΦ be a CM abelian variety over C of CM type (OE,Φ). By the
theory of complex multiplication, there is a number field K in C such that AΦ is defined
over K and has a smooth and projective integral model A over OK . Colmez proved that the
height h(AΦ) depends only on the CM-type Φ. Thus we may denote this height by h(Φ).

Colmez gave a conjectural formula expressing the precise value of h(AΦ) in terms of
linear combinations of logarithmic derivatives of Artin L-functions determined by Φ. See
[Co, Thm. 0.3, Conj. 0.4]. When E/Q is abelian, the conjecture was proved up to rational
multiples of log 2 in the same paper, and later the rational multiples were eliminated by
Obus [Ob]. When [E ∶ Q] = 4, the conjecture was essentially proved by Yang [Ya1, Ya2].

The goal of this paper is to prove the following averaged formula for general CM fields
using techniques in the proof of the Gross–Zagier formula ([GZ]) and its generalization
([YZZ]).

Theorem 1.1. Let E/F be a CM extension, η = ηE/F be the corresponding quadratic char-
acter of A×

F , and dF (resp. dE/F ) be the absolute discriminant of F (resp. the norm of the
relative discriminant of E/F ). Then

1

2g
∑
Φ

h(Φ) = −
1

2

L′f(0, η)

Lf(0, η)
−

1

4
log(dE/FdF ),

where Φ runs through the set of all CM types of E, and Lf(s, η) is the finite part of the
completed L-function L(s, η).

The averaged formula was explicitly stated in [Co, p. 634] with some typo. Note that
we use a different normalization of the Faltings height.

Remark 1.2. Note that the above theorem can be reformulated as an arithmetic expression
for L′(0, η). This expression is analogous to the class number formula

L(0, η) = 2a
H

w

where 2a, H, and w are respectively the ratios of regulators, class numbers, and the number
of roots of unity of the fields E and F .

Remark 1.3. When E is imaginary quadratic, the Colmez conjecture can be deduced from
the Chowla–Selberg formula in [CS] in 1967. Our method (and also the method of Yang
[Ya1, Ya2]) thus give a different proof of the Chow–Selberg formula. Another very interesting
geometric proof of the Chowla–Selberg formula was discovered by Gross [Gr2]. He also
made a conjecture with Deligne for the periods of motives with CM by an abelian field.
Anderson [An] reformulated the conjecture of Deligne and Gross in terms of the logarithmic
derivatives of odd Dirichlet L-functions at s = 0. All these predictions were only up to
algebraic numbers. Colmez used the Faltings height instead of just the archimedean periods,
to make the conjectures precise.
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Remark 1.4. Shortly after we posted our paper on arXiv, a different proof of the averaged
formula modulo a rational multiple of log 2 has been posted on the arXiv by Andreatta,
Goren, Howard and Madapusi-Pera in [AGHM]. In a more recent version, they have removed
the ambiguity of log 2, and thus their final result is the same as ours. Their proof uses integral
models of high-dimensional Shimura varieties and is based on the method of Yang [Ya1, Ya2].

Remark 1.5. By the recent work of Jacob Tsimerman [Ts], the theorem implies the Andre–
Oort conjecture for Siegel abelian varieties: Let X be a Shimura variety of abelian type over
C. Let Y ⊂ X be a closed subvariety which contains a Zariski dense subset of special points
of X. Then Y is a special subvariety.

Theorem 1.1 is a direct consequence of Theorem 1.6 and Theorem 1.7 below. The proof
of each of the latter two theorems forms a part of this paper, so this paper is naturally
divided into two parts. Theorem 1.6 is proved in Part I; Theorem 1.7 is proved in Part II.

1.2 Faltings heights

Part I (§2-§5) of this paper is devoted to reducing Theorem 1.1 to a Gross–Zagier type
formula on quaternionic Shimura curves. In the following, for quaternionic Shimura curves,
Hodge bundles and CM points, we will use the terminology of [YZZ, §1.2, §1.3, §3.1]

Fix a CM extension E/F as above. Let B be a totally definite incoherent quaternion
algebra over A ∶= AF . Assume that there is an embedding AE ↪ B over A and fix one
throughout this paper. For each open compact subgroup U of B×

f , we have a Shimura curve
XU , which is a projective and smooth curve over F . Let X be the projective limit of XU .
Then X has a right action by B×

f with quotients X/U =XU .
The Shimura curves XU do not parametrize abelian varieties but can be embedded into

Shimura curves of PEL types over F̄ . We will construct integral models XU following the
work of Carayol [Ca] and Čerednik–Drinfeld [BC] and define the Hodge bundle LU (Theorem
4.7).

Assume that U = ∏Uv is a maximal compact subgroup of B×
f containing Ô×

E. Then XU

has a canonical integral model XU over OF . Let L̄U be the arithmetic Hodge bundle of XU ,
whose hermitian metric at an archimedean place v is given by

∥dz∥v = 2 Im(z)

with respect to the usual complex uniformizations by coherent quaternion algebras. See §4.2
for the constructions of XU and L̄U .

Let PU ∈XU(Eab) be the image of a point P ∈XE×
. It has a height defined by

hL̄U (PU) ∶=
1

[F (PU) ∶ F ]
d̂eg(L̄U ∣P̄U ),

where P̄U denotes the Zariski closure of the image of PU in XU . The first part of our paper
is to relate this height to the average of the Faltings heights of CM abelian varieties.
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Theorem 1.6. Let dB be the norm of the product of finite primes of OF over which B is
ramified. Assume that there is no finite place of F ramified in both E and B. Then

1

2g
∑
Φ

h(Φ) =
1

2
hLU (PU) −

1

4
log(dBdF ).

We prove this theorem by several manipulations of heights, which are sketched in the
following.

Decomposition of Faltings heights

Let K ⊂ C be a number field containing the normal closure of E over Q such that any CM
abelian variety by OE has a smooth model over OK . Let A/K be a CM abelian variety of
type (OE,Φ) and A/OK be the smooth projective integral model. Then we will decompose
the height h(Φ) into a sum of g terms indexed by τ ∈ Φ,

h(Φ, τ) =
1

2
d̂eg N̄ (A, τ)

where each N̄ (A, τ) is a hermitian line bundle over SpecOK . We will show that this height
depends only on the pair (Φ, τ) in Theorem 2.2, and then denote it as h(Φ, τ). In Theorem
2.3, we obtain

h(Φ) −∑
τ∈Φ

h(Φ, τ) = −
1

4[EΦ ∶ Q]
log(dΦdΦc).

Here EΦ is the reflex field of (E,Φ) and dΦ, dΦc are certain absolute discriminants of Φ,Φc.
Let (Φ1,Φ2) be a nearby pair of CM types of E in the sense that ∣Φ1 ∩Φ2∣ = g − 1. Let τi

be the complement of Φ1 ∩Φ2 in Φi for i = 1,2. Define

h(Φ1,Φ2) =
1

2
(h(Φ1, τ1) + h(Φ2, τ2))

We will show that h(Φ1,Φ2) does not depend on the choice of (Φ1,Φ2) and that h(Φ1,Φ2)
is equal to 1

2h(A0, τ) for any abelian variety A0 with an action by OE and isogenous to
AΦ1 ×AΦ2 , where τ = τi∣F . See Theorem 2.7. Thus Theorem 1.6 is reduced to the following
equality:

gh(A0, τ) = hLU (PU) −
1

2
log(dB).

Assume that A is defined over the number field K containing F (PU) and has good reduction
over OK . We will prove the above identity by constructing an isomorphism of hermitian line
bundles over SpecOK (cf. Proposition 5.7):

N (A0, τ)
∼
Ð→(N U ∣PU )⊗OF (PU ) OK , (1.2.1)

where N U ∶= L
2

U(−dB) is a Q-bundle over XU .
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Kodaira–Spencer isomorphisms

We will construct the isomorphism 1.2.1 by applying Kodaira–Spencer maps for families of
abelian varieties, Hodge structures, and p-divisible groups parametrized by various Shimura
curves. These maps give relations “N = ω⊗2” between invariant differentials of these objects
and differentials of the base curves.

First of all, let (Φ1,Φ2) be a nearby pair of CM types of E. Let F ′ be the reflex field
of Φ1 + Φ2. Then there is a PEL-type Shimura curve X ′

U ′ with minimal level defined over
F ′ parametrizing the quadruples (A, i, θ, κ) of an abelian variety A, an action i of OE on A
of type Φ1 + Φ2, a polarization θ ∶ AÐ→At inducing complex conjugation on E, and a level
structure κ ∶ OB

∼
Ð→T̂ (A). On X ′

U ′ there is a point P ′
U ′ representing an abelian variety A0

which is isogenous to AΦ1 ×AΦ2 . By the Kodaira–Spencer map, there is an isomorphism

N(A0, τ) ≃ ω
⊗2
X′
U ′ ,P

′
U ′
.

We will prove an archiemdean Kodaira–Spencer isomorphism (Theorem 3.7) in terms of
hermitian structures using complex uniformization of X ′.

There is no natural maps between the Shimura curves XU and X ′
U ′ over the reflex fields,

even though they have isomorphic connected components over F̄ . We will construct another
Shimura curve X ′′

U ′′ with morphisms XUÐ→X ′′
U ′′ and X ′

U ′Ð→X ′′
U ′′ so that both point PU and

P ′
U ′ have the same image P ′′

U ′′ . This gives an isomorphism over K required in (1.2.1):

N(A0, τ)
∼
Ð→NPU ⊗F (PU ) K. (1.2.2)

This isomorphism is in fact an isometry at all archimdean places.
It remains to show that the isomorphism (1.2.2) extends to the isomorphism (1.2.1).

We need only do this by working on every place of K. For each prime ℘′ of F , there
is a p-divisible group H ′′ on certain infinite cover X ′′

1,℘′ of X ′′
U ′′ defined over K ′ ∶= F ur

℘′ , the
completion of the maximal unramified extension of F℘′ . This group restricts to the p-divisible
group H ′ ∶= A[p∞] on X ′

1,℘′ , an infinite cover of X ′
U ′ . On the other hand, on an infinite cover

X1,℘ of XU over K ∶= F ur
℘ , where ℘ ∶= ℘′∣F , there is a p-divisible group H independent of the

choice of E. The groups H and H ′′ are related by the Tate module of a p-divisible group I
on Y . See Proposition 5.1.

We will give a description for N1,℘ in terms of the deformation of H via a Kodaira–
Spencer isomorphism (Theorem 4.10). By Proposition 5.1, this also gives a description of
N1,℘⊗OF ′ur

℘′
in term of the deformation of H′′ (Corollary 5.5) which is the required extension

of the isomorphism (1.2.1) at places over ℘′.

1.3 Quaternionic heights

Part II (§6-§9) of this paper is devoted to the proof the following height formula on quater-
nionic Shimura curves. Let U =∏v Uv be a maximal open compact subgroup of B×

f containing

the image of Ô×
E =∏vO

×
Ev

.
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Theorem 1.7. Assume that at least two places of F are ramified in B, and that there is no
non-archimedean place of F ramified in both E and B. Then

hL̄U (PU) = −
L′f(0, η)

Lf(0, η)
+

1

2
log

dB
dE/F

.

Here dB = N(dB) is the absolute discriminant of B.

We prove this theorem by extending our method of proving the Gross–Zagier formula in
[YZZ]. Recall that the Gross–Zagier formula is an identity between the derivative of L-series
of a Hilbert modular form and the height of a CM point on a modular abelian variety. This
formula is proved by a comparison of the analytic kernel PrI ′(0, g, φ) and a geometric kernel
2Z(g, (1,1), φ) parametrized by certain modified Schwartz function φ ∈ S(B × A×). More
precisely, we have proved that the difference

D(g, φ) = PrI ′(0, g, φ) − 2Z(g, (1,1), φ), g ∈ GL2(AF )

is perpendicular to the relevant cusp forms.
The cancellation for the “main terms” of D(g, φ) eventually imply the Gross–Zagier

formula; however, the cancellation of the “degenerate terms” imply Theorem 1.7. To retrieve
information of these degenerate terms, we need to compute this difference for a wider class of
Schwartz functions φ than those considered in [YZZ]. In fact, [YZZ] makes some assumptions
on φ so that the degenerate terms vanish automatically. In the following, we sketch some
new ingredients of the proof here.

Derivative series

By the reduced norm q, the incoherent quaternion algebra B is viewed as a quadratic space
over A = AF . Then we have a modified space S(B ×A×) of Schwartz functions with a Weil
representation r by GL2(A) × B× × B×. For each φ ∈ S(B × A×) invariant under an open
compact subgroup U × U of B×

f × B×
f , we have a finite sum of products of theta series and

Eisenstein series

I(s, g, φ)U = ∑
u∈µ2

U /F×
∑

γ∈P 1(F )/SL2(F )

δ(γg)s ∑
x1∈E

r(γg)φ(x1, u),

where µU = F × ∩U , and P 1 is the upper triangular subgroup of SL2.
For the decomposition B = EA+EAj, this function is a linear combination of the products

θ(g, φ1) ⋅ E(s, g, φ2) of the theta series θ(g, φ1) for some coherent Schwartz functions φ1 ∈
S(EA), and the Eisenstein series E(s, g, φ2) for some incoherent Schwartz functions φ2 ∈
S(EAj). This implies that I(0, g, φ) = 0. Let PrI ′(0, g, φ) be the holomorphic projection of
the derivative at s = 0 of I(s, g, φ).

In Theorem 7.2, we give a precise formula for PrI ′(0, g, φ) under some assumptions of
Schwartz functions, which particularly includes the following term:

(2
L′f(0, η)

Lf(0, η)
+ log ∣dE/FdF ∣) ∑

µ2
U /F×

∑
y∈E×

φ(y, u). (1.3.1)

Notice that this term was killed in [YZZ] by some stronger assumption on Schwartz functions.
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Height series

For any φ ∈ S(B×A×) invariant under U ×U , we have a generating series of Hecke operators
on the Shimura curve XU :

Z(g, φ)U = Z0(g, φ) +wU ∑
a∈F×

∑
x∈U/B×

f
/U

r(g)φ(x, aq(x)−1)Z(x)U ,

where wU = ∣µ2 ∩U ∣, the constant term Z0(g, φ) is a linear combination of Hodge classes on
XU ×XU , which can be neglected in this paper, and every Z(x)U is a divisor of XU ×XU

associated to the Hecke operator corresponding to the double coset UxU . By [YZZ, Theorem
3.17], this series is absolutely convergent and defines an automorphic form on g ∈ GL2(A)
with coefficients in Pic(XU ×XU)C.

Let P = PU be the CM point of XU as above, and P ○
U ∈ Jac(XU) be the divisor of degree

zero modified by the Hodge classes. Then we can form a height series

Z(g, φ)U = ⟨Z(g, φ)UP
○
U , P

○
U⟩NT,

where the right-hand side is the Neron–Tate height pairing.
In Theorem 8.6, we give a precise formula for Z(g, φ)U under some assumption of Schwartz

functions, which particularly includes the following term:

−
i0(P,P )

[O×
E ∶ O

×
F ]

∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u), (1.3.2)

where i0(P,P ) is a modified arithmetic self-intersection number of the Zariski closure P̄
on the integral model XU . Notice that this terms was killed in [YZZ] by some stronger
assumption on Schwartz functions.

Finally, Theorem 1.7 essentially follows from an identity between (1.3.1) and (1.3.2). To
get this identity, the idea is to use the theory of pseudo-theta series in §6.2. There is already
a basic concept of pseudo-theta series in [YZZ], but here we develop a more general theory
to cover the degenerate terms.

Pseudo-theta series

From the explicit formulas in Theorem 7.2 and Theorem 8.6, the difference D(g, φ) is a finite
sum of the so-called pseudo-theta series:

A
(S)
φ′ (g) = ∑

u∈µ2/F×
∑

x∈V1∖V0

φ′S(g, x, u)rV (g)φ
S(x,u), g ∈ GL2(A),

where

• S is a finite set of places of F including all archimedean places,

• µ ⊂ O×
F is a subgroup of finite index,
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• V0 ⊂ V1 ⊂ V is a filtration of totally positive definite quadratic spaces of F ,

• φS ∈ S(V (AS) ×AS,×) is a Schwartz function outside S, and

• φ′S is a locally constant function on

∏
v∈S

(GL2(Fv) × (V1 − V0)(Fv) × Fv)

with some extra smoothness or boundedness conditions.

Notice that a pseudo-theta series usually is not automorphic. But our key Lemma 6.1
shows that if a sum of pseudo-theta series is automorphic, then we can replace them by the
difference θA,1 − θA,0 of associated theta series:

θA,1(g) = ∑
u∈µ2/F×

∑
x∈V1

rV1(g)φ
′
S(1, x, u)rV1(g)φ

S(x,u),

θA,0(g) = ∑
u∈µ2/F×

∑
x∈V0

rV0(g)φ
′
S(1, x, u)rV0(g)φ

S(x,u).

Since the weights of these theta series depend only on the dimensions of Vi, there is a
vanishing of some sums of theta series grouped in terms of dimVi.

Combining Lemma 6.1 for D(g, φ) with some local computation gives the following iden-
tity for the self-intersection of CM points P (Theorem 9.1):

1

[O×
E ∶ O

×
F ]
i0(P,P ) =

L′f(0, η)

Lf(0, η)
+

1

2
log(dE/F /dB).

This is essentially the desired identity between (1.3.1) and (1.3.2). Now Theorem 1.7 follows
the following arithmetic adjunction formula (Theorem 9.3):

1

[O×
E ∶ O

×
F ]
i0(P,P ) = −hLU (P ),

which will be proved by explicit local computations.
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Part I

Faltings heights
The goal of this part is to prove Theorem 1.6. Throughout this part, we fix a quadratic CM
extension E/F .

2 Decomposition of Faltings heights

In this section, we will first decompose h(Φ) into a sum of components h(Φ, τ) for each
τ ∈ Φ. See Theorem 2.3. This is done by using a hermitian pairing between Ω(AΦ) and
Ω(AtΦ). Then we define the height h(Φ1,Φ2) for a nearby pair (Φ1,Φ2) of CM types of E (in
the sense that Φ1 ∩Φ2 has g − 1 elements) as the average of two heights h(Φi, τi), where τi is
the complements of Φ1 ∩Φ2 in Φi. We will end this section by showing that h(Φ1,Φ2) can
be computed by any abelian variety isogenous to the product of two CM abelian varieties
with CM types Φ1 and Φ2.

2.1 Hermitian pairings

Let A be a complex abelian variety with space Ω(A) of holomorphic 1-forms. Then we define
a metric on the complex line ω(A) = det Ω(A) by

∥α∥2 =
1

(2π)g ∫A(C)
∣α ∧ ᾱ∣.

In terms of Hodge theory, this norm is given by the following pairing between detH1(A,C)
and detH1(A,Z):

∥α∥2 =
1

(2π)g
∣⟨α ∧ ᾱ, eA⟩∣,

where eA is a basis of detH1(A,Z) =H2g(A,Z).
Let At be the dual abelian variety of A. Then we have a uniformization

At(C) =H1(A,OA)/H
1(A,2πiZ).

This induces the following canonical isomorphisms

Ω(At)∨ = Lie(At) ≃H1(A,OA) ≃H
0,1(A) = Ω̄(A).

Thus we have a perfect hermitian pairing:

Ω(A) ×Ω(At)Ð→C.

The hermitian pairing is functorial in the sense that if φ ∶ BÐ→A is a morphism of abelian
varieties, then we have

(φ∗α,β) = (α, (φt)∗β), α ∈ Ω(A), β ∈ Ω(Bt).

11



Here φt ∶ AtÐ→Bt denotes the dual morphism.
Taking determinants, this gives a hermitian norm ∥ ⋅∥ on ω(A)⊗ω(At). Using this norm,

we obtain the following product formula.

Lemma 2.1. For any α ∈ det Ω(A) and β ∈ det Ω(At),

∥α∥2 ⋅ ∥β∥2 = ∥α⊗ β∥2.

Proof. The direct sum of the pairing Ω(A) ⊗ Ω(At)Ð→C and its complex conjugate give a
perfect hermitian pairing

H1(A,C)⊗H1(At,C)Ð→C.

This pairing is dual to the canonical perfect pairing

H1(A,Z)⊗H1(A
t,Z)Ð→2πiZ

by the above uniformization of At. Taking determinants and using the Hodge decomposition,
we obtain isomorphism of lines:

ω(A)⊗ ω(A)⊗ ω(At)⊗ ω(At) ≃ C.

This isomorphism is dual to the isomorphism

detH2g(A,Z)⊗ detH2g(A
t,Z)Ð→(2πi)2gZ.

Then we have

∥α∥2 ⋅ ∥β∥2 = (2π)−2g ∣⟨α ∧ ᾱ, eA⟩∣ ⋅ ∣⟨β ∧ β̄, eAt⟩∣

=(2π)−2g ∣⟨α⊗ β ⋅ α⊗ β, eA ⊗ eAt⟩∣ = ∥α⊗ β∥2.

Here in the last step, we use the pairing (eA, eAt) = (2πi)2g.

Now we assume that A has a multiplication by an order of a number field E. Then E is
either totally real or CM. Let c be the CM involution on E (which is trivial if E is totally
real). Then for each embedding τ ∶ EÐ→C, we have a projection E ⊗CÐ→C, and a τ -eigen
quotient space

W (A, τ) ∶= Ω(A)⊗E⊗C,τ C.

The action of E on A induces an action of E on At. More precisely, for any γ ∈ E
corresponding to γ ∶ A → A, let γ act on At via γt ∶ At → At, where the latter is just
the morphism compatible with the pull-back map γ∗ ∶ Pic0(A) → Pic0(A). Now we define
W (At, τ) analogously. Then there are decompositions

Ω(A) = ⊕
τ ∶EÐ→C

W (A, τ), Ω(At) = ⊕
τ ∶EÐ→C

W (At, τ).

The above hermitian pairing between Ω(A) and Ω(At) is an orthogonal sum of hermitian
parings between W (A, τ) and W (At, τc) for each complex embedding τ of E.

12



2.2 Decomposition of heights

Now we assume that A is defined over a number field K ⊂ C with a semi-abelian relative
identity component of the Neron model A over OK , that A has actions by the ring of integers
OE of a field E, and that K contains the normal closure of E in Q̄. Then for each embedding
τ ∶ EÐ→K, we can define the τ -quotient OK-module

W(A, τ) ∶= Ω(A)⊗OK⊗OE ,τ OK .

The action of E on A induces an action on At as above, so we define W(At, τ) analogously.
Define a line bundle over SpecOK by

N (A, τ) ∶= detW(A, τ)⊗ detW(At, τc).

At each archimedean place v of K, there is a norm ∥ ⋅ ∥v on N (A, τ) defined as above. Thus
we have a metrized line bundle N (A, τ) ∶= (N , ∥ ⋅ ∥). We define the τ -part of the Faltings
height:

h(A, τ) =
1

2[K ∶ Q]
d̂eg(N (A, τ)).

Theorem 2.2. Assume that A has CM by OE with type Φ ⊂ Hom(E,K). Then h(A, τ)
depends only on the pair (Φ, τ).

Proof. Let B be another abelian variety with CM by OE of type Φ. After a base change, we
can assume that A and B are defined over K and have everywhere good reduction over OK .
We can also assume that there is a dual pair of OE-isogenies over K:

f ∶ AÐ→B, f t ∶ BtÐ→At.

These isogenies extend to integral models over OK :

f ∶ AÐ→B, f t ∶ BtÐ→At.

They further induce nonzero morphisms of line bundles:

f∗ ∶W(B, τ)Ð→W(A, τ), f t∗ ∶W(At, τc)Ð→W(Bt, τc).

Thus we have a rational map of metrized line bundles:

ϕ ∶ N (B, τ)Ð→N (A, τ).

Computing the norm of this map gives

h(A, τ) − h(B, τ) = −
1

2[K ∶ Q]
∑
p≤∞

∑
σ∶K→Q̄p

log ∥ϕσ∥p.

Theorem 2.2 will follow from the identity

∏
σ∶K→Q̄p

∥ϕσ∥p = 1

13



for each place p of Q. Notice that this identity is compatible with base changes. If p = ∞,
by the above functoriality of the hermitian pairing of invariant forms, it is easy to see that
ϕσ is an isometry.

It remains to study the product when p < ∞. We will use the p-divisible groups A[p∞]
and B[p∞] over OK , and analogous space of differential forms. For a place σ of K over a
prime p, and an abelian variety X from A,At,B,Bt, we have identities

Ω(X )σ = Ω(X [p∞])σ, W(X , τ)σ =W(X [p∞], τ)σ.

Thus we may view ϕσ as a morphism of line bundles induced from p-divisible groups:

ϕσ ∶ N (B[p∞], τ)Ð→N (A[p∞], τ).

Notice that HomOE,p(A[p
∞],B[p∞]) is a free module of rank 1 over OE,p. Thus we have

an isomorphism of p-divisible Zp ⊗OE-modules over OK :

ι ∶ A[p∞]Ð→B[p∞].

We can use this morphism to identify B[p∞] with A[p∞], and Bt[p∞] with At[p∞]. In this
way, f is an OE,p-endomorphism of A[p∞]. Since the Tate module of this group at the
generic fiber is a free OE,p-module of rank 1, f is given by multiplication by an element
α ∈ OE,p on A[p∞]. Taking the dual, f t is given by ᾱ ∈ OE,p on At[p∞]. Thus ϕσ is given by
the multiplication by (α/ᾱ)σ on the group N (A[p∞], τ). It follows that

∏
σ∶K→Q̄p

∥ϕσ∥p = ∏
σ∶K→Q̄p

∣αστ ∣

∣αστc∣
= ∏
σ∶K→Q̄p

∣αστ ∣

∣αcpστ ∣
= 1.

Here cp is an element Gal(Q̄p/Qp) which induces the complex conjugation on E via every
embedding EÐ→Q̄p.

By Theorem 2.2, we can denote h(A, τ) by h(Φ, τ) if A has CM type (OE,Φ). In the
following, we want to compute the difference:

h(Φ) −∑
τ∈Φ

h(Φ, τ).

Let EΦ be the reflex field of Φ generated by all Φ-traces and t ∶ EÐ→EΦ be the induced trace
map. Then the action E on the EΦ-vector space EΦ⊗QE gives a decomposition into a direct
sum of E ⊗EΦ-subspaces:

EΦ ⊗Q E = ẼΦ ⊕ ẼΦc

so that the traces of the actions of E are t and tc respectively. In particular ẼΦ and ẼΦc are
two quotient algebras of EΦ ⊗Q E. Let RΦ denote the image of OEΦ

⊗OE in ẼΦ. Denote by
dΦ the relative discriminant of the extension RΦ/OEΦ

, and by dΦ the norm of dΦ.

Theorem 2.3.

h(Φ) −∑
τ∈Φ

h(Φ, τ) = −
1

4[EΦ ∶ Q]
log(dΦdΦc).
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Proof. By definition, we have morphisms

φ ∶ Ω(A)Ð→⊕
τ∈Φ

W(A, τ), φt ∶ Ω(At)Ð→⊕
τ∈Φ

W(At, τc)

Thus we have elements

detφ ∈ (⊗
τ∈Φ

W(A, τ))⊗ det Ω(A)−1, detφt ∈ (⊗
τ∈Φ

W(At, τc))⊗ det Ω(At)−1.

This gives a section of the line bundle:

` ∈ (⊗
τ∈Φ

N(A, τ))⊗ (ω(A)⊗ ω(At))−1.

With metrics defined on these line bundles, we have an adelic metric on `. Now we have an
identity:

h(Φ) −∑
τ∈Φ

h(Φ, τ) =
1

2[K ∶ Q]
∑
p≤∞

∑
σ∶K→Q̄p

log ∥`σ∥p,

where
∥`σ∥p = ∥detφσ∥p ⋅ ∥detφtσ∥p.

By the above discussion, it is clear that ` has norm 1 at all archimedean places. So we need
only consider p <∞.

As a Zp-algebra, OE,p is generated by one element x ∈ OE,p, which has a minimal equation

P (t) = ∏
σ∈Hom(E,K)

(t − xσ) ∈ Zp[t], xσ ∈K×
p .

Write
PΦ(t) =∏

τ∈Φ

(t − xτ) ∈ EΦ,p[t], PΦc(t) = ∏
τ∈Φc

(t − xτ) ∈ EΦ,p[t].

It is clear that RΦ,p = OEΦ,p[t]/PΦ(t). Thus the ideal dΦ,p of OEΦ,p is generated by ∆(Φ)p =

∏i<j(x
τi − xτj)2.

To study `σ, let us write Kσ for the completion of σ(K), Oσ for the ring of p-adic integers
in Kσ, and Aσ for the model of A over Oσ. Consider the Hodge–de Rham filtration

0Ð→Ω(Aσ)Ð→H
1
dR(Aσ)Ð→H

1(Aσ,OAσ)Ð→0. (2.2.1)

With respect to the action of OE, one has that H1
dR(Aσ) is free of rank 1 over Oσ ⊗OE. See

[Co, Lem. II. 1.2]. The other two terms are free Oσ-modules under which OE acts with type
Φ and Φc respectively.

Lemma 2.4. The above exact sequence of Oσ ⊗OE-modules is isomorphic to the following
sequence:

0Ð→
Oσ[t]

PΦ(t)

PΦc(t)
Ð→

Oσ[t]

P (t)
Ð→

Oσ[t]

PΦc(t)
Ð→0. (2.2.2)
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Proof. First we want to show that 2.2.2 is an exact sequence. It is clear that the sequence is
exact at the first and the third term, and that it is exact at the middle term after base change
to Kσ. Thus the exactness at the middle term is equivalent to the following statement: an
element α ∈ Oσ[t] divisible by PΦc(t) in Kσ[t] is divisible by PΦc(t) in Oσ[t]. This follows
from the classical Gauss’s lemma.

It remains to construct an isomorphism from 2.2.1 to 2.2.2. By the above discussion, we
can fix an isomorphism of Oσ ⊗OE-module

ϕ ∶ H1
dR(Aσ)Ð→

Oσ[t]

P (t)
.

We want to extend this isomorphism to an isomorphism from exact sequence 2.2.1 to 2.2.2.
It is clear that under the actions by OE, all terms in the exact sequence 2.2.1 are torsion-
free with the same CM types as corresponding terms in 2.2.2. It follows that ϕ induces an
isomorphism from 2.2.1 to 2.2.2.

Corollary 2.5. There is an isomorphism of (Oσ ⊗OE)-modules

Ω(A)σ ≃ Oσ[t]/PΦ(t)

under which x acts as t.

By this corollary, the evaluation t↦ xτ gives an isomorphism Ωτ ≃ Oσ. Thus we have the
following model of φσ:

φσ ∶ Oσ[t]/Φ(t)Ð→⊕
τ∈Φ

Oσ, tz→ (xτ ∶ τ ∈ Φ).

Notice that Oσ[t]/Φ has the the basis (1, t,⋯, tg−1), and ⊕ΦOσ has a usual basis e1,⋯, eg by
choosing an ordering (τ1,⋯, τg). We have

(detφσ)(1 ∧ t ∧ t
2 ∧⋯ ∧ tg−1) = ±det((tτj)i) ⋅ e1 ∧⋯ ∧ eg =

√
∆(Φ)p ⋅ e1 ∧⋯ ∧ eg.

Thus finally, we have shown
∥detφσ∥p = ∣∆(Φ)p∣

1/2.

Put everything together to obtain

h(Φ) −∑
τ∈Φ

h(Φ, τ) =
1

4[K ∶ Q]
∑
p<∞

∑
σ∶K→Q̄p

log ∣∆(Φ)p ⋅∆(Φc)p∣

= −
1

4[EΦ ∶ Q]
log(dΦ ⋅ dΦc).

By a nearby pair of CM types of E, we mean a pair (Φ1,Φ2) of CM types of E such that
Φ1 ∩Φ2 has order g − 1. Let τi be the complement of Φ1 ∩Φ2 in Φi for i = 1,2. Define

h(Φ1,Φ2) ∶=
1

2
(h(Φ1, τ1) + h(Φ2, τ2)) .
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Corollary 2.6.
1

2g
∑
Φ

h(Φ) =
1

2g−1 ∑
(Φ1,Φ2)

h(Φ1,Φ2) −
1

4
log dF ,

where the second sum is over non-ordered pairs of nearby CM types of E.

Proof. Take the average over all types Φ in Theorem 2.3 to obtain

1

2g
∑
Φ

h(Φ) −
1

2g
∑
Φ,τ

h(Φ, τ) =
1

4[K ∶ Q]
∑
p<∞

∑
σ∶K→Q̄p

1

2g
∑
Φ

log ∣∆(Φ)p ⋅∆(Φc)p∣

where the second sum is over pairs of CM type Φ ⊂ Hom(E, Q̄) and τ ∈ Φ.
For a fixed σ ∶KÐ→Qp, the last sum on the right-hand side is a sum of log ∣x1 −x2∣2p over

pairs x1, x2 of roots of Φ with x2 ≠ x1 and x2 ≠ xc1. Let x1, x2,⋯, x2g be all roots of P (t) such
that xci = xi+g. Then the last sum on the right-hand side is a multiple of

log ∣
∏i<j(xi − xj)

2

∏i≤g(xi − xi+g)
2
∣ = log ∣

dE
dE/F

∣ = log ∣dF ∣
2.

Since there are 2g−1 such terms, we have

1

[K ∶ Q]
∑

σ∶K→Q̄p

1

2g
∑
Φ

log ∣∆(Φ)p ⋅∆(Φc)p∣ = log ∣dF ∣p.

Thus we have
1

2g
∑
Φ

h(Φ) −
1

2g
∑
Φ,τ

h(Φ, τ) = −
1

4
log ∣dF ∣.

Then it is easy to obtain the result.

2.3 Some special abelian varieties

In this subsection, we fix a nearby pair (Φ1,Φ2) of CM types of E. We want to compute the
height h(Φ1,Φ2) by a single abelian variety.

Theorem 2.7. Let A,A1,A2 be abelian varieties over a number field K with endomorphisms
by OE such that the following conditions hold:

(1) A1,A2 are CM-abelian varieties of type Φ1 and Φ2 respectively;

(2) A is OE-isogenous to A1 ×A2.

Then

h(Φ1,Φ2) =
1

2
(h(A1, τ1) + h(A2, τ2)) =

1

2
h(A, τ),

where τi is the complement of Φ1 ∩Φ2 in Φi, and τ is the place F under τi. Here in the last
equality, A is considered to have a multiplication by OF .
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Proof. From an OE-isogeny A1 × A2Ð→A, we obtain an OE-morphism i ∶ A1Ð→A with a
finite kernel. By Theorem 2.2, we may replace A1 by the image of i to assume that i is an
embedding. Now we have an isogeny A2Ð→A/A1. Similarly, we may assume that A2 = A/A1.
Thus we have a dual pair of exact sequences of OE-abelian varieties:

0Ð→A1Ð→AÐ→A2Ð→0, 0Ð→At2Ð→A
tÐ→At1Ð→0.

After a base change, we may assume that A1 and A2 have good reductions over OK .
This implies that A also has good reduction over OK . Thus we have a dual pair of exact
sequences of their Neron models:

0Ð→A1Ð→AÐ→A2Ð→0, 0Ð→At2Ð→A
tÐ→At1Ð→0.

These exact sequences induce a dual pair of exact sequences of their invariant differentials:

0Ð→Ω(A2)Ð→Ω(A)Ð→Ω(A1)Ð→0, 0Ð→Ω(At1)Ð→Ω(At)Ð→Ω(At2)Ð→0.

Then we have exact sequences:

0Ð→W(A2, τ2)Ð→W(A, τ)Ð→W(A1, τ1)Ð→0,

0Ð→W(At1, τ2)Ð→W(At, τ)Ð→W(At2, τ1)Ð→0.

Taking determinants, we obtain

detW(A, τ) =W(A1, τ1)⊗W(A2, τ2), detW(At, τ) =W(At1, τ2)⊗W(At1, τ1).

It follows that we have a canonical isomorphism

N (A, τ) ≃ N (A1, τ1)⊗N (A2, τ2).

It is easy to show that this isomorphism is compatible with the metric defined by Hodge
theory at infinite places. Thus we have

h(A, τ) = h(A1, τ1) + h(A2, τ2).

3 Shimura curve X ′

In this section, we study a Shimura curve of PEL type following Deligne [De], Carayol [Ca],
and Čerednik–Drinfeld [BC, Ce]. After reviewing the basic facts about the moduli problems,
we will study in special cases of the integral models over the ring of integers of the reflex
field, and the Kodaira–Spencer map over complex numbers.
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3.1 Moduli interpretations

Recall that we have a totally real number field F , a quadratic CM extension E/F , and a
totally definite incoherent quaternion algebra B over A = AF . We will consider one of the
following special cases later:

(1) E = F (
√
λ) with a λ ∈ Q as in Carayol [Ca];

(2) AE is embedded into B over A as in the introduction.

Let (Φ1,Φ2) be a nearby pair of CM types of E. Let τ be the place of F missing in Φ1∩Φ2,
and B the quaternion algebra over F with ramification set Σ(B)∖{τ}. We form a reductive
group G′′ ∶= B× ×F× E×, the quotient of B× ×E× by F × via the action a ○ (b, e) = (ba−1, ae).
Let B1 and E1 denote respectively the subgroups of B and E with norm 1. Then G′′ has
the same derived subgroup G1 ∶= B1 as G = B× with quotient isomorphic to F × ×E1 via the
following map:

ν = (ν1, ν2) ∶ G
′′/G1Ð→F

× ×E1, (b, e)z→ (q(b)eē, e/ē).

Here q(b) denotes the reduced norm of b.
Define an algebraic group G′ over Q as a subgroup of G′′ by

G′(Q) = {g ∈ G′′(Q) ∶ ν1(g) ∈ Q×} .

Let h′ ∶ C×Ð→G′(R) be the complex structure which has a lifting to a morphism h × hE
to (B ⊗ R)× × (E ⊗ R) as follows: the component to (B ⊗ R)× = G(R) is the same as h
for defining quaternion Shimura curve as in Carayol [Ca], see also §4.1; the component to

(E ⊗R)×
Φ1
∼
Ð→(C×)g is given by

hE ∶ z z→ (1, z−1,⋯, z−1)

where the first component corresponds to the place over τ . The class of G′(R)-conjugacy
class of h′ is identified with h± = C ∖R by

ghg−1 z→ g(i), g ∈ G′(R).

Thus we have Shimura curves over C indexed by open and compact subgroups U ′ of
G′(Q̂):

X ′
U ′(C) = G′(Q)/h± ×G′(Q̂)/U ′.

It is not difficult to show that the reflex field of h′ is the same as the reflex field of Φ1 +Φ2.
Let F ′ be the reflex field of h′. Then X ′

U ′ is defined over F ′. The following is a relation
between F and F ′:

Proposition 3.1. Let Ψ denote Φ1∩Φ2, and let τ ∶ FÐ→C be the place of F missing in Ψ∣F .
Then F ′ contains τ(F ).
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Proof. By definition, Gal(C/F ′) consists of elements σ ∈ Aut(C) fixing the weighted set
Φ1 +Φ2. It is clear that

Φ1 +Φ2 = 2Ψ + τ1 + τ2

with τi the complement of Ψ in Φi. Considering multiplicity, such a σ fixes τ1 + τ2. In other
words, it fixes τ(F ).

Let X ′ be the projective limit of X ′
U ′ for all X ′

U ′ . Then X ′ is a scheme over F ′ with a

right action by G′(Q̂) and a uniformization given by

X ′
τ ′(C) = G′(Q)/h± ×G′(Q̂).

See Carayol [Ca, §3.1].
Denote by G′′(Q)+ the subgroup of elements (b, e) in G′′(Q) = B× ×F× E× such that

q(b) ∈ F is totally positive. As in Carayol [Ca, §3.4], the curve X ′ is equipped with a
right action of the subgroup G̃ = G′′(Q)+ ⋅ G′(Q̂) of G′′(Q̂) as follows: for any elements
(g0, g1) ∈ G′′(Q)+ ×G′(Q̂), define

[z, h] ⋅ (g0g1) = [g−1
0 z, g−1

0 hg0g1].

The subgroup of elements fixing every point on X ′ is given by the center Z ′′(Q) ≃ E× of
G′′(Q)+.

In the following, we want to describe the moduli problem associated to X ′
U ′ following

Carayol [Ca, §2]. For this, we will work on the quaternion algebra B′ = B ⊗F E over E. Let
V ′ ∶= B′ as a left B′-vector space. Fix an invertible element γ′ ∈ B′ such that γ̄′ = −γ′ where
b ↦ b̄ is the involution on B′ = B ⊗F E induced from the canonical involution on B and the
complex conjugation on E. Then we define a symplectic form on V ′ by

ψ′(v,w) = trE/QtrB′/E(γ
′vw̄). (3.1.1)

Here trB′/E is the reduced trace on B′. This form induces an involution ∗ on B′ by:

ψ′(`v,w) = ψ′(v, `∗w), `∗ = γ
′−1 ¯̀γ′. (3.1.2)

The group G′ can be identified with the group of B′-linear symplectic similitudes of (V ′, ψ′).
More precisely, G′ is a subgroup of G′′ which can be identified with the subgroup B× ⋅E× of
B

′× which acts on V ′ = B′ by right multiplications.
The composition of h′ and the action of G′(R) on V ′

R induce a Hodge structure on V ′ of
weights (−1,0) and (0,−1). One can choose a γ such that ψ′ induces a polarization of the
Hodge structure (V ′, h′):

ψ′(x,xh′(i)−1) ≥ 0, ∀x ∈ V ′
R.

By Deligne [De, §6], X ′
U ′ represents the following functor FU ′ on the category of F ′-

schemes when U ′ is sufficiently small. For any F ′-scheme S, FU ′(S) is the set of isomorphism
classes of quadruples [A, ι, θ, κ] where

(1) A is an abelian scheme over S up to isogeny;
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(2) ι ∶ B′Ð→End0(A/S) is a homomorphism such that the induced action of E on the OS-
module Lie(A/S) has the trace given by

tr(`,Lie(A/S)) = t(trB′/E(`)), ∀` ∈ B′,

where t ∶ EÐ→F ′ is the trace map of Φ1 +Φ2.

(3) θ ∶ AÐ→At is a polarization whose Rosati involution on End0(A/S) induces the involution
∗ of B′ over F ;

(4) κ ∶ V̂ ′ × SÐ→H1(A, Q̂) is a U ′-orbit of similitudes of B′-skew hermitian modules.

The group G̃ acts on the inverse system of FU ′ as follows:

[A, ι, θ, κ] ⋅ g = [A, ι, ν1(g)θ, κ ⋅ g].

3.2 Curves X ′ in case 1

Let p be a prime number, and ℘′ be a prime ideal of OE dividing p. We want to study the
integral model of X ′

U ′ over the ring O(℘′) ∶= OE[x−1 ∶ x ∈ OE ∖ ℘′] in the case considered in

Carayol [Ca, §2, §5], i.e., E = F (
√
λ) with λ a negative integer such that p is split in Q(

√
λ).

Fix a square root µ of λ in C which gives a CM type of E by

Φ1 ∶ E = F ⊗Q Q(
√
λ)Ð→F ⊗Q C ≃ Cg,

√
λ↦ (µ,⋯, µ).

Let Φ2 be a nearby CM type of E which differs from Φ1 at the place over τ of F . Then the
reflex field of Φ1 +Φ2 is E.

Using the isomorphism

Ep = Fp ⊕ Fp, λz→ (µ,−µ),

we have an identification B′
p = Bp×Bp so that the involution ∗ on B′ defined in 3.1.2 induces

an involution on Bp, still denoted by ∗, so that (a, b)∗ = (b∗, a∗). In this way we may
assume that OB′,p = O∗

B,p ⊕ OB,p. The form ψ′ induces a perfect (Bp,∗)-hermitian pairing
ψp ∶ Bp ×BpÐ→Qp as follows

ψ′p((a, b), (c, d)) = ψp(a, d) − ψp(c, b).

The subgroup G′(Qp) of B
′×
p consists of elements (λb, b) with λ ∈ Q×

p and b ∈ B×
p . We identify

G′(Qp) ≃ Q×
p ×B

×
p by this description.

Let OB′,p be an order of B′
p stable under involution `↦ `∗, and let Λ′

p be an OB′,p- lattice
of V ′

p such that ψ′∣Λ′
p

takes integral value and is perfect. Such an oder OB′,p and a lattice Λ′
p

can be constructed from a maximal order OB,p of Bp by the following formulae:

OB′,p ∶= O
∗
B,p ⊕OB,p, Λ′

p ∶= O
∨
B,p ⊕OB,p

21



where
O∨
B,p ∶= {x ∈ Bp ∶ ψp(x, y) ∈ Zp, ∀y ∈ OB,p} .

The elements of G(Qp) fix Λ′
p form a maximal compact subgroup U ′

p(1) ∶= Z×
p ×O

×
B,p.

Let ℘ be the prime of OF under ℘′. Write OF,p = O℘ +O℘ as a direct sum of Zp-algebras,
then we have a decomposition:

OE,p = OF,p ⊕OF,p = O℘ ⊕O
℘ ⊕O℘ ⊕O

℘.

For any OE,p-module M , there is a corresponding decomposition

M =M1℘ +M
℘
1 +M2℘ +M

℘
2 .

Let Z(p) = Zp ∩Q be the localization of Z at p. Let OB′,(p) = OB′,p ∩B′ be the Z(p)-lattice
in B′.

For an open compact subgroup U ′p of G′(Q̂p), define a moduli problem F1,U ′p over O℘

as follows: for any O℘-scheme S, F1,U ′p(S) is the set of isomorphism classes of quadruple
[A, ι, θ, κ] where

(1) A is an abelian scheme over S up to prime-to-p isogeny;

(2) ι ∶ OB′,(p)Ð→End(A/S) ⊗ Z(p) is a homomorphism such that the induced action of OB′

on the OS-module Lie(A/S) has the following properties:

• Lie(A)2℘ is a special OB,℘-module in the sense that it is locally free of rank 1 over
OK ⊗OS for any unramified quadratic extension K of O℘ embedded into OB,℘;

• Lie(A)℘2 = 0.

(3) θ ∶ AÐ→At is a polarization whose Rosati involution on End(A/S) ⊗ Z(p) induces the
involution ∗ of OB′,p;

(4) κ ∶ V̂ p × SÐ→H1(A, Q̂p) a U ′p-orbit of similitudes of Ôp
B′-skew hermitian modules.

Proposition 3.2. When U ′p is sufficiently small, the scheme F1,U ′p is represented by a
regular scheme X ′

1,U ′p over O(℘′) with the following properties:

(1) for the embedding τ ′ ∶ O(℘′)Ð→C, the curve X1,U ′p(C) =XU ′
p(1)⋅U

′p(C), where U ′
p(1) is the

maximal open compact subgroup of B′×
p fixing Λ′

p;

(2) if ℘ is split in B, then X ′
1,U ′p is smooth over O℘;

(3) if ℘ is ramified in B, then X ′
1,U ′p is a semistable relative Mumford curve in the sense

that every irreducible component in the special fiber is isomorphic to P1.

Proof. Let OB′ be an OE-order of B′. Replacing OB′ by OB′ ∩ O∗
B′ , we may assume that

OB′ is stable under ∗. Let Λ′ be an OB′-lattice of B′ with localization Λ′
p. With Λ replaced

by mΛ with an m prime to p, we may assume that ψ′ takes integral value on Λ′. Assume
now U ′p fixes Λ̂′p and fixes every point in Λ′p/nΛ′p for some n ≥ 3 prime to p. It is easy to
see that above functor is isomorphic to the following functor F̃U ′p over O℘-schmes: for any

O℘-scheme S, F̃U ′p(S) is the set of isomorphism classes of quadruple [A, ι, θ, κ] where
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(1) A is an abelian scheme over S;

(2) ι ∶ OB′Ð→End(A/S) is a homomorphism such that the induced action of OB′ on the
OS-module Lie(A/S) has the following properties:

• Lie(A)2℘ is a special OB,℘-module in the sense that it is locally free of rank 1 over
OK ⊗OS for any unramified quadratic extension K of O℘ embedded into OB,℘;

• Lie(A)℘2 = 0.

(3) θ ∶ AÐ→At is a polarization whose Rosati involution on End(A/S) induces the involution
∗ of OB′ ;

(4) κ ∶ Λ̂p × SÐ→H1(A, Ẑp) a U ′p-orbit of similitudes of ÔB′-skew hermitian modules.

The condition (4) implies that the relative dimension of A/S is 2g. Also the degree of
the polarization θ in (3) is d = [Λ′∨,Λ′] where Λ′∨ is the dual lattice of Λ′. By Mumford
theory, there is a fine moduli space M2g,d,n over Z(p) classifying the the triples of (A, θ, κn)
of an abelian variety A of dimension 2g, and a polarization θ of degree d, and a full level
n structure κn. Thus we have a morphism of functor F ′

U ′pÐ→M2g,d,n. Now we can use the
theory of Hilbert schemes to prove the existence of a scheme X ′

0,U ′pÐ→M2g,d,n to classify

other additional structures on the triple (A, θ, κn) required in the functor F̃0,U ′p .
The second statement is proved in Carayol [Ca, §5.4] in the case ℘ is split in B, and

proved by Čerednik–Drinfeld (cf. [BC, Ce]) in case ℘ is not split in B.

Remark 3.3. Our moduli problem here is slightly different from the moduli problem M2
0,H′

in Carayol [Ca, §5.2.2] in three points:

(1) we do not require that p is prime to the discriminant dB ⊂ OF of B;

(2) we allow A to have prime-to-p isogeny which is more flexible than [Ca];

(3) we do not input a level structure k℘p as in [Ca].

p-divisible groups

Let U ′ = U ′
p(1) ⋅U

′p with U ′p sufficiently small so that the functor FU ′ is representable by a
universal family of abelian varieties:

AU ′Ð→XU ′ .

There is a Barsotti–Tate OB′,p-module AU ′[p∞] on X ′
U ′ for any sufficiently small compact

open subgroup U ′p of G′(Q̂)p. With our assumption, this group has a decomposition

AU ′[p∞] = AU ′[p∞]1 +AU ′[p∞]2 = AU ′[p∞]1℘ +AU ′[p∞]℘1 +AU ′[p∞]2℘ +AU ′[p∞]℘2 .

We define
H′
U ′ ∶= AU ′[p∞]2.
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By part (2) in the definition of F1,U ′p , the ℘-part H′
U ′,℘ is a special OB,℘-module, and the

prime-to-℘-part H′℘
U ′ is an étale O℘

B′-module.
It is clear that the generic fiber H ′

U ′ = AU ′[p∞]2 of H′
U ′ on X ′

U ′ is dual to AU ′[p∞]1 by
the polarization; thus H ′

U ′ determines the structure of AU ′[p∞]. Notice that H ′
U ′ can be

constructed without using abelian varieties:

H ′
U ′ = (p−∞OB,p/OB,p ×X

′) /U ′
p(1) ×U

′p.

Where U ′
p(1) ≃ Z×

p ×O
×
B,p acts on p−∞OB,p/OB,p by the right multiplication of O×

B,p (cf. [Ca,
§2.5]).

Remark 3.4. Our p-divisible group H ′
U ′ relates to the group E′

∞ of [Ca, §3.3] in the case
OB,℘ ≃M2(O℘) by

(
1 0
0 0

) ⋅H ′
U ′[℘∞] = E′

∞.

Level structure at p

For any ideal n of OF dividing a power of p, let U ′
p(n) denote the subgroup of B×

p of the
form Z×

p × (1 + nOB,p)×, and X ′
n,U ′p denote X ′

U ′
p(n)×U

′p . Let H ′
n,U ′p denote the pull-back of

H ′
1,U ′p = H ′

U ′
p(1)U

′p to X ′
n,U ′p . Using the above description, the map Xn,U ′pÐ→X1,U ′p defines a

full level n-structure on H ′
n,U ′p , i.e., an isomorphism of OB,p-modules:

κp ∶ n−1OB,p/OB,pÐ→H
′
n,U ′p[n].

When n is prime to dB, this level structure extends to the minimal model X ′
n,U ′p . More

precisely, the scheme X ′
n,U ′ represents a functor Fn,U ′p over F1,U ′p to classify a pair of level

structures κp = (κ℘, κ
℘
p) so that κ℘p is a full-level structure on the étale sheaf H′℘

n,U ′p[n], and
κ℘ is a Drinfeld basis of H′

n,U ′p,℘[n].

Integral models

In the above, we have interpreted X ′
n,U ′p at a prime ℘ as the functor Fn,U ′p when n is prime

to dB, and U ′p is sufficiently small (in dependent of n). In the following, we want to extend
such interpretation to large U ′p. Fix a lattice Λ′ of B′ with a completion Λ′

p. For any positive

integer N , let U ′(N) denote the subgroup of G′(Q̂) consisting of elements which stabilize Λ′

and induce the identity action on Λ′/NΛ′.

Proposition 3.5. Assume that U ′ is contained in U ′(N) as a normal subgroup for some
N ≥ 3 and prime to p. Then the functor Fn,U ′p is represented by the minimal regular model
X ′

n,U ′p over O℘.

Proof. First let us reduce the proposition to the case U ′ = U ′(N). In fact if FU(N) is
represented by AU ′(N)Ð→X

′
U ′(N)

, then Fn,U ′p is represented by an X ′
U ′(N)

-scheme Yn,U ′p to
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classify a pair (κ℘, κ℘) of a full Drinfeld level structure κ℘ and an etale level structure κ℘.
Thus it is clear that Yn,U ′p is regular without any exceptional curve. Thus Yn,U ′p = Xn,U ′p .

Assume now U ′ = U(N). Let U ′p
0 be a sufficiently small normal subgroup of U ′(N)p

so that F1,U ′p is representable by A1,U ′p
0
Ð→X1,Up0

. Then we have an action of U(N) on this

family. It suffices to show that U(N) acts freely on X1,Up0
. Let γ ∈ U ′(N) fixes a closed

point x in X ′
1,U ′p

0

. Let [A, ι, θ, κ] be the quadruple corresponding to x. Replace A by some

abelian variety prime to p isogenous to A, we may assume that κp induces an isomorphism
morphism between Λ̂′p and T̂p(A). In this way, we have an automorphism ϕ of (A, θ), an
u ∈ U ′p such that κ ⋅ γ ⋅ u = κ ○ T(ϕ). Since γ ∈ G(N), it follows that ϕ fixes all points in
A[N]. Thus ϕ = 1. Thus γ = u−1 ∈ U ′.

Corollary 3.6. The integral models X ′
n,U ′p, with n prime to dB and U ′p contained in U ′(N)

with N ≥ 3 and prime to p, form a projective system of regular schemes over O℘. Moreover
the special fiber of each X ′

n,U ′p above ℘ is a smooth curve if ℘ ∤ ndB, and a relative Mumford
curve if ℘ ∣ dB.

3.3 Curve X ′ in case 2

In this subsection, we assume that E is embedded into B over F . Then we can write
B = E +Ej where j ∈ B× such that jx = x̄j for all x ∈ E. We can identify B′ = B ⊗E with
M2(E) by the following maps:

a⊗ b↦ (
ab

āb
) , j ↦ (

1
j2 ) .

It follows that V ′ = B′ is the sum of two copies of a subspace V over E. In fact, we can take
Vi = B with two conjugate left multiplication of E

V ′ ∼
Ð→V1 ⊕ V2 ∶ b⊗ ez→ (eb, ēb).

The operator w = (
1

1
) switches two factors by (u, v) ↦ (jv, j−1u). We may assume that

γ′ = γ⊗1 with γ ∈ E⊗1 so that ψ′ is the sum of two copies of a symplectic form ψ on Vi = B
by

ψ(u, v) = trF /QtrB/F (γuv̄), u, v ∈ Vi = B.

The group G′ can be identified with the group of E-linear symplectic similitudes of (V,ψ)
by right action on V : (b, e)x = exb.

It follows that when U ′ is sufficiently small, X ′
U ′ represents the following functor F0

U ′ on
the category of F ′-schemes. Here F ′ is the flex field as before. For any F ′-scheme S, F ′0

U ′(S)
is the set of isomorphism classes of quadruples [A, ι, θ, κ] where

(1) A is an abelian scheme over S up to isogeny;
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(2) ι ∶ EÐ→End0(A/S) is a homomorphism such that the induced action of E on the OS-
module Lie(A/S) has the trace given by

tr(`,LieA) = t(`), ∀` ∈ E,

(3) θ ∶ AÐ→At is a polarization whose Rosati involution on End0(A/S) induces the complex
conjugation c of E over F ;

(4) κ ∶ V̂ × SÐ→H1(A, Q̂) is a U ′-orbit of similitudes of skew hermitian E-modules.

Let OB be a maximal order of B, and let Λ = OB be viewed as a lattice in V . Assume
that ψ takes integral value on Λ. Then F ′0

U ′ is equivalent to the following functor F ′
U ′ . For

any F ′-scheme S, F ′
U ′(S) is the set of isomorphism classes of quadruples [A, ι, θ, κ] where

(1) A is an abelian scheme over S;

(2) ι ∶ OEÐ→End(A/S) is a homomorphism such that the induced action of OE on the
OS-module Lie(A/S) has the trace given by

tr(`,LieA) = t(`), ∀` ∈ OE,

(3) θ ∶ AÐ→At is a polarization whose Rosati involution on End(A/S) induces the complex
conjugation c of OE over OF ;

(4) κ ∶ Λ̂ × SÐ→H1(A, Ẑ) is a U ′-orbit of similitudes of skew hermitian OE-modules.

CM points

Again assume that E is embedded into B over F . Let T ′ (resp. T̂ ′) be the subgroup of G′

(resp. G′(Q̂)) of elements (b, e) ∈ (E×)2 (resp. (b, e) ∈ (Ê×)2). Then the subscheme X ′T ′ of
X ′ of points fixed by T ′ is a principal homogenous space of T̂ ′. Moreover each point P ′ ∈X ′T ′

represents an abelian variety AP ′ which is isogenous to a product AΦ1 ×AΦ2 of CM abelian
varieties by OE with types Φ1,Φ2. In fact, in terms of above complex uniformization, X ′T ′

is represented by pairs (z, t) with z the unique point on h fixed by T , and t ∈ T̂ . Fix a point
P ′ ∈X ′T ′ .

Hodge de Rham sequence

In the following, we want to study the Kodaira–Spencer map. Assume that FU ′ is represented
by a universal abelian variety π ∶ AU ′Ð→X ′

U ′ . Then there is a local system HdR
1 (AU ′) of

F ⊗OX′
U ′

-modules with an integrable connection ∇ and a Hodge filtration

0Ð→Ω(AtU ′)Ð→HdR
1 (AU ′)Ð→Ω(AU ′)∨Ð→0,
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where Ω(AU ′) ∶= π∗(ΩAU ′/X′
U ′
) and Ω(AtU ′) ∶= π∗(ΩAt

U ′/X
′
U ′
). This sequence of vector bundles

onX ′
U ′ has an action by F by pulling back of cohomology classes. Taking a quotient according

to the morphism F ⊗OX′
U ′
Ð→OX′

U ′
given by sending (x⊗ y)↦ τ(x)y, we have

0Ð→Ω(AtU ′)τÐ→HdR
1 (AU ′)τÐ→Ω(AU ′)τ,∨Ð→0.

For simplicity, let us introduce the following notations:

MU ′ ∶=HdR
1 (AU ′)τ , WU ′ ∶= Ω(AU ′)τ , W t

U ′ ∶=W (AtU ′)τ .

Then we have an exact sequence of vector bundles:

0Ð→W t
U ′Ð→MU ′Ð→W ∨

U ′Ð→0. (3.3.1)

In terms of the complex uniformization, the bundle (MU ′ ,∇) and its filtration can be
described explicitly by representations of G′(Q) as follows. First define the local system of
R-vector spaces on X ′

U ′,τ ′(C):

V ∶= G(Q)/Vτ × h± ×G′(Q̂)/U ′, Vτ ∶= V ⊗F,τ R

This system has a Hodge structure given by h±. This definition makes sense since the
stabilizer of G(Q) on every point of h± ×G′(Q̂)/U ′ is its center Z(Q) which acts trivially on
V . Then we have

MU ′ = V⊗R OX′
U ′
, W t

U ′ =H0,−1(V), WU ′ = (MU ′/W t
U ′)∨.

Kodaira–Spencer maps at archimedean places

Inserting the Gauss–Manin connection to the sequence (3.3.1) gives a chain of morphisms:

W t
U ′Ð→MU ′

∇
Ð→MU ′ ⊗ΩX′

U ′
Ð→W ∨

U ′ ⊗ΩX′
U ′
.

By Kodaira–Spencer, this induces an isomorphism of E ⊗F OX′-line bundles:

W t
U ′Ð→W ∨

U ′ ⊗ΩX′
U ′
.

Taking determinants, this gives an isomorphism of OX′-line bundles:

KSU ′ ∶ NU ′Ð→Ω⊗2
X′
U ′
,

where NU ′ is a line bundle on X ′
U ′ defined by

NU ′ ∶= detWU ′ ⊗ detW t
U ′ .

In the remaining part of this subsection, we want to study the Kodaira–Spencer isomor-
phism at a fixed place τ ′ of F ′. Here we put a metric on NU ′ by the Hodge theory as in §2.1,
and put a metric on ΩX′

U ′
by the following formula

∣dz∣ = 2y

in terms of the complex unformization.
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Theorem 3.7. The morphism KSU ′ is isometric.

Proof. The Kodaira–Spencer isomorphism induces a norm on ΩX′
U ′

. We want to give an
explicit description of this metric as follows. First, let us give an explicit formula for the
Kodaira–Spencer map. Fix an isomorphism Bτ = Vτ ≃M2(R) and identify h± with the moduli
space of Bτ -Hodge structures on M2(R). It is equivalent to study the Hodge structures on
R2. In a concrete matter, for each z ∈ h±, take a Hodge structure on L = R2 inducing a
complex structure given by isomorphisms

ϕz ∶ LÐ→C, (a, b)z→ a + bz.

Then L0,−1 is given as kerϕz,C, so we have

L0,−1
z = Cez, L−1,0

z = Cez̄, ez ∶= (−z,1).

Thus the filtration of the de Rham homology has the following form:

0Ð→CezÐ→C2Ð→Cez̄Ð→0.

Apply the Gauss–Manin connection to obtain

∇(ez) = (−1,0)dz =
ēz − ez

2iy
dz.

It follows that under Kodaira–Spencer map,

dz = 2iy
ez
ēz
, ∣dz∣ = 2y.

p-divisible groups

Assume that U ′ is sufficiently small so that X ′
U ′ has a universal abelian scheme AU ′ repre-

senting the functor FU ′ . Then we have a p-divisible group

H ′
U ′ ∶= AU ′[p∞].

Notice that this p-divisible group can be constructed directly by the following formula:

H ′
U ′ = (Bp/OB,p ×X

′)/U ′

where U ′ acts on Bp/Op via its projection to the subgroup O×
B,p ×O×

F,p
O×
E,p of G(Qp) and the

action
x(b, e) = exb, b ∈ Bp/OB,p, (b, e) ∈ O×

B,p ×O
×
E,p.
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Integral models

In this subsection we give some results about integral models of X ′
U ′ , AU ′ , and H ′

U ′ which
can be proved in the later section 5.2. The results here will not be used in the rest of paper.

Assume that U ′ is sufficiently small as in the previous paragraph. A natural question is
to extend the universal family AU ′ → XU ′ to a flat family AU ′ → XU ′ over OF ′ . The natural
way is to extend the functor FU ′ over schemes over OF ′ , which we don’t know how to define.
However we can extend this abelian scheme pointwise on XU ′ .

Proposition 3.8. Let L be a finite extension of F ′ and x′ ∈XU ′(L) a point which represents
an abelian variety Ax′ over L. Then Ax′ has good reduction Ax′ over OL.

By the works of Grothendieck [SGA7] and Raynaud [Ra], it is sufficient to extend p-
divisible groups locally. We will prove this extension in Proposition 5.2 using Breuil–Kisin
theory.

One consequence of this integral model is to give a hermitian integral structure on N ′
U ′,x′

at each point x ∈ X ′
U ′(L) by N (A, τ). Using method in §5.2, we can construct an integral

model X ′
U ′ of X ′

U ′ over OF ′ and a line bundle N ′
U ′ such that

N (A, τ) = N ′
U ′,x′

as integral structures on the Hodge bundle L2
x′ .

4 Shimura curve X

In this section, we study a quaternionic Shimura curves X over a totally real field. We will
first review some basic facts about the integral models X studied in Carayol [Ca] at split
primes, and Čerednik–Drinfeld [BC, Ce] at non-split primes. Then we will construct integral
models of the curve X by a comparison with the curve X ′ in the last section. Finally we will
study the integral models of p-divisible groups H using the p-divisible groups H ′∣X ′, and
study the local Kodaira–Spencer morphisms induced from the Hodge–de Rham filtration
and the Gauss–Manin connections, following a deformation theory of p-divisible groups H
of Grothendieck–Messing [Il, Me].

4.1 Shimura curve X

Let F be a totally real field and B a totally definite incoherent quaternion algebra over
A ∶= AF as before. Then we have a projective system of Shimura curves XU over F indexed
by open and compact subgroups U of Gf ∶= B×

f , see [Ca, YZZ].
For any archimedean place τ of F , the curve XU,τ over C is defined by the following

Shimura data (G,h) where G = ResF /Q(B×) with B a quaternion algebra over F with the
ramification set Σ(B)∖{τ}, and h ∶ C×Ð→G(R) a morphism as follows. Fix an isomorphism

G(R) = GL2(R) × (H×)g−1.
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Then h brings z = x + yi to
⎡
⎢
⎢
⎢
⎢
⎣

(
x y
−y x

)

−1

,1,⋯,1

⎤
⎥
⎥
⎥
⎥
⎦

.

The class of G(R)-conjugacy class of h is identified with h± = C ∖R by

ghg−1 z→ g(i), g ∈ G(R).

Fix an isomorphism Bf ≃ B̂ which gives an isomorphism Gf ≃ G(Q̂). Then we have a
uniformization

XU,τ(C) = G(Q)/h± ×G(Q̂)/U.

This curve is compact if B ≠M2(Q) or equivalently Σ(B) is not a singlet. In the following
discussion we always assume that XU is compact; but the results hold in general with taking
care of cusps.

If F ≠ Q, this curve does not parametrizes abelian varieties but its geometric connected
component can be embedded into Shimura curves of PEL types over F̄ . In the following we
want to review the work of Carayol [Ca] on p-divisible groups on some integral model of XU

with infinite level.
Let X denote the projective limit of XU . Then X has a right action by G(Q̂) = B×

f . The

maximal subgroup of B×
f which acts trivially on X is F ×, the closure of Z(Q) = F × in B×

f .

Thus we can write XU = X/U with U ∶= U/(U ∩ F ×). When U is sufficiently small, U acts
freely on X. If F ≠ Q, then F × ≠ F ×. This means that the intersection F × ∩U ≠ {1} for any
open compact subgroup U of F ×.

Fix a maximal order OB of Bf and consider the projective system of Shimura curves XU

indexed by open compact subgroup U of O×
B. For each positive integer N , let U(N) denote

a compact subgroup of O×
B of the form U(N) ∶= (1 +NOB)×.

Proposition 4.1. If U is contained in U(N) for some N ≥ 3, then g(XU) ≥ 2.

Proof. This can be seen from the above complex uniformization. The curve XU,τ is a disjoint

union of quotients Xg ∶= Γg/h, for g sits in a subset of G(Q̂) representing the double coset

quotient G(Q)/G(Q̂)/U , and

Γg = B
×
+ ∩ gUg

−1 ⊂ B×
+ ∩ (1 +NgOBg

−1)×.

Let Γg denote the quotient Γg/(Γg ∩F ×). We claim that Γg acts freely on h. This claim will
show that Xg has a (free) uniformization by h, thus its genus greater than 1.

Let γ ∈ Γg ∖ F × be an element fixing a point z ∈ h. Then the subfield E ∶= F (γ) of
B generate by γ over F is a quadartic CM extension of F . It is clear that γ ∈ O×

E and
γ −1 ∈ NOE. Write ζ = γ/γ̄. Then ζ has norm 1 at all places of E. Thus ζ is a roots of unity
with the property ζ −1 ∈ NOE ∩Q(ζ) ⊂ NZ[ζ]. It follows that Z[ζ]/NZ[ζ] = Z/NZ. On the
other handn we know that Z[ζ]/NZ[ζ] is a free module over Z/NZ of rank equal to degQ(ζ).
It follows that ζ ∈ Q, or ζ = ±1. Since N ≥ 3, ζ = 1. It follows that γ ∈ (1 +NOF )×.
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p-divisible groups

Let p be a prime and fix a maximal order OB,p of Bp containing OE,p. For any ideal n of
OF dividing a power of p, let Up(n) denote (1 + nOB,p)×. Then we have a Shimura curve
Xn ∶= X/Up(n). Write Up(1) = Up(OF ) = O×

B,p the maximal compact subgroup of B×
p , and

X1 =XUp(1). We define the p-divisible group Hn on Xn by

Hn = [Bp/OB,p ×X] /Up(n),

where Up(n) ⊂ O×
B,p acts on Bp/OB,p by right multiplications. This definition makes sense,

since Up(1) acts freely on X. Moreover, for each n, its n-torsion subgroup H1[n] can be
descended to XUp(1)×Up for some open compact subgroup Up of Bp,×f as follows:

HUp(1)×Up[n] = [n−1OB/OB ×X/(Up(n) ×U
p)] /(Up(1)/Up(n)).

For this we need to find Up so that Up(1)/Up(n) acts freely on X/(Up(n)×Up). The existence
of such a Up can be proved in the same way as [Ca, Cor. 1.4.1.3].

Relation between X0 and X ′0

In the following sections we want to study integral models of XU and HU by Carayol [Ca]
by relating them to X ′

U ′ and H ′
U ′ studied in §3.1 and §3.2 for Shimura curves defined using

imaginary quadratic field E = F (
√
λ) with λ ∈ Q such that p is split in Q(

√
λ).

Let X0 be the identity connected component of X over F̄ (which was denoted as M+ in

[Ca, §4.1]), and ∆ the stabilizer of X0 in Ḡ = G(Q̂)/Z(Q). Then ∆ is represented by the
subgroup ∆ ⊂ G(Q̂) = B̂× consisting of elements g with determinants q(g) ∈ F ×

+ . In other
words, we have ∆ = ∆/Z(Q).

Similarly, let X ′0 be the identity connected component of X ′ over F̄ (which was denoted

as in M ′+ in [Ca], §4.1), and ∆
′
the stabilizer of X ′0 in G

′
∶= G̃/Z ′′(Q). Then ∆

′
is represented

by the subgroup ∆′ ⊂ G′′(Q̂) = Ê××F̂× B̂
× by elements (e, b) with norm (q(b)eē, e/ē) ∈ F ×

+ ×E
×
1

in F ×
+ . In other words, we have ∆

′
= ∆′/Z ′′(Q).

It is clear that the embedding GÐ→G′′ induces an isomorphism ∆ ≃ ∆
′
. Here is the first

comparison result:

Proposition 4.2. There is an isomorphism X0 ≃X ′0 with compatible actions by ∆ ≃ ∆
′
.

Proof. Same as Carayol [Ca, Prop. 4.2.2].

For the second fundamental result, let p be a prime and let X0
1 and X ′0

1 be the quotients

X0
1 =X

0/O1
B,p, X ′0

1 =X ′0/O1
B,p

where O1
B,p the subgroup of OB,p with norm 1. Then X0

1 and X ′0
1 are defined over a maximal

extension of F which is unramified over every place of F dividing p. Let ℘ be a prime of OF

over a prime p, and F ur
℘ the completion of the maximal unramified extension of F℘. Then
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X0
1 (resp. X ′0

1 ) is the connected component of the limit X1 (resp. X ′
1) of X1,Up (X ′

1,U ′p)
over F ur

℘ . Let ∆0 denote the subgroup ∆ consisting of elements whose components over p
are in O×

B,p. Define ∆′
0 in the same way. Then X0

1 and X ′0
1 have actions respectively by

∆0/O1
B,p ⊂ ∆0/O1

B,p.
Define the p-divisible groups on these schemes by

H ∣X0
1 = (Bp/OB,p ×X

0) /O1
B,p, H ′∣X ′0

1 = (Bp/OB,p ×X
′0) /O1

B,p

These are also defined over F ur
℘ with natural actions by ∆0/O1

B,p and ∆′
0/O

1
B,p respectively.

Our second comparison result is as follows:

Proposition 4.3. There is an isomorphism of the p-divisible groups H ∣X0
1 and H ′∣X ′0

1 with
compatible action by ∆0/O1

B,p ⊂ ∆0/O1
B,p.

Proof. Same as Carayol [Ca], Proposition 4.4.3.

Here is a consequence of the above two comparison results:

Proposition 4.4. For any ideal n of OF dividing a power of p and prime to dB, and any
sufficiently small open compact Up ⊂ G(Q̂) depending on n, there is an open compact U ′p ⊂
G′(Q̂) such that X0

n,Up is isomorphic to X ′0
n,U ′p over K.

Proof. Same as Carayol [Ca, Prop. 4.5.5].

4.2 Integral models and arithmetic Hodge bundles

The goal of this subsection is to introduce integral models XU of XU for any open compact
subgroup U =∏v Uv of B×

f which is maximal at every prime ramified in B. Then we introduce

an arithmetic Hodge bundle LU on XU .

Integral models of Shimura curves

By Proposition 4.1, XU has a unique minimal regular (projective and flat) model XU over OF

when U ⊂ U(N) for some N ≥ 3. We want to check if these integral models form a projective
system. More precisely, for any U1 ⊂ U2 ⊂ U(N) there is a morphism XU1Ð→XU2 , thus a
rational map XU1Ð→XU2 . We want to check if this rational map is actually a morphism. For
this, we first check the regularity over a prime ℘ of OF dividing a prime p. Let K = F ur

℘ be the
completion of the maximal unramified extension of F℘. We will consider the open subgroups
of O×

B of the form U = Up(n)Up, where Up(n) = (1+nOB,℘)× for some ideal n dividing a power
of p, and Up is an open compact subgroup of O×

Bp . Let Xn,Up denote XUp(n)×Up .

Theorem 4.5. Consider the system of regular surfaces Xn,Up ⊗O℘ indexed by pairs (n, Up)
with the following properties:

(1) n is prime to dB;
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(2) Up ⊂ Up(N) ∶= (1 +NOB℘)× for some N ≥ 3 and prime to p.

Then these surfaces form a projective system of curves over O℘. Moreover if ℘ ∤ n, each
such curve Xn,Up ⊗ O℘ is smooth if ℘ is split in B, and a relative Mumford curve if ℘ is
ramified in B.

Proof. By Proposition 4.4, Theorem 3.2 and Corollary 3.6, there is a system of regular
models X ′0

n,U ′p of Xn,Up ≃ X ′
n,U ′p (for Up sufficiently small over O℘ depending on n) which is

smooth if ℘ ∤ n is split in B and a relative Mumford curve if ℘ ∣ dB. Under the condition of
the theorem, these models must be X1,Up by the uniqueness of the smooth models of curves
with genus ≥ 2. It remains to enlarge this system to all cases of Up satisfying the condition
of the theorem.

Let Xn be the projective limit of Xn,Up , which has generic fiber XK/Up(n). Then Xn has
an action by B× ∶= (O×

B,p ⋅B
p,×
f )/O×

(℘)
. For any open compact subgroup Up, we can construct

a normal integral model XU,K of XU,K by the categorical quotient:

XU,K = Xn/U = XU0,K/(U/U0),

where U0 is a sufficiently small normal subgroup of U . This model satisfies the condition of
the theorem if U ∶= U/[(U ∩ F ×)O×

B,p] has a free action on Xn. Thus it suffices to show that

U(N) acts freely on Xn for any N ≥ 3 prime to p. Furthermore, we need only check this
freeness on the identity connected component X 0

1 , i.e., ∆(N)0 ∶= U(N) ∩ ∆0 acts freely on
X 0

1 .
By our construction, the model X 0

1 is isomorphic to the identity connected component

X ′0
1 of the limit X ′

0 of X ′
1,U ′p constructed in Theorem 3.2 with compatible action by ∆0 = ∆

′

0.

Thus it suffices to show that ∆′
0(N) ∶= ∆

′

0 ∩ G̃(N) acts freely on X ′0
1 , where G̃0(N) is the

subgroup of G0 fixes OB′ and induces identity on OB′/NOB′ . Let δ ∈ ∆
′

0(N) fix a point x on
X 0

1 . We want to show that δ ∈ U ′p ⋅F ×. Let [A, ι, θ, κ] be the object represented by x. There is
an element ϕ ∈ End(A)⊗Z(p), u ∈ U ′p such that κ○δ○u = T(ϕ)○κ. Replace δ by δ○u, we may
simply assume that u = 1. The effect on the polarization gives an identity q(δ) = ϕ○ϕ∗ ∈ F ×

+ .
It follows that q(δ) also fixes x, and that δ/δ̄ fixes x too. Since δ/δ̄ ∈ U ′(N), by Proposition
3.5, δ = δ̄. Thus δ ∈ O×

F .

Now we extend the definition of the integral model XU to any open compact subgroup
U = ∏v Uv of B×

f which is maximal at every prime ramified in B. Let p be a prime number
coprime to 2dB such that Up is maximal. Denote U ′ = UpUp(p) with Up(p) = (1 + pOB,p)×.
Define XU to be the quotient scheme

XU ∶= XU ′/U = XU ′/(U/U ′) = XU ′/(U/U
′
).

Here U ∶= U/(U ∩F ×) as before, so the stabilizer of U/U
′
at the generic point of XU ′ is trivial.

Note that U/U ′ is a finite group, so U/U
′
is also a finite group. Then XU is a normal integral

scheme, projective and flat over OF , and the quotient map π ∶ XU ′ → XU is finite of degree
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[U ∶ U
′
]. By Theorem 4.5, the definition does not depend on the choice of p. It recovers the

minimal regular model if U ⊂ U(N) for some N ≥ 3.
By construction as above, the morphism π ∶ XU ′Ð→XU is flat at all codimension one

points but not necessarily at all points. Thus π∗OXU ′ is not necessarily a locally free sheaf
over XU . But we can still define the norm map Nπ ∶ π∗OXU ′Ð→OXU by

Nπ(f) ∶= ∏
u∈U/U

′
u∗f.

Using this norm map, for any line bundle L on XU ′ we can define the norm bundle Nπ(L)
on XU as the line bundle locally generated by the symbols Nπ(`), where ` are sections of
π∗L, with relations for local sections f of π∗OXU ′ :

Nπ(f`) = Nπ(f) ⋅Nπ(`).

It is clear that if M is a line bundle on XU , then we have

Nπ(π
∗M) = degπ ⋅M.

Corollary 4.6. Consider the system {XU}U of surfaces with U = ∏v Uv maximal at every
prime ramified in B. Then this system is a projective system of curves over OF extending
the system {XU}U . Moreover, the following are true:

(1) If U ⊂ U(N) for some N ≥ 3, then XU is smooth at any prime ℘ ∤ dB such that U℘ is
maximal, and is a relative Mumford curve at any prime ℘ ∣ dB.

(2) Let XU be any element in the system. Let H be any finite extension of F which is
unramified above every finite prime v of F such that Bv is ramified or Uv is not maximal.
Then the base change XU ⊗OF OH is Q-factorial in the sense that any Weil divisor of
XU ⊗OF OH has a positive multiple which is Cartier.

Proof. We already know (1) from Theorem 4.5. For (2), to illustrate the idea, we first treat
the case H = F . Let π ∶ XU ′ → XU be a quotient map in the construction of XU , where
U ′ = UpUp(p) and Up(p) = (1 + pOB,p)× are as above. Let C be a prime divisor of XU . The
schematic preimage π−1(C) in XU ′ is locally defined by a single equation f ∈ OXU ′ since XU ′ is
regular. Then the divisor (degπ) ⋅C is locally defined by the image of f under the norm map
Nπ ∶ π∗OXU ′ → OXU . This proves the case H =K. In general, the map XU ′ ⊗OH → XU ⊗OH

is still a quotient map by the same finite group U/U ′. By (1), XU ′ ⊗ OH[1/p] is regular.
Then the same proof shows that XU ⊗OH[1/p] is Q-factorial. Take a different prime p′ and
apply the same argument. Then XU ⊗OH[1/p′] is also Q-factorial. This implies the result
for XU ⊗OH .

For any ideal n of OF , let U(n) denote the compact group U(n) = (1 + nOB)×. Let X (n)
denote the integral model XU(n) over OF if n is coprime to dB. In particular we have an
integral model X (1) ∶= X (OF ) which is a normal, projective, and flat scheme over OF , and
every X (n) is the normalization of X (1) in the projection X(n)Ð→X(1).

In the modular curve case, X (1) ≃ P1
Z is regular. In general, it is not clear if X (1) is

regular. For the purpose of intersection theory, the property of being Q-factorial is sufficient.
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Arithmetic Hodge bundle

For any scheme S, denote by Pic(S) the groupoid of line bundles on S, and by Pic(S) the
group of isomorphism classes of line bundles on S. Denote by Pic(S)Q the groupoid of Q-line
bundles on S. The objects of Pic(S)Q are of the form aL with a ∈ Q and L ∈ Pic(S). The
homomorphism of two such objects is defined to be

Isom(aL, bM) ∶= lim
Ð→
m

Isom(L⊗am,M⊗bm),

where m runs through positive integers such that am and bm are both integers. The group
of isomorphism classes of such Q-line bundles is isomorphic to Pic(S)Q ∶= Pic(S)⊗Q.

Similarly, we define the groupoid P̂ic(S)Q of hermitian Q-line bundles on an arithmetic
variety S. We will usually write the tensor products of (hermitian) line bundles additively.

In [YZZ, §3.1.3], for each open compact subgroup U of Bf , the curve XU has a Hodge
bundle LU ∈ Pic(XU)Q. It is the Q-line bundle for holomorphic modular forms of weight
two, and it is the canonical bundle modified by ramification points. It is determined by the
following two conditions:

(1) The system {LU}U is compatible with pull-back maps.

(2) If Ū acts freely on X, then LU = ωXU /F .

For general U , we have the following explicit formula.

LU = ωXU /F + ∑
Q∈XU (F )

(1 − e−1
Q ) O(Q).

where the operation in Pic(XU)Q is written additively, and eQ is the ramification index of
the map XÐ→XU .

Next, we want to extend the Hodge bundle LU to a hermitian Q-line bundle LU over XU
for U = ∏v Uv maximal at every prime ramified in B. Note that our definition is different
from that of [YZZ, §7.2.1] including the normalization of the hermitian metric.

Theorem 4.7. There is a unique system {LU}U of hermitian Q-line bundles LU on the
arithmetic surface XU extending the system {LU}U , where U = ∏v Uv is maximal at every
prime ramified in B, so that the following conditions hold:

(1) The system {LU}U is invariant under the pull-back maps among different U .

(2) If U is sufficiently small in the sense that U ⊂ U(N) for some N ≥ 3, then there is a
canonical isomorphism for any ℘ such that U℘ is maximal

LU ⊗O℘ = ωXU⊗O℘/O℘ .

Here the right-hand side denotes the relative dualizing sheaf.
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(3) At an archimedean place, the metric is given by ∣dz∣ = 2y under the complex uniformiza-
tion.

Proof. The third property is simply a definition of metrics. So we only need to consider
the first two properties. To construct the system, by pull-back, it suffices to construct the
Q-line bundle LU for the maximal compact subgroup U = O×

Bf of B×
f . Let π ∶ XU ′ → XU be

a quotient map in the construction of XU . Then U ′ = UpUp(p) with Up(p) = (1 + pOB,p)×

for some prime p coprime to 2dB. Let ωp = ωXU ′ [1/p]/OF [1/p] be the relative dualizing sheaf of
XU ′ away from p. Here we write XU ′[1/p] = XU ′ ⊗ OF [1/p]. Then the bundle Nπ(ωp) is a
line bundle on XU[1/p] with restriction degπLU on the generic fiber XU . Then 1

deg(π)Nπ(ωp)

already defines the restriction of LU to XU[1/p]. To get the whole LU , take a different prime
p′, and glue 1

deg(π)Nπ(ωp) and 1
deg(π′)Nπ′(ωp

′
) along XU[1/pp′]. This finishes the proof.

For any ideal n of OF coprime to dB, we have written X (n) for XU(n). Here U(n) =

(1 + nOB)×. Write (L(n),L(n),L(n)) for (LU(n),LU(n),LU(n)) similarly.

Remark 4.8. For an alternative approach of this paper, instead of defining XU as the quotient

scheme XU ′/(U/U
′
), one may define it as the quotient stack [XU ′/(U/U

′
)]. It is a regular

Deligne–Mumford stack, proper and flat over OF . The quotient scheme is just the coarse
scheme of the quotient stack. Then one may define LU to be the relative dualizing sheaf of
the quotient stack.

4.3 Integral models of p-divisible groups

Let ℘ be a prime of OF dividing p, and O℘ the ring of integers in F℘, and H = H℘ ×H℘

the decomposition according to the decomposition OF,p = O℘ ⊕O
℘
F,p of Zp-algebras. When

B℘ ≃M2(F℘) is split, Carayol [Ca, §1.4.4] has defined a p-divisible group E∞∣M0 related to
our H ∣X1 by the formula:

M0/Up(1) =X1, E∞ = (
1 0
0 0

)H℘∣M0 .

The treatment of all facts in Carayol [Ca] can be copied to H ∣X1 with some little modifica-
tions. In the following, we want to use his method to study integral model for H ∣X1.

Let K = F ur
℘ be the completion of the maximal unramified extension of F℘, and OK its

ring of integers.

Theorem 4.9. Let n be an ideal of OF prime to dB, and Xn the projective limit of XUp(n)Up⊗
OK as Up varies. Then Hn has an integral model Hn over Xn with the following properties:

(1) H℘ is étale over X1, and H℘ is a special formal OB,℘-module in the sense that Lie(H℘)
is a locally free sheaf over OX1,℘ ⊗ OK0 of rank 1 where K0 is an unramified quadratic
extension of F℘ embedded into B℘.

(2) the formal completion X̂1 along its special fiber over k̄ (k = OF /℘) is the universal
deformation space of Hk̄;
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(3) for any n prime to dB and with decomposition n = ℘n ⋅n′ with n′ prime to ℘, the morphism
XnÐ→X1 classifies pairs of a full level-n′ structure on on H℘

1 and a Drinfeld level ℘n-
structure on H1,℘.

Proof. It suffices to prove the corresponding statement for the connected component X0
n of

Xn. By Proposition 4.4, H ∣X0
n is isomorphic to H ′∣X ′0

n . Thus the all conclusions of above
theorem follow from Theorem 3.5. See also Carayol [Ca, §6.4, §6.6, §7.2, §7.4, §9.5] and
Čerednik–Drinfeld [BC].

Let us define M℘ = D(H℘) to be the covariant Deudonné crystal [Il, Me], and W℘ =
Lie(H)∨, W t

℘ = Lie(Ht)∨, where Ht℘ is the Cartier dual of H℘. Then we have an exact
sequence

0Ð→W t
℘Ð→M℘Ð→W

∨
℘Ð→0.

Applying the Gauss–Manin connection ∇ on M℘, we obtain the following composition of
morphisms:

W t
℘Ð→M℘

∇
Ð→M℘ ⊗ ωX℘Ð→W

∨
℘ ⊗ ωX℘ .

Taking determinants, we obtain a morphism

detW t
℘Ð→detW∨

℘ ⊗ ω
⊗2
X℘ .

In other words, we obtain a Kodaira–Spencer morphism of line bundles:

KS℘ ∶ N℘Ð→ω
⊗2
X℘ , N℘ ∶= detW t

℘ ⊗ detW∨
℘ .

Theorem 4.10. Let dB,℘ be the divisor on SpecOur
℘ corresponding to B℘. Then KS℘ extends

to an isomorphism of line bundles on X℘:

KS℘ ∶ N℘
∼
Ð→ω⊗2

X℘(−dB,℘).

Proof. Let (X̂℘, Ĥ℘) be the formal completion of pair (X℘,H℘) along its special fiber over

the residue field k̄ ∶= k(℘) of Our
℘ . Then (X̂℘, Ĥ℘) is the universal deformation of (X℘,k̄,H℘,k̄).

By deformation theory of p-divisible groups [Il] and [Me], we have an isomorphism

ω∨X℘
∼
Ð→HomOB℘(W

t
℘,W

∨
℘)

induced from the above composition of morphisms:

W t
℘Ð→M℘

∇
Ð→M℘ ⊗ ωX℘Ð→W

∨
℘ ⊗ ωX℘ .

Taking determinants, we obtain an embedding

ω−2
X℘ ⊂ N

∨
℘ .
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If ℘ is split in B, then we can write OB,℘ =M2(O℘). Using idempotents e1 = (
1 0
0 0

) and

e2 = (
0 0
0 1

), we can write Ω(H0) (resp. Ω(Ht℘)) as a direct sum of components Ω(H℘)i ∶=

eiΩ(H℘) (resp. Ω(Ht℘)
i = eiΩ(Ht℘)). These two components are isomorphic by the operator

(
0 1
1 0

). Thus we have

Ω∨
X℘ ≃ HomOv(Ω(Ht℘)

i,Ω(H℘)
i∨) = Ω(Ht℘)

i∨ ⊗Ω(H℘)
i∨.

This shows in particular that
ω2
X℘ = N℘.

Now assume that ℘ is nonsplit in F . Then M℘ is a free module over OB,℘ ⊗OX℘ . Let K
be a unramified extension of F℘ in B℘. Then we have a decomposition

OB,℘ = OK +OKj

where j a uniformizer of OB,℘ such that jx = x̄j for all x ∈ OK . Making a base change to
OK , then we have a decomposition of Ω(H℘) to the direct sum of the eigenspaces of OK

according to the embedding OKÐ→OXU,℘ and its conjugate:

Ω(Ht℘) = L1 ⊕L2, (resp. Ω(H℘)
∨ = N1 ⊕N2)

The action of j has grade Z/2Z with j2 = π a uniformaizer of O℘. Let j1 and j2 be the
restrictions of j on two components, then j1 ○ j2 = π. It follows for each point on X℘, exactly
one of j1 or j2 is an isomorphism. Thus we can assign a type i ∈ {1,2} to Ω(H℘) if ji is an
isomorphism. Notice that the types of Ω(H℘) and Ω(Ht℘)

∨ are opposite.
We claim that the condition j1 ○ j2 = π implies the following identity:

πω2
X℘ = N℘.

To prove this claim, without loss of generality, we assume that L2 = jL1 and N1 = jN2. Now
an element α ∈ ΩX℘ corresponds a pair of morphism of line bundles

φi ∶ LiÐ→Ni

compatible with action of j. It is clear that this morphism determines and is determinated by
φ1, and that φ2 = jφ1j−1 always has image included into πN2. Conversely, for any morphism
φ2 divided by π, the above equation determines a φ1. Our claim follows from this description
of φ1 ⊗ φ2.

Define a system of Q-line bundles N (n) on X (n) by

N (n) = L(n)⊗2(−dB).

Then the following Theorem 4.10 shows that for any prime ℘ of OF , this bundle has the
pulling back N℘ on X/(O×

B,℘).
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5 Shimura curve X ′′

In this section, we study the relation between Shimura curves X and X ′ in case 2: AE is
embedded into B. For this, we need to consider another Shimura curve X ′′ which includes
both X and X ′. We will first study some basic properties of X ′′, especially the p-divisible
groups parametrized by X ′′, and the construction of X ′′ using X and a Shimura variety Y of
dimension 0. Then we construct an integral model X ′′ of X ′′ using the integral model X , and
a p-divisible group H′′

x′′ for each p-adic point x′′ of X ′′ using Breuil–Kisin’s theory [Ki1, Ki2].
We show that the deformations of the p-divisible group H′′

x′′ is given by deformations of Hx.
Finally, we use all results in this section to complete the proof of Theorem 1.6.

5.1 Shimura curve X ′′

Let (Φ1,Φ2) be a nearby pair of CM types of E, and F ′ the reflex field of Φ1 + Φ2. In the
following, we want to define a Shimura curves X ′′ defined over F ′, depending on (Φ1,Φ2),
and with an action by the group

G′′ ∶= B× ×A× A×
E.

The stabilizer subgroup Z ′′ is generated by (1, x) with x ∈ E×, the closure of E× in Ê×. The
scheme X ′′ includes X ′ as a union of connected components via the embedding G′Ð→G′′.

At an archimedean place τ ′ of F ′ over a place τ of F , we define a reductive group over
Q as follows:

G′′ = B× ×F× E
×,

where as before B is a quaternion algebra over F with ramification set Σ(B) ∖ {τ}. Then
we have an embedding G′Ð→G′′. The Hodge structure h′ ∶ C×Ð→G′(R) induces the Hodge
structure h′′ ∶ C×Ð→G′′(R). The congugacy class of h′′ is h±. It is easy to show that the
reflex field of (G′′, h′′) is still F ′. Thus for each open compact subgroup U of G′′(Q̂) ≃ G′′

f ,
we have a Shimura curve X ′′

U over F ′ with uniformization at τ ′ given by

X ′′
U,τ ′(C) = G′′(Q)/h± ×G′′(Q̂)/U.

Let X ′′ be the projective limit of X ′′
U . Then X ′′ has a uniformization as follows:

X ′′
τ ′(C) = G′′(Q)/h± ×G′′(Q̂)/Z ′′

The embedding G′Ð→G′′ defines an embedding i ∶X ′Ð→X ′′.
In the following, we want to study the relation between X and X ′′. First let us start

with a Shimura variety Y of dimension 0 defined by the group E× with the Hodge structure
on hΨ ∶ C×Ð→(E ⊗R)× given by the composition of

C×Ð→(C×)g, z z→ (1, z−1,⋯, z−1)

with the inverse of the isomorphism Φ1 ∶ (E ⊗ R)×Ð→(C×)g. Here the component 1 corre-
sponds to the unique element of Φ1∖Φ2. Note that hΨ is determined by Ψ = Φ1∩Φ2. For any
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open compact subgroup J of Ê×, we have a Shimura variety YJ of dimension zero defined
over F ′ (which include the reflex field of hΨ). This set has an action by Ê×. In fact the set
of its geometric points is a homogenous space over E×/Ê×/J . Let Y be the projective limit
of YJ . Then the set of geometric points of Y is a principal homogenous space over E×/Ê×,
where E× is the closure of E× in Ê×.

At the archimedean place τ ′ of F ′ over a place τ of F as above, the product

(XU ×F YJ)τ ′ =XU,τ ×C YJ,τ ′

of Shimura varieties over C is defined by the reductive group B× × E× and the product of
Hodge structures (G ×E×, h × hΨ). We have a natural homomorphism of reductive groups:

B× ×E×Ð→G = B× ×F× E
×.

which is compatible with the Hodge structures. Thus we have a surjective morphism of
Shimura curves over F ′:

f ∶XU ×F YJÐ→X
′′
U ′′

where U ′′ is the image of U × J . Taking limits, we obtain a morphism of schemes over F ′:

X ×F YÐ→X
′′.

This morphism is compatible with the actions of Gf , Ê×, and G′′
f and induces an isomor-

phism:
f ∶ (X ×F Y )/∆(F̂ ×)

∼
Ð→X ′′,

where ∆ is the twisted diagonal map

∆ ∶ F̂ ×Ð→B̂× × Ê×, z z→ (z, z−1).

The isomorphism property of f can be checked at the place τ ′ using uniformizations of
X,Y,X ′′.

p-divisible groups

Fix a prime number p and a maximal order OB,p containing OE,p, we want to study certain
p-divisible groups parametrized by X ′′

U ′′ and YJ . Write Λp = OB,p as a left OB,p-module. For
any idea n of OF dividing a power of p, denote by U ′′

p (n) the closed subgroup of G′′
p fixing

Λp and acting trivially on Λp/nΛp. Write U ′′
p (1) = U

′′
p (OF ). Then we define

X ′′
1 =X ′′/U ′′

p (1), Y1 = Y /O×
E,p.

With our previous definition of X1, we have an isomorphism

f1 ∶ (X1 ×F Y1)/∆(F̂ ×)
∼
Ð→X ′′

1 .

Define the p-divisible groups on Y1 and X ′′
1 by making quotients

H ′′ = [Bp/OB,p ×X
′′] /U ′′

p (1), I = (Ep/OE,p × Y )/O×
E,p.
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Here U ′′
p (1) (resp. O×

E,p) acts on Bp/OB,p (resp. Ep/OE,p) on the right hand side as follows:

x ⋅ (b, e) = exb, x ∈ Bp/OB,p, (b, e) ∈ U ′′(1).

(resp. y ⋅ e = ey, y ∈ Ep/OE,p, e ∈ O
×
E,p.)

These definitions make sense since U ′′(1) and O×
E,p act freely on X ′′ and Y respectively.

These groups can be defined on finite levels as in the case of H over X1. We sketch the case
of H ′′ as follows. The group H ′′ is a direct limit of finite subgroups H ′′[pn]. Each H ′′[pn]
descends to a quotient X ′′/(U ′′(1)×U ′′p) for some compact open subgroup U ′′p of (G′′)p by
the formula

H ′′
U ′′
p (1)×U

p[pn] = [p−nΛp/Λp ×X
′′/(U ′′

p (p
n) ×U ′′p)] /(U ′′

p (1) ×U
′′p).

For this we need to find U ′′p so that U ′′
p (1)/U

′′
p (p

n) acts freely on X ′′/(U ′′
p (p

n) ×U ′′p). This
can be done by copying the argument in the proof of [Ca, Corollary 1.4.1.3]. It is clear that
H ′ =H ′′∣X′ . The groups H, H ′′ and I are related as follows:

Proposition 5.1. Let π1 and π2 be the projections of X1 ×F Y1 to the two factors, and
T(H ′′), T(H), T(I) be the Tate modules of the corresponding p-divisible groups. There is a
canonical isomorphism of étale sheaves on X1 ×F Y1:

f∗1 T(H ′′)
∼
Ð→π∗1T(H)⊗OE,p π

∗
2T(I).

Proof. By definitions, the Tate modules of these groups can be written as follows:

T(H) = (OBp ×X)/U(1), T(H ′′) = (OBp ×X
′′)/U ′′(1), T(I) = (OE,p × Y )/O×

E,p.

5.2 Integral models

Let ℘′ be a finite place of F ′ dividing p, and let ℘ be a place of F under ℘′. Let F ′ur
℘′ be the

completion of the maximal unramified extension of F ′
℘′ , which is a finite extension of F ur

℘ .
For simplicity, we introduce the following notations: K ∶= F ur

℘ and K ′ ∶= F ′ur
℘′ .

Consider the following schemes:

X1,℘ =X1 ⊗F K, X ′′
1,℘′ =X

′
1 ⊗F ′ K

′, Y1,℘′ ∶= Y1 ⊗F ′ K
′.

Then we have an isomorphism:

f℘′ ∶X1,℘ ×K Y1,℘′/∆(F̂ ×)
∼
Ð→X ′′

1,℘′ .

By construction, all geometric points of Y1 are defined over K ′. Thus Y1,℘′ is a principal

homogenous space of E×/Ê×/O×
E,p. In this way, the integral model X1,℘ of X1,℘ and the

model SpecOK′ of SpecK ′ induce an integral model X ′′
1,℘′ for X ′′

1,℘′ . This in turn induces an
integral model X ′

1,℘′ by the embedding X ′
1,℘′Ð→X

′′
1,℘′ .
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Notice that if ℘ does not divide dB, then X1,℘ is smooth over OK . It follows that both X ′
1,℘′

and X ′′
1,℘′ are smooth over OK′ . If ℘ divides dB, then X1,℘ is a regular and stable Mumford

curve. It follows that X ′
℘′ and X ′′

℘′ are both stable Mumford curves. Notice that they are not
regular if ℘ is ramified in F ′.

Recall that we have defined a line bundle N1,℘ on X℘ extending ω2
X1,℘ . This bundle induces

bundles N ′
1,℘′ and N ′′

1,℘′ on X ′
1,℘′ and X ′′

1,℘′ respectively.
Now we would like to extend the groups I,H ′,H ′′ to integral models I,H′,H′′ point by

point using Breuil–Kisin’s classification of p-divisible group [Ki1]: any crystalline represen-
tation of GK′ ∶= Gal(K̄ ′/K ′) of Hodge–Tate weights 0 or −1 arises from a p-divisible group
over OK′ .

Proposition 5.2. Let L be a finite extension of K ′. For each point y ∈ Y (L) (resp. x′ ∈
X ′(L), resp. x′′ ∈ X ′′(L)) the group Iy (resp. H ′

x′, H
′′
x′′) over L extends uniquely to a

p-divisible group over OL.

Proof. For I, recall that the action of GK′ on T(I) ≃ OE,p is given by the reciprocity map
for the type (E,Φ1 ∩Φ2). Fix an isomorphism C ≃ Q̄p. Then T(I) ×Qp Q̄p is a direct sum of
one-dimensional spaces Vσ indexed by σ ∈ Hom(E, Q̄p) = Hom(E,C). The action of GK′ on
Vσ is trivial if σ ∉ Ψ; otherwise it is given by the character:

GK′Ð→Gab
F ′℘′

≃ O×
F ′℘′

⊂ Q̄×
p .

Thus T(I) is crystalline of weight −1 or 0.
For H ′′

x′′ , let (x, y) be an L-point of X1 × Y1 with image x′′ ∈X ′′
1 (L). Consider the p-adic

representation T(H ′′
x′′). By Proposition 5.1, it is the product T(Hx) × T(Iz). Both T(Iy)

and T(Hx) are cryslalline since both Hx and Iy extend to a p-divisible groups over ring of
integers by Proposition 4.9, and the above discussion. It follows that T(H ′′

x′′) is crystalline.
It also has weights 0 and −1. Thus by Breuil–Kisin [Ki1], H ′′

x′′ extends to a p-divisible group
H′′
x′′ over OL.

The statement for H ′ is clear as it is the restriction of H ′′ on X ′′.

Deformation theory

Let L be a finite extension ofK ′ and let (x, y) be an L-point ofX1×Y1 with image x′′ ∈X ′′
1 (L).

We have covariant Dieudonné modules D(H′′
x′′) over OK , D(Hx) over OK′ , D(Iy) over OK′

and their filtrations:
0Ð→Ω(H′′t

x′′)Ð→D(H′′
x′′)Ð→Ω(H′′

x′′)
∨Ð→0.

0Ð→Ω(Htx)Ð→D(Hx)Ð→Ω(Hx)
∨Ð→0,

0Ð→Ω(I ty)Ð→D(Iy)Ð→Ω(Iy)
∨Ð→0.

Proposition 5.3. There is a canonical isomorphism of filtered OE,p-modules:

D(H′′
x′′) ≃ D(Hx)⊗OE,p⊗OK D(Iy).

42



Proof. By Kisin [Ki2, Thm. 1.4.2] for p ≠ 2 and by Kim [Kim], Lau [La], and Liu [Li]
for p = 2, for a p-divisible group G over OL with L a finite extension of the fraction field
of W (k̄) (k ∶= O℘/℘), the module D(G) with its filtration depends canonically on its Tate
module T(G) as an object in the category Repcriso

GL
of integral crystalline representations of

GL ∶= Gal(L̄/L). More precisely, let S = W (k̄)[[u]] be the ring of power series over W (k̄)
with a surjective map SÐ→OL by sending u to a uniformizer πL of L, then

D(G) = OL ⊗S ϕ
∗MT(G).

where M is a functor from Repcriso
GL

to certain category ModϕS of modules over non-commutative
ring S[ϕ], defined in [Ki2, Theorem 1.2.1].

Applying this to divisible groups H′′
x′′ , (Hx)OK′ , Iy over OL = OK′ , and taking care of

the isomorphism in the above proposition, we obtain a canonical isomorphism of filtered
OE,p-modules:

D(H′′
x′′) ≃ D(Hx)⊗OE,p⊗OK D(Iy).

Now we consider these p-divisible groups with actions by OF,p. Their cohomology groups
are modules over of the OK-algebra OF,p⊗ZpOK . The quotient OF,pÐ→O℘ induces a quotient
τ ∶ OF,p ⊗Zp OKÐ→OK . Use this τ to take quotients of cohomology groups to obtain:

0Ð→W(H′′t
x′′)Ð→M(H′′

x′′)Ð→W(H′′
x′′)

∨Ð→0.

0Ð→W(Htx)Ð→M(Hx)Ð→W(Hx)
∨Ð→0,

0Ð→W(I ty)Ð→M(Iy)Ð→W(Iy)
∨Ð→0.

Notice thatW(Iy) = 0 andW(I ty) is a free module of rank 1 over OE,K ∶= OE,℘⊗O℘OK . Thus
we have:

Proposition 5.4. There are canonical isomorphisms:

W(H′′t
x′′) ≃W(Htx)⊗OE,K W(I ty), W(H′′

x′′) ≃W(Hx)⊗OE,K W(I ty)
∨.

We want to apply these facts to compute the universal deformation space of H′′
x′′ as

p-divisible OE,p-module:

HomOE,p(Ω(Htx′′),Ω(Hx′′)
∨) =HomOE,p(W(Htx′′),W(H′′

x′′)
∨)

=HomOE,℘(W(Htx),W(Hx)
∨)⊗OK OK′

=HomOB,℘(W(Htx),W(Hx)
∨)⊗OK′

=ω−1
X1,℘,x ⊗OK′

=ω−1
X ′′

1,℘′ ,x
′′ .

Here
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(1) the first identity follows from a consideration of types under actions by OE,p,

(2) the second identity follows from the above proposition ,

(3) the third identity follows from a precise computation,

(4) the fourth identity follows from the Kodaira–Spencer map on H,

(5) the last one follows from the definition.

This shows that the formal completion X̂ ′′
1,x′′ of X ′′

1,℘′ at x′′ is indeed the universal deformation
of the p-divisible group H′′

x′′ .
Taking determinants of above isomorphism, we obtain the following identity of two OK-

lattices of the module ω−2
X′′

1,℘′ ,x
′′ .

Corollary 5.5.
N ′′
x′′ = detW(H′′

x′′)⊗ detW(H′′t
x′′).

5.3 Proof of Theorem 1.6

Let y ∈ Y be any fixed point. Then we have an embedding XÐ→X ′′. Recall that P ∈XT (Q)

is a fixed CM point by E. Let P ′′ ∈X ′′ be the image of (P, y). Then P ′′ is a point fixed by
T ′′(Q).

Lemma 5.6. There is an embedding X ′Ð→X ′′ such that P ′′ is the image of a P ′ in X ′ fixed
by T ′(Q).

Proof. We fix one archimedean place τ ′ of F ′ over a place τ of F . This gives a nearby
quaternion algebra B = B(τ). We may assume P is represented by (z0,1) ∈ h ×G(Q̂) with
z0 ∈ h a fixed point by E× in the following uniformization:

Xτ(C) ≃ G(Q)/h± ×G(Q̂)/Z(Q).

Similarly, we may assume that y is represented by 1 ∈ Ê×. Then

Yτ ′(C) = E×/Ê×.

In this way, the image P ′′ of (P, y) in X ′′
τ (C) is represented by (z0,1) ∈ h ×G′′(Q̂):

X ′′
τ ′ = G

′′(Q)/h± ×G′′(Q̂)/Z ′′(Q).

Thus P ′′ is the image of a point P ′ ∈X ′T ′ .

Recall that we have fixed a maximal order OB of Bf including OÊ, which defines maximal
compact subgroups U,U ′, U ′′ of G, G′ and G′′, curves XU ,X ′

U ′ ,X ′′
U ′′ , and morphisms

XUÐ→X
′′
U ′′ , X ′

U ′Ð→X ′′
U ′′ .
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The image of P,P ′, P ′′ defines CM points PU , P ′
U ′ , P ′′

U ′′ which is compatible with above mor-
phisms.

By Corollary 2.6, it suffices to show that for each nearby pair (Φ1,Φ2) of CM types of E,

g ⋅ h(Φ1,Φ2) =
1

2
hLU (PU) −

1

4
log(dB).

By Theorem 4.10, the right hand side is 1
4hNU (PU).

Let A0 be the corresponding abelian variety represented by P ′
U ′ over some finite extension

K of F ′(P ′
U ′). Then A0 is isogenous to the products of CM abelian varieties A1,A2 of CM

types Φ1,Φ2. By Theorem 2.7,

h(Φ1,Φ2) =
1

2
h(A0, τ).

Thus we have reduced Theorem 1.6 to the identity

h(A0, τ) =
1

2g
hNU (PU).

Since 1
ghNU (PU) =

1
[F (PU )∶Q] d̂eg(N U ∣P̄U ), it suffices to prove the following result.

Proposition 5.7. There is an isomorphism of hermitian line bundles over OK:

N (A0, τ) ≃ N PU ⊗OF (PU ) OK .

Proof. Notice that both sides have the restriction L⊗2
P ′′
U ′′
⊗K on the generic fiber of X ′. Thus

two sides define two integral and hermtian structures on L⊗2
P ′′ ⊗K. Also by Theorem 3.7,

they has the same metric. Thus it suffices to show that they define the same lattice at each
finite place of K. Let v be a finite place of K with residue characteristic p. Let Our

K,v be the
completion of the maximal unramified extension of OK,v. Then

Ω(A0)⊗O
ur
K,v ≃ Ω(A0[p

∞])⊗Our
K,v.

By Corollary 5.5,
N (A0, τ)⊗O

ur
K,v = NP ′′U ′′ ⊗O

ur
K,v = NPU ⊗O

ur
K,v.

This completes the proof of the proposition.
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Part II

Quaternionic heights
The goal of this part is to prove Theorem 1.7. We also use the notations in our previous
work [YZZ]. We will make a specific explanation when we come to a setting different from
that of [YZZ].

6 Pseudo-theta series

In this section, we introduce the notion of pseudo-theta series, an important concept used in
the following sections. We will first recall the usual theta series defined by Schwartz functions
in [YZZ]. Then we define a pseudo-theta series, which looks like a theta series but is not
automorphic. We will show that it can be approximated by the difference of two theta series
associated to it. Finally, we will show that if a sum of pseudo-theta series is automorphic,
then these pseudo-theta series can be actually replaced by the difference of the theta series
associated to them and we get some extra identities between these theta series.

6.1 Schwartz functions and theta series

We first recall the notion of Schwartz functions and theta series in [YZZ], which is a variant
of the standard notions.

Let F be a totally real number field, and A the adele ring of F . Let (V, q) be a positive
definite quadratic space over R. Let

S(V (A) ×A×) = ⊗vS(V (Fv) × F
×
v )

be the space of Schwartz functions introduced in [YZZ, §4.1]. We recall it in the following.
If v is non-archimedean, then S(V (Fv) × F ×

v ) is the usual space of locally constant and
compactly supported functions.

If v is archimedean, then Fv = R and then S(V (Fv)×R×) consists of functions on V (Fv)×
R× of the form

φv(x,u) = (P1(uq(x)) + sgn(u)P2(uq(x))) e
−2π∣u∣q(x)

with polynomials Pi of complex coefficients. Here sgn(u) = u/∣u∣ denotes the sign of u ∈ R×.
The standard Schwartz function φv ∈ S(V (Fv) ×R×) is the Gaussian function

φv(x,u) = e
−2πuq(x) 1R+(u).

Here 1R+ is the characteristic function of the set R+ of positive real numbers. In this paper,
φ is always the standard Gaussian function at archimedean places.

Assume that dimV is even in the following, which is always satisfied in our application. In
[YZZ, §2.1.3], the Weil representation on the usual space S(V (A)) is extended to an action of
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the similitude groups on S(V (A)×A×). This gives a representation of GL2(A)×GO(V (A))
on S(V (A) ×A×). This extension is originally from Waldspurger [Wa].

Take any φ ∈ S(V (A) ×A×). There is the partial theta series

θ(g, u, φ) = ∑
x∈V

r(g)φ(x,u), g ∈ GL2(A), u ∈ A×.

If u ∈ F ×, it is invariant under the left action of SL2(F ) on g. To get an automorphic form
on GL2(A), we need a summation on u.

There is an open compact subgroup K ⊂ GO(Af) such that φf is invariant under the
action of K by the Weil representation. Denote µK = F × ∩K. Then µK is a subgroup of the
unit group O×

F , and thus is a finitely generated abelian group. Define a theta function by

θ(g, φ)K = ∑
u∈µ2

K/F×
θ(g, u, φ) = ∑

u∈µ2
K/F×

∑
x∈V

r(g)φ(x,u), g ∈ GL2(A).

The summation is well-defined and absolutely convergent. The result θ(g, φ)K is an au-
tomorphic form on g ∈ GL2(A), and θ(g, r(h)φ)K is an automorphic form on (g, h) ∈
GL2(A) × GO(V (A)). Furthermore, if φ∞ is standard, then θ(g, φ)K is holomorphic of
parallel weight 1

2 dimV .
By choosing fundamental domains, we can rewrite the sum as

θ(g, φ)K = ∑
u∈µ2

K/F×
r(g)φ(0, u) +wK ∑

(x,u)∈µK/((V −{0})×F×)
r(g)φ(x,u).

Here the natural action of µK on V × F × is just α ○ (x,u) ↦ (αx,α−2u). The summation
over u is well-defined since φ(αx,α−2u) = r(α−1)φ(x,u) = φ(x,u) for any α ∈ µK . The factor
wK = ∣{1,−1} ∩K ∣ ∈ {1,2}. See [YZZ, §2.1.3] for more details.

6.2 Pseudo-theta series

Now we introduce pseudo-theta series. Let V be a positive definite quadratic space over
F , and V0 ⊂ V1 ⊂ V be two subspaces over F with induced quadratic forms. All spaces
are assumed to be even-dimensional. We allow V0 to be the empty set ∅, which is not a
subspace in the usual sense. Let S be a finite set of non-archimedean places of F , and
φS ∈ S(V (AS) ×AS×) be a Schwartz function with standard infinite components.

A pseudo-theta series is a series of the form

A
(S)
φ′ (g) = ∑

u∈µ2/F×
∑

x∈V1−V0

φ′S(g, x, u)rV (g)φ
S(x,u), g ∈ GL2(A).

We explain the notations as follows:

• The Weil representation r
V

is not attached to the space V1 but to the space V ;

• φ′S(g, x, u) =∏v∈S φ
′
v(gv, xv, uv) as local product;
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• For each v ∈ S, the function

φ′v ∶ GL2(Fv) × (V1 − V0)(Fv) × F
×
v → C

is locally constant. And it is smooth in the sense that there is an open compact
subgroup Kv of GL2(Fv) such that

φ′v(gκ, x, u) = φ
′
v(g, x, u), ∀(g, x, u) ∈ GL2(Fv) × (V1 − V0)(Fv) × F

×
v , κ ∈Kv.

• µ is a subgroup of O×
F with finite index such that φS(x,u) and φ′S(g, x, u) are invariant

under the action α ∶ (x,u) ↦ (αx,α−2u) for any α ∈ µ. This condition makes the
summation well-defined.

• For any v ∈ S and g ∈ GL2(Fv), the support of φ′v(g, ⋅, ⋅) in (V1−V0)(Fv)×F ×
v is bounded.

This condition makes the sum convergent.

The pseudo-theta series A(S) sitting on the triple V0 ⊂ V1 ⊂ V is called non-degenerate if
V1 = V , and is called non-truncated if V0 is empty. It is called non-singular if for each v ∈ S,
the local component φ′v(1, x, u) can be extended to a Schwartz function on V1(Fv) × F ×

v .

Assume that A
(S)
φ′ is non-singular. Then there are two usual theta series associated to

A(S). View φ′v(1, ⋅, ⋅) as a Schwartz function on V1(Fv) × F ×
v for each v ∈ S, and φw as a

Schwartz function on V1(Fw) × F ×
w for each w ∉ S. Then the theta series

θA,1(g) = ∑
u∈µ2/F×

∑
x∈V1

r
V1
(g)φ′S(1, x, u)rV1

(g)φS(x,u)

is called the outer theta series associated to A
(S)
φ′ . Note that the Weil representation rV1 is

based on the quadratic space V1. Replacing the space V1 by V0, we get the theta series

θA,0(g) = ∑
u∈µ2/F×

∑
x∈V0

r
V0
(g)φ′S(1, x, u)rV0

(g)φS(x,u).

We call it the inner theta series associated to A
(S)
φ′ . We set θA,0 = 0 if V0 is empty.

We introduce these theta series because the difference between θA,1 and θA,0 somehow
approximates A(S). It will be discussed as follows.

Approximation by induced theta series

We start with two invariants of GL2(A) defined in terms of the Iwasawa decomposition. For
g ∈ GL2(A), we define δ(g) = ∏v δv(gv) and ρ∞(g) = ∏v∣∞ ρv(gv). Here the local invariants
are defined as follows.

Denote by P the algebraic group over Q of upper triangular matrices. For any place v,
the character δv ∶ P (Fv)→ R× defined by

δv ∶ (
a b

d
)z→ ∣

a

d
∣

1
2

48



extends to a function δv ∶ GL2(Fv)→ R× by the Iwasawa decomposition.
If v is a real place, we define a function ρv ∶ GL2(Fv)→ C by ρv(g) = eiθ if

g = (
a b

d
)(

cos θ sin θ
− sin θ cos θ

)

is in the form of the Iwasawa decomposition, where we require a > 0 so that the decomposition
is unique.

Resume the notation in the last subsection. Now we consider the relation between the
non-singular pseudo-theta series A

(S)
φ′ and its associated theta series θA,1 and θA,0.

We first consider the non-truncated case. Then V0 is empty, and

A
(S)
φ′ (g) = ∑

u∈µ2/F×
∑
x∈V1

φ′S(g, x, u)rV (g)φ
S(x,u).

Obviously we have A
(S)
φ′ (1) = θA,1(1), but of course we can get more.

A simple computation using Iwasawa decomposition asserts that, if φw is the standard
Schwartz function on V (Fw) × F ×

w , then for any g ∈ GL2(Fv) and (x,u) ∈ V1(Fw) × F ×
w ,

r
V
(g)φw(x,u) =

⎧⎪⎪
⎨
⎪⎪⎩

δw(g)
d−d1

2 r
V1
(g)φw(x,u) if w ∤∞;

ρw(g)
d−d1

2 δw(g)
d−d1

2 r
V1
(g)φw(x,u) if w ∣∞.

Here we write d = dimV and d1 = dimV1.
This result implies that,

A
(S)
φ′ (g) = ρ∞(g)

d−d1
2 δ(g)

d−d1
2 θA,1(g), ∀ g ∈ 1S′GL2(AS′).

Here S′ is a finite set consisting non-archimedean places v such that v ∈ S or φv is not
standard.

Now we consider a general non-singular pseudo-theta series

A
(S)
φ′ (g) = ∑

u∈µ2/F×
∑

x∈V1−V0

φ′S(g, x, u)rV (g)φ
S(x,u).

We have to compare it with the difference between the same theta series

θA,1(g) = ∑
u∈µ2/F×

∑
x∈V1

r
V1
(g)φ′S(1, x, u)rV1

(g)φS(x,u)

and the non-truncated pseudo-theta series

B
(S)
φ′ (g) = ∑

u∈µ2/F×
∑
x∈V0

r
V1
(g)φ′S(1, x, u)rV1

(g)φS(x,u).

Note that B(S) is just a part of θA,1, where summation is taken over the whole V0 but the
representation is taken over V1. By what we discussed above, we should compare B(S) with
the associated theta series

θB,0(g) = ∑
u∈µ2/F×

∑
x∈V0

r
V0
(g)φ′S(1, x, u)rV0

(g)φS(x,u).
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But this is exactly the same as θA,0. By the same argument, there exists a finite set S′ of
non-archimedean places such that

A
(S)
φ′ (g) = ρ∞(g)

d−d1
2 δ(g)

d−d1
2 (θA,1(g) −B

(S)
φ′ (g)), ∀ g ∈ 1S′GL2(AS′);

B
(S)
φ′ (g) = ρ∞(g)

d1−d0
2 δ(g)

d1−d0
2 θA,0(g), ∀ g ∈ 1S′GL2(AS′).

Our conclusion is that for any g ∈ 1S′GL2(AS′),

A
(S)
φ′ (g) = ρ∞(g)

d−d1
2 δ(g)

d−d1
2 θA,1(g) − ρ∞(g)

d−d0
2 δ(g)

d−d0
2 θA,0(g). (6.2.1)

By the smoothness condition of pseudo-theta series, there exists an open compact subgroup
KS′ of GL2(FS′) such that the above identity is actually true for any g ∈KS′GL2(AS′).

6.3 Key lemma

Now we can state our main result for this subject.

Lemma 6.1. Let {A
(S`)
` }` be a finite set of non-singular pseudo-theta series sitting on vector

spaces V`,0 ⊂ V`,1 ⊂ V`. Assume that the sum ∑`A
(S`)
` (g) is automorphic for g ∈ GL2(A). Then

(1) ∑
`

A
(S`)
` = ∑

`∈L0,1

θA`,1,

(2) ∑
`∈Lk,1

θA`,1 − ∑
`∈Lk,0

θA`,0 = 0, ∀k ∈ Z>0.

Here Lk,1 is the set of ` such that dimV` − dimV`,1 = k, and Lk,0 is the set of ` such that
dimV` − dimV`,0 = k. In particular, L0,1 is the set of ` such that V`,1 = V`.

Proof. Denote f = ∑`A
(S`)
` . In the equation f − ∑`A

(S`)
` = 0, replace each A

(S`)
` by its

corresponding combinations of theta series on the right-hand side of equation (6.2.1). After
recollecting these theta series according to the powers of ρ∞(g)δ(g), we end up with an
equation of the following form:

n

∑
k=0

ρ∞(g)kδ(g)kfk(g) = 0, ∀g ∈KSGL2(AS). (6.3.1)

Here S is some finite set of non-archimedean places, KS is an open compact subgroup of
GL2(FS), and f0, f1,⋯, fn are some automorphic forms on GL2(A) coming from combinations
of f and theta series. In particular, f0 = f−∑`∈L0,1

θA`,1. We will show that f0 = f1 = ⋯ = fn = 0
identically, which is exactly the result of (1) and (2).

It suffices to show fk(g0) = 0 for all g0 ∈ GL2(AS
f ), since GL2(F )GL2(AS

f ) is dense in

GL2(A). Fix g0 ∈ GL2(AS
f ). For any g ∈ GL2(F ) ∩KSGL2(AS), we have

n

∑
k=0

ρ∞(gg0)
kδ(gg0)

kfk(gg0) = 0,
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and thus
n

∑
k=0

ρ∞(g)kδ(gg0)
kfk(g0) = 0

by the modularity.
These are viewed as linear equations of f0(g0), f1(g0),⋯, fn(g0). To show that the solu-

tions are zero, we only need to find many g to get plenty of independent equations. We first
find some special g to simplify the equation.

The intersectionKSGL2(AS)∩g0GL2(ÔF )g−1
0 is still an open compact subgroup of GL2(A).

For any g ∈ GL2(F ) ∩ (KSGL2(AS) ∩ g0GL2(ÔF )g−1
0 ), we have

gg0 = g0 ⋅ g
−1
0 gg0 ∈ g0GL2(ÔF ).

Then δf(gg0) = δf(g0), and our linear equation simplifies as

n

∑
k=0

ρ∞(g)kδ∞(g)kδf(g0)
kfk(g0) = 0.

To be more explicit, consider gN = (
1
N 1

) for any N ∈ Z. Then we know that gN ∈

GL2(F ) ∩ (KSGL2(AS) ∩ g0GL2(ÔF )g−1
0 ) when N is divisible by enough integers. Explicit

computation gives
ρ∞(gN)δ∞(gN) = (1 + iN)−n

where n = [F ∶ Q]. Then we have

n

∑
k=0

(1 + iN)−nkδf(g0)
kfk(g0) = 0.

Any n+1 different values of N imply that all fk(g0) = 0 by Van der Mond’s determinant.

7 Derivative series

The goal of this section is to study the holomorphic projection of the derivative of some mixed
Eisenstein–theta series. We will first review the construction of the series PrI ′(0, g, φ) treated
in [YZZ, Chapter 6], the analytic ingredient for proving Theorem 1.7. Then we compute
the series under some assumptions of Schwartz functions. The final formula contains a term
L′(0, η)/L(0, η) which is a main ingredient of our main theorem in the paper. In [YZZ], this
constant terms was killed under some stronger assumptions of Schwartz functions.

7.1 Derivative series

Let F be a totally real field, and E be a totally imaginary quadratic extension of F . Denote
by A the ring of adeles of F . Let B be a totally definite incoherent quaternion algebra over
A = AF with an embedding EA → B of A-algebras.
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Fix a Schwartz function φ ∈ S(B × A×) invariant under U × U for some open compact
subgroup U of B×

f . Start with the mixed theta-Eisenstein series

I(s, g, φ)U = ∑
u∈µ2

U /F×
∑

γ∈P 1(F )/SL2(F )

δ(γg)s ∑
x1∈E

r(γg)φ(x1, u).

It was first introduced in [YZZ, §5.1.1].
The derivative series PrI ′(0, g, φ) is the holomorphic projection of the derivative I ′(0, g, φ)

of I(s, g, φ). It has a decomposition into local components as follows.

Eisenstein series of weight one

To illustrate the idea, we first assume that φ = φ1 ⊗ φ2 as in [YZZ, §6.1]. Then

I(s, g, φ)U = ∑
u∈µ2

U /F×
θ(g, u, φ1) E(s, g, u, φ2),

where for any g ∈ GL2(A), the theta series and the Eisenstein series are given by

θ(g, u, φ1) = ∑
x1∈E

r(g)φ1(x1, u),

E(s, g, u, φ2) = ∑
γ∈P 1(F )/SL2(F )

δ(γg)sr(γg)φ2(0, u).

The Eisenstein series has the standard Fourier expansion

E(s, g, u, φ2) = δ(g)
sr(g)φ2(0, u) +∑

a∈F

Wa(s, g, u, φ2).

Here the Whittaker function for a ∈ F, u ∈ F × is given by

Wa(s, g, u, φ2) = ∫
A
δ(wn(b)g)s r(wn(b)g)φ2(0, u)ψ(−ab)db.

We also have the constant term

E0(s, g, u, φ2) = δ(g)
sr(g)φ2(0, u) +W0(s, g, u).

For each place v of F , we also introduce the local Whittaker function for a ∈ Fv, u ∈ F ×
v by

Wa,v(s, g, u, φ2,v) = ∫
Fv
δ(wn(b)g)s r(wn(b)g)φ2,v(0, u)ψv(−ab)db.

For a ∈ F ×
v , denote

W ○
a,v(s, g, u) = γ−1

u,vWa,v(s, g, u),

where γu,v is the Weil index of (Evjv, uq). Normalize the intertwining part by

W ○
0,v(s, g, u, φ2,v) = γ−1

u,v

L(s + 1, ηv)

L(s, ηv)
∣Dv ∣

− 1
2 ∣dv ∣

− 1
2W0,v(s, g, u, φ2,v).

In the following we will suppress the dependence of the series on φ,φ1, φ2 and U .
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Decomposition of non-constant part

It is easy to have a decomposition

E′(0, g, u, φ2) = E
′
0(0, g, u, φ2) −∑

v
∑
a∈F×

Wa,v
′(0, g, u, φ2)W

v
a (0, g, u, φ2),

according to where the derivative is take in the Fourier expansion. This gives a decomposition
of I ′(0, g). Eventually, [YZZ, §6.1.2] converts the decomposition into

I ′(0, g) = − ∑
v nonsplit

I ′(0, g)(v) + ∑
u∈µ2

U /F×
θ(g, u)E′

0(0, g, u),

where for any place v nonsplit in E,

I ′(0, g, φ)(v) = 2∫
CU
K

(v)
φ (g, (t, t))dt.

Here
CU = E×/E×(Af)/E

×(Af) ∩U

is a finite group and the integration is just the usual average over this finite group. The
series

K
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈B(v)−E

kr(t1,t2)φv(g, y, u)r(g, (t1, t2))φ
v(y, u)

is a pseudo-theta series. In the case φv = φ1,v ⊗ φ2,v under the orthogonal decomposition, it
is given by

kφv(g, y, u) =
L(1, ηv)

vol(E1
v)
r(g)φ1,v(y1, u)W

○
uq(y2),v

′(0, g, u, φ2,v), y2 ≠ 0.

Here kφv(g, y, u) is linear in φv, and the result extends by linearity to general φ (which are
not of the form φ1 ⊗ φ2).

In [YZZ], Assumption 5.3 was put to kill the minor term E′
0(0, g, u). In this paper,

however, we will not impose this assumption, since E′
0(0, g, u) gives terms matching the

Faltings height from the arithmetic side. In the following, we give a little computation
about it.

Decomposition of constant term

Now we treat the derivative of the constant term

E0(s, g, u, φ2) = δ(g)
sr(g)φ2(0, u) +W0(s, g, u).

It was actually computed in the proof of [YZZ, Proposition 6.7] (before applying the degen-
eracy assumption).
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In fact, by definition

W0(s, g, u) = −
L(s, η)

L(s + 1, η)
W ○

0 (s, g, u)∏
v

∣Dv ∣
1
2 ∣dv ∣

1
2

= −
L(s, η)/L(0, η)

L(s + 1, η)/L(1, η)
∏
v

W ○
0,v(s, g, u).

We take the normalization W ○
0,v(s, g, u) because

W ○
0,v(0, g, u) = r(g)φ2,v(0, u)

for all v, and
W ○

0,v(s, g, u) = δv(g)
−sr(g)φ2,v(0, u)

for almost all v. See [YZZ, Proposition 6.1].
So the expression gives the analytic continuation of W0(s, g, u). Taking derivative from

it, we obtain

W ′
0(0, g, u) = −

d

ds
∣s=0 (log

L(s, η)

L(s + 1, η)
) r(g)φ2(0, u) − ∑

v

W ○
0,v

′(0, g, u)r(g)φv2(0, u).

In summary, we have

I ′(0, g, φ) = − ∑
v nonsplit

I ′(0, g, φ)(v) − c0 ∑
u∈µ2

U /F×
∑
y∈E

r(g)φ(y, u)

−∑
v
∑

u∈µ2
U /F×
∑
y∈E

cφv(g, y, u) r(g)φ
v(y, u) + 2 log δ(g) ∑

u∈µ2
K/F×,y∈E

r(g)φ(y, u),

where the constant

c0 =
d

ds
∣s=0 (log

L(s, η)

L(s + 1, η)
) ,

and
cφv(g, y, u) = rE(g)φ1,v(y, u)W

○
0,v

′(0, g, u) + log δ(gv)r(g)φv(y, u).

The term
I ′(0, g, φ)(v) = 2∫

CU
K

(v)
φ (g, (t, t))dt

is as before. Both sums over v have only finitely many non-zero terms.
By the functional equation

L(1 − s, η) = ∣dE/dF ∣
s− 1

2L(s, η),

we obtain

c0 = 2
L′(0, η)

L(0, η)
+ log ∣dE/dF ∣.

Note that here L(s, η) is the completed L-function with gamma factors.
The decomposition holds for φ = φ1⊗φ2, but it extends to any φ ∈ S(B×A×) by linearity.

In other words, kφv(g, y, u) and cφv(g, y, u) are defined by linearity. We will see that we can
actually have coherent integral expressions for them.
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Holomorphic projection

As in [YZZ, §6.4-6.5], we are going to consider the holomorphic projection of I ′(0, g, φ).
Denote by A(GL2(A), ω) the space of automorphic forms of central character ω, and

by A
(2)
0 (GL2(A), ω) the subspace of holomorphic cusp forms of parallel weight two. The

holomorphic projection operator

Pr ∶ A(GL2(A), ω)Ð→ A
(2)
0 (GL2(A), ω)

is just the orthogonal projection with respect to the Petersson inner product.
Consider the action of the center A× on I ′(0, g, φ) by

z ∶ I ′(0, g, φ)z→ I ′(0, zg, φ).

The action factorizes though the finite group F ×/A×
f /U∩A×

f . It follows that we can decompose
I ′(0, g, φ) into a finite sum according to characters of this finite group. In other words,

I ′(0, g, φ) =∑
ω

I ′(0, g, φ)ω, I ′(0, g, φ)ω ∈ A(GL2(A), ω),

where the direct sum is over the finite group of characters ω ∶ F ×/A×
f /U∩A×

f → C×. Hence, the
holomorphic projection PrI ′(0, g, φ) is still a well-defined holomorphic cusp form of parallel
weight two in g ∈ GL2(A).

We can apply the formula in [YZZ, Proposition 6.12] to compute PrI ′(0, g, φ). Note that
the formula takes the same form in all central characters, and thus can be applied directly to
PrI ′(0, g, φ), if it satisfies the growth condition of the proposition. For the growth condition,
we make the following assumption.

Assumption 7.1. Fix a set S2 consisting of 2 non-archimedean places of F which are split
in E and unramified over Q. Assume that for each v ∈ S2, the open compact subgroup Uv is
maximal, and

r(g)φv(0, u) = 0, ∀ g ∈ GL2(Fv), u ∈ F
×
v .

This assumption is exactly [YZZ, Assumption 5.4]. Under the assumption, PrI ′(0, g, φ)
satisfies the growth condition of the formula for holomorphic projection. The proof is similar
to that in [YZZ, Proposition 6.14]. Alternatively, one can expression I ′(0, g, φ) as a finite
sum of I ′(0, g, χ, φ) for different χ.

Finally, we have the following conclusion.

Theorem 7.2. Assume that φ is standard at infinity and that Assumption 7.1 holds. Then

PrI ′(0, g, φ)U = −∑
v∣∞

I ′(0, g, φ)(v) − ∑
v∤∞ nonsplit

I ′(0, g, φ)(v)

− c1 ∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u) − ∑
v∤∞

∑
u∈µ2

U /F×
∑
y∈E×

cφv(g, y, u) r(g)φ
v(y, u)

+ ∑
u∈µ2

U /F×
∑
y∈E×

(2 log δf(gf) + log ∣uq(y)∣f) r(g)φ(y, u).

The right-hand side is explained in the following.
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(1) For any archimedean v,

I ′(0, g, φ)(v) = 2∫
CU
K

(v)

φ (g, (t, t))dt,

K
(v)

φ (g, (t1, t2)) = wU ∑
a∈F×

l̃ims→0 ∑
y∈µU /(B(v)×+−E×)

r(g, (t1, t2))φ(y)a kv,s(y),

kv,s(y) =
Γ(s + 1)

2(4π)s ∫
∞

1

1

t(1 − λ(y)t)s+1
dt,

where λ(y) = q(y2)/q(y) is viewed as an element of Fv.

(2) For any non-archimedean v which is nonsplit in E,

I ′(0, g, φ)(v) = 2∫
CU
K

(v)
φ (g, (t, t))dt,

K
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈B(v)−E

kr(t1,t2)φv(g, y, u)r(g, (t1, t2))φ
v(y, u),

kφv(g, y, u) =
L(1, ηv)

vol(E1
v)
r(g)φ1,v(y1, u)W

○
uq(y2),v

′(0, g, u, φ2,v), y2 ≠ 0.

Here the last identity holds under the relation φv = φ1,v⊗φ2,v, and the definition extends
by linearity to general φv.

(3) The constant

c1 = 2
L′f(0, η)

Lf(0, η)
+ log ∣dE/dF ∣.

(4) Under the relation φv = φ1,v ⊗ φ2,v,

cφv(g, y, u) = rE(g)φ1,v(y, u)W
○
0,v

′(0, g, u) + log δ(gv)r(g)φv(y, u).

The definition extends by linearity to general φv.

Proof. Apply the formula of [YZZ, Proposition 6.12] to each term of

I ′(0, g, φ) = − ∑
v nonsplit

I ′(0, g, φ)(v) − c0 ∑
u∈µ2

U /F×
∑
y∈E

r(g)φ(y, u)

−∑
v
∑

u∈µ2
U /F×
∑
y∈E

cφv(g, y, u) r(g)φ
v(y, u)

+ 2 log δ(g) ∑
u∈µ2

K/F×
∑
y∈E

r(g)φ(y, u).

Denote by Pr′ the image of each term. Note that the holomorphic projection of I ′(0, g, φ)(v)
is already computed in [YZZ, Proposition 6.15]. Furthermore, if v is real, we have cφv(g, y, u) =
0 by Lemma 7.6.
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Note that Pr′ does not change I ′(0, g, φ)(v) for non-archimedean v since it is already
holomorphic of parallel weight two at infinite. Similarly, we have

Pr′
⎛

⎝
∑

u∈µ2
U /F×
∑
y∈E

r(g)φ(y, u)
⎞

⎠
= ∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u),

Pr′
⎛

⎝
∑

u∈µ2
U /F×
∑
y∈E

cφv(g, y, u)r(g
v)φv(y, u)

⎞

⎠
= ∑
u∈µ2

U /F×
∑
y∈E×

cφv(g, y, u)r(g
v)φv(y, u), v ∤∞.

The only changes are to remove the contributions of y = 0, because the results do not have
constant terms.

It remains to take care of

log δ(g) ∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u) =
1

wU
log δ(g) ∑

(y,u)∈µU /(E××F×)
r(g)φ(y, u).

Here µU = F × ∩U , and wU = ∣{1,−1}∩U ∣ is equal to 1 or 2. The identity holds as in the case
of usual theta series. Its first Fourier coefficient is just

1

wU
∑

(y,u)∈µU /(E××F×)1

log δ(g)r(g)φ(y, u).

Write

log δ(g)r(g)φ(y, u) = log δ(gf)r(g)φ(y, u) + log δ(g∞)W (2)(g∞) ⋅ r(gf)φf(y, u).

Then Pr′ doesn’t change the first sum of the right-hand side since it is holomorphic of
weight two at infinity, but changes log δ(g∞)W (2)(g∞) in the second sum to some multiple
c2 W (2)(g∞) = c2 r(g)φ∞(y, u), where c2 is some constant to be determined. As a conse-
quence,

Pr′
⎛

⎝
log δ(g) ∑

u∈µ2
U /F×
∑
y∈E

r(g)φ(y, u)
⎞

⎠

=
1

wU
∑
a∈F×

∑
(y,u)∈µU /(E××F×)1

log δf(d
∗(a)gf)r(d

∗(a)g)φ(y, u)

+ c2
1

wU
∑
a∈F×

∑
(y,u)∈µU /(E××F×)1

r(d∗(a)g)φ(y, u)

= ∑
u∈µ2

U /F×
∑
y∈E×

(log δ(gf) + log ∣uq(y)∣
1
2

f )r(g)φ(y, u) + c2 ∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u).

As for the constant, we have

c2

[F ∶ Q]
= 4π lim

s→0
∫
Fv,+

yse−2πy (log y
1
2 )ye−2πy dy

y
= 2π∫

∞

0
e−4πy log ydy = −

1

2
(γ + log 4π).
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Here γ is Euler’s constant. Then the combined constant

c1 = c0 − 2mc2 = 2
L′(0, η)

L(0, η)
+ log ∣dE/dF ∣ + (γ + log 4π)m.

Here m = [F ∶ Q]. The gamma factor

L∞(s, η) = (π−
s+1
2 Γ(

s + 1

2
))

m

gives

L′∞(0, η)

L∞(0, η)
= −

1

2
m(γ + log 4π).

Thus

c1 = 2
L′f(0, η)

Lf(0, η)
+ log ∣dE/dF ∣.

7.2 Choice of the Schwartz function

To make further explicit local computations, we need to specify the Schwartz function.
Start with the setup of Theorem 1.7. Let F be a totally real field, and E be a totally

imaginary quadratic extension of F . Let B be a totally definite incoherent quaternion algebra
over A = AF with an embedding EA → B of A-algebras. Let U =∏v∤∞Uv be a maximal open

compact subgroup of B×
f containing (the image of) Ô×

E = ∏v∤∞O
×
Ev

. As in Theorem 1.7,
assume that there is no non-archimedean place of F ramified in E and B simultaneously.

Note that we have already assumed that Uv is maximal at any v ∤∞. Denote by OBv the
OFv -subalgebra of Bv generated by Uv. Then OBv is a maximal order of Bv, and Uv = O×

Bv is
the group of invertible elements. Furthermore, the inclusion O×

Ev
⊂ Uv induces OEv ⊂ OBv .

As for the Schwartz function φ = ⊗vφv, we make the following choices:

(1) If v is archimedean, set φv be the standard Gaussian.

(2) If v is non-archimedean, nonsplit in E and split in B, set φv to be the standard char-
acteristic function 1OBv×O

×
Fv

.

(3) If v is nonsplit in B, set φv to be 1O×
Bv×O

×
Fv

(instead of 1OBv×O
×
Fv

).

(4) There is a set S2 consisting of two (non-archimedean) places of F split in E and
unramified over Q such that

φv = 1O×
Bv×O

×
Fv
−

1

1 +Nv +N2
v

1$−1
v (OBv )2×O×

Fv
, ∀v ∈ S2.

Here $v denotes a uniformizer of OFv , and

(OBv)2 = {x ∈ OBv ∶ v(q(x)) = 2}.
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(5) If v is split in E and v ∉ S2, set φv to be the standard characteristic function 1OBv
⊗1O×

Fv
.

By definition, φ is invariant under both the left action and the right action of U .
Note that (4) seems least natural in the choices. However, it is made to meet Assumption

7.1. In fact, as in the proof of [YZZ, Proposition 5.15], any function of the form

Lφ0 − deg(L)φ0, φ0 ∈ S(Bv × F ×
v ), L ∈ C∞

c (B1
vO

×
Bv)

satisfies the assumption. The choice of (4) comes from φ0 = 1O×
Bv
⊗ 1O×

Fv
and L = 1(OBv )2

. It

is classical that deg((OBv)2) = ∣(OBv)2/O×
Bv ∣ = 1 +Nv +N2

v .
For any v ∤∞, fix an element jv ∈ OBv orthogonal to Ev such that v(q(jv)) is non-negative

and minimal; i.e., v(q(jv)) ∈ {0,1}, and such that v(q(jv)) = 1 if and only if Bv is nonsplit
(and thus Ev/Fv is inert by assumption). We check the existence of jv in the following.

If v is nonsplit in B (and inert in E), then OBv is the unique maximal order of Bv. It
is easy to see the existence of jv. We have v(q(jv)) = 1 and an orthogonal decomposition
OBv = OEv +OEv jv.

If v is split in B, start with an isomorphism OBv → M2(OFv). By this isomorphism,
OBv acts on M = O2

Fv
, and thus the subalgebra OEv also acts on M . Fix a nonzero element

m0 ∈M . We have an isomorphism OEv →M of OFv -modules by t↦ t○m0. Thus it induces an
OFv -linear action of OBv on OEv , which is compatible with the multiplication action of OEv

on itself. Set jv ∈ OBv to be the unique element which acts on OEv as the nontrivial element
of Gal(Ev/Fv). Then j2v = 1 and jvtjv = t̄ for any t ∈ OEv . It follows that jv is orthogonal to
Ev, and q(jv) = −1 satisfies the requirement.

For any non-archimedean place v nonsplit in E, let B(v) be the nearby quaternion
algebra. Fix an embedding E → B(v) and isomorphisms B(v)v′ ≃ Bv′ for any v′ ≠ v, which
are assumed to be compatible with the embedding EA → B. At v, we also take an element
jv ∈ B(v)v orthogonal to Ev, such that v(q(jv)) is non-negative and minimal as above. We
remark that this set {jv′ ∶ v′ ≠ v} ∪ {jv} is not required to be the localizations of a single
element of B(v).

Lemma 7.3. Let v be a non-archimedean place of F and Dv ⊂ OFv be the relative discrimi-
nant of Ev/Fv. Then in the above setting,

DvOBv ⊂ OEv +OEv jv ⊂ OBv .

Furthermore, OBv = OEv +OEv jv if and only if v is unramified in E.

Proof. This is classical. Assume that v is split in B, since the nonsplit case is easy. For
any (full) lattice M of Bv, the discriminant dM is the fraction ideal of Fv generated by
det(tr(xix̄j)), where x1,⋯, x4 is an OFv -basis of M . In particular, if M ′ ⊂M is a sub-lattice,
then [dM ∶ dM ′] = [M ∶ M ′]2. Direct computation gives dOBv

= 1 and dOEv+OEv jv = D
2
v. The

statement follows.
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7.3 Explicit local derivatives

Let (U,φ, jv, jv) be as in §7.2. The goal of this subsection is to compute kφv(1, y, u) and
cφv(1, y, u). The computations are quite involved, though the result are not so complicated
eventually. The readers may skip this subsection for the first time and come back when the
results are used in the comparison with the height series.

Throughout this subsection, v is non-archimedean. For y ∈ B(v)v, write y = y1 + y2 with
respect to the orthogonal decomposition B(v)v = Ev + Evjv. By Lemma 7.3, if v ∉ S2 and
v is unramified in E, we have a decomposition φv = φ1,v ⊗ φ2,v with φ2,v = 1OEv jv×O×

Fv
. Here

φ1,v = 1OEv×O×
Fv

if v is split in B, and φ1,v = 1O×
Ev

×O×
Fv

if v is nonsplit in B.

All Haar measures are normalized as in [YZZ, §1.6], unless otherwise described.

Derivative of Whittaker function I

Lemma 7.4. (1) Let v be a non-archimedean place inert in E. Then the difference

kφv(1, y, u) − φv(y1, u) ⋅ 1OEv jv(y2) ⋅
1

2
(v(q(y2)/q(jv)) + 1) logNv

extends to a Schwartz function on B(v)v ×F ×
v whose restriction to Ev ×F ×

v is equal to

φv(y, u) ⋅
∣dvq(jv)∣ − 1

(1 +N−1
v )(1 −Nv)

logNv.

(2) Let v be a non-archimedean place ramified in E. Then the difference

kφv(1, y, u) − φv(y1, u) ⋅ 1OEv jv(y2) ⋅
1

2
(v(q(y2)) + 1) logNv

extends to a Schwartz function on B(v)v ×F ×
v whose restriction to Ev ×F ×

v is equal to

φv(y, u) ⋅ (
∣dv ∣ − 1

2(1 −Nv)
+

1

2
(v(Dv) − 1)) logNv +

1

2
αv(y, u),

where

αv(y, u) =
logNv

∣Dv ∣
1
2

⋅ 1D−1
v OEv−OEv

(y)
v(dv)−1

∑
n=0

Nn
v ∫

Dn
φv(y + x2, u)dx2.

The result allows more ramifications of v in E or B than its counterpart in [YZZ, Corollary
6.8(1)]. The computation follows a similar strategy, but it is more complicated due to these
ramifications.

Recall that if φv = φ1,v ⊗ φ2,v, then

kφv(1, y, u) =
L(1, ηv)

vol(E1
v)
φ1,v(y1, u)W

○
uq(y2),v

′(0,1, u, φ2,v).
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Here vol(E1
v) is given in [YZZ, §1.6.2]. By [YZZ, Proposition 6.10],

W ○
a,v(s,1, u, φ2,v) = ∣dv ∣

1
2 (1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn(a)
φ2,v(x2, u)dx2,

where
Dn(a) = {x2 ∈ Evjv ∶ uq(x2) − a ∈ p

n
vd

−1
v },

and dx2 is the self-dual measure for (Evjv, uq), which gives vol(OEv jv) = ∣Dv ∣
1
2 ∣dvuq(jv)∣. In

the following, we will always denote a = uq(y2) for simplicity.
We can also obtain a coherent expression of kφv(1, y, u) which does not require φv to be

of the form φ1,v ⊗φ2,v. In fact, in the case φv = φ1,v ⊗φ2,v (and v is nonsplit in E), the above
gives

kφv(1, y, u) =
L(1, ηv)

vol(E1
v)
φ1,v(y1, u) ⋅

d

ds
∣s=0 (∣dv ∣

1
2 (1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn(a)
φ2,v(x2, u)dx2)

=
L(1, ηv)

vol(E1
v)

⋅
d

ds
∣s=0 (∣dv ∣

1
2 (1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn(a)
φv(y1 + x2, u)dx2) .

The last expression is actually valid for any φv. It is nonzero only if u ∈ O×
Fv

, which we will
always assume in the following.

The computation relies on a detailed description of Dn(a). For example, we will see that
Dn(a) is empty if n is sufficiently large, so the summation for kφv(1, y, u) has only finitely
many non-zero terms. Then the derivative commutes with the sum.

In the following lemma, v is a non-archimedean place nonsplit in E. Consider

Dn(a) = {x2 ∈ Evjv ∶ uq(x2) − a ∈ p
n
vd

−1
v }, u ∈ O×

Fv , a ∈ uq(E
×
v jv)

and
Dn = {x2 ∈ Evjv ∶ uq(x2) ∈ p

n
vd

−1
v }, u ∈ O×

Fv .

Lemma 7.5. (1) If v is inert in E, then

Dn(a) =

⎧⎪⎪
⎨
⎪⎪⎩

Dn if n ≤ v(adv);

∅ if n > v(adv).

(2) If v is ramified in E, then

Dn(a) =

⎧⎪⎪
⎨
⎪⎪⎩

Dn if n ≤ v(adv);

∅ if n > v(adv) + v(Dv) − 1.

If v(adv) < n ≤ v(adv) + v(Dv) − 1, then

vol(Dn(a)) = ∣Dv ∣
1
2 ⋅ ∣dv ∣ ⋅ ∣a∣v ⋅N

v(adv)−n
v .

Here the volume is taken with respect to the self-dual measure for (Evjv, uq), which

gives vol(OEv jv) = ∣Dv ∣
1
2 ∣dv ∣.
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Proof. The key property is that a is not represented by (Evjv, uq), since it is represented by
(Evjv, uq).

We first consider (1), so v is inert in E. Then v(a) ≠ v(uq(x2)) for any x2 ∈ Evjv since a
is not represented by (Evjv, uq). It follows that

v(uq(x2) − a) = min{v(a), v(uq(x2))}.

The result follows.
Now we consider (2), so v is ramified in E. If n ≤ v(adv), the result is trivial. Assume

that n > v(adv) in the following. Let ev be the smallest integer such that 1+pevv ⊂ q(E×
v ). By

the class field theory, we have ev = v(Dv).
The condition x2 ∈Dn(a) gives

a−1uq(x2) ∈ 1 + p
n−v(adv)
v .

By a = uq(y2) with y2 ∈ E×
v jv, the condition becomes

q(x2)/q(y2) ∈ 1 + p
n−v(adv)
v .

Note that q(E×
v jv) and q(E×

v jv) are exactly the two cosets of F ×
v under the subgroup q(E×

v )
of index 2. Then q(x2)/q(y2) always lies in the non-identity coset. Hence, Dn(a) is empty if
n − v(adv) ≥ ev by the definition of ev.

It remains to compute vol(Dn(a)) for v(adv) < n ≤ v(adv)+ ev − 1. Write m = n− v(adv),
which satisfies 1 ≤ m ≤ ev − 1. The above condition on x2 is just a−1uq(x2) ∈ (1 + pmv ). We
need to consider the intersection (1+ pmv )∩ a−1uq(E×

v jv). By the definition of ev, we see that
(1+pmv ) is not completely contained in either q(E×

v jv) or q(E×
v jv). Thus (1+pmv ) is partitioned

into two cosets q(E×
v jv)∩(1+pmv ) and q(E×

v jv)∩(1+pmv ). In particular, (1+pmv )∩a−1uq(E×
v jv)

is one of the cosets. Therefore,

vol((1 + pmv ) ∩ a−1uq(E×
v jv), d

×x) =
1

2
vol(1 + pmv , d

×x) =
vol(O×

Fv
, d×x)

2(Nv − 1)Nm−1
v

=
∣dv ∣

1
2

2(Nv − 1)Nm−1
v

.

Here the volumes are under the multiplicative measure d×x = ζFv(1)∣x∣
−1
v dx, but we will

convert it back to dx. Similar measures dx and d×x are defined on Ev as in [YZZ, §1.6.1-
1.6.2]. Both measures are transferred to Evjv by the identification Evjv → Ev sending jv to
1. The induced measure dx on Evjv is compatible with the self-dual measure with respect
to the quadratic form uq.

Therefore,

vol(Dn(a), d
×x) = vol(E1

v) ⋅ vol((1 + pmv ) ∩ a−1uq(E×
v jv), d

×x) =
∣Dv ∣

1
2 ∣dv ∣

(Nv − 1)Nm−1
v

.

The additive volume is just

vol(Dn(a), dx) =
∣a∣v

ζEv(1)
vol(Dn(a), d

×x) =
∣a∣v ⋅ ∣Dv ∣

1
2 ⋅ ∣dv ∣

Nm
v

.
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Derivative of Whittaker function II

The goal of this subsection is to prove Lemma 7.4.

Proof of Lemma 7.4. We first consider (1), so we assume that v is inert in E. We will take
advantage of the decomposition φv = φ1,v⊗φ2,v, which simplifies the computation slightly. It
amounts to computing the derivative of

W ○
a,v(s,1, u) = ∣dv ∣

1
2 (1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn(a)
φ2,v(x2, u)dx2.

Note that we always write a = uq(y2). By Lemma 7.5,

W ○
a,v

′(0,1, u) = ∣dv ∣
1
2 logNv

v(adv)

∑
n=0

Nn
v ∫

Dn
φ2,v(x2, u)dx2.

It is nonzero only if v(a) ≥ −v(dv).
We first consider the case −v(dv) ≤ v(a) < 0. In this case, we always have OEv jv ⊂Dn for

all 0 ≤ n ≤ v(adv). It follows that

W ○
a,v

′(0,1, u) = ∣dv ∣
1
2 logNv

v(adv)

∑
n=0

Nn
v vol(OEv jv) = ∣dv ∣

1
2 ∣q(jv)∣

∣dv ∣ −Nv ∣a∣−1

1 −Nv

logNv.

Note that this part does not affect the behavior as a→ 0.
Now we assume that v(a) ≥ 0 (still for part (1)). If n < v(dvq(jv)), then OEv jv ⊂ Dn; if

n ≥ v(dvq(jv)), then Dn ⊂ OEv jv. It follows that

W ○
a,v

′(0,1, u) =∣dv ∣
1
2 logNv

⎛

⎝

v(dvq(jv))−1

∑
n=0

Nn
v vol(OEv jv) +

v(adv)

∑
n=v(dvq(jv))

Nn
v vol(Dn)

⎞

⎠

=∣dv ∣
1
2 logNv

⎛

⎝

∣dvq(jv)∣ − 1

1 −Nv

+
v(adv)

∑
n=v(dvq(jv))

Nn
v vol(Dn)

⎞

⎠
.

Note that

Dn = p
[
n−v(dvq(jv))+1

2
]

v OEv jv,

so

Nn
v vol(Dn) = N

n−v(dvq(jv))−2[
n−v(dvq(jv))+1

2
]

v =

⎧⎪⎪
⎨
⎪⎪⎩

1 if 2 ∣ (n − v(dvq(jv));

N−1
v if 2 ∤ (n − v(dvq(jv)).

Since v(q(jv)) and v(a) always have different parities in this inert case, we have

kφv(1, y, u) =
logNv

1 +N−1
v

(
∣dvq(jv)∣ − 1

1 −Nv

+
v(q(y2)) − v(q(jv)) + 1

2
(1 +N−1

v )) .

This finishes the proof of (1).
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Now we prove (2), so v is ramified in E. We need to compute

kφv(1, y, u) =
1

2∣Dv ∣
1
2

⋅
d

ds
∣s=0 ((1 −N

−s
v )

∞

∑
n=0

N−ns+n
v ∫

Dn(a)
φv(y1 + x2, u)dx2) .

We first use Lemma 7.5 to write

kφv(1, y, u) =
logNv

2∣Dv ∣
1
2

v(adv)+v(Dv)−1

∑
n=0

Nn
v ∫

Dn(a)
φv(y1 + x2, u)dx2.

It is zero if v(a) is too small, so kφv(1, y, u) is compactly supported.
In this ramified case, the first complication is that kφv(1, y, u) can be nonzero for some

y1 ∉ OEv . Write

kφv(1, y, u) = kφv(1, y, u) ⋅ 1OEv (y1) + kφv(1, y, u) ⋅ 1Ev−OEv (y1).

We first treat the second term on the right-hand side, so we assume that y1 ∈ Ev −OEv .
We claim that kφv(1, y, u) ⋅ 1Ev−OEv (y1) is naturally a Schwartz function on B(v)v × F ×

v .
In fact, by Lemma 7.3, in order to make φv(y1 +x2, u) nonzero in the formula of kφv(1, y, u),
we have

y1 ∈D
−1
v OEv −OEv , x2 ∈D

−1
v OEv jv −OEv jv.

Then both v(q(y1)) and v(q(x2)) are bounded from the above and the below. Consider the
behavior when a = uq(y2) approaches 0. By Lemma 7.5, x2 ∈Dn(a) only if

n ≤ v(q(x2)) + v(dv) + v(Dv) − 1 ≤ v(dvD
3
v) − 1.

The second bound is independent of a. Hence, if v(a) is sufficiently large, then Dn(a) = Dn

independent of a. So kφv(1, y, u) ⋅ 1Ev−OEv (y1) is a Schwartz function on B(v)v × F ×
v .

For the restriction to Ev × F ×
v , set y2 → 0. The above discussion already gives

kφv(1, y1, u) ⋅ 1Ev−OEv (y1) =
logNv

2∣Dv ∣
1
2

⋅ 1Ev−OEv (y1)
v(dvD3

v)−1

∑
n=0

Nn
v ∫

Dn
φv(y1 + x2, u)dx2. (7.3.1)

We can further change the bounds of n in the summation from [0, v(dvD3
v)−1] to [0, v(dv)],

because x2 ∈Dn implies
n ≤ v(dv) + v(q(x2)) ≤ v(dv).

Then the expression is exactly the function 1
2αv in the lemma.

It remains to treat kφv(1, y, u) ⋅ 1OEv (y1). Assume that y1 ∈ OEv . Then

kφv(1, y, u) =
logNv

2∣Dv ∣
1
2

v(adv)+v(Dv)−1

∑
n=0

Nn
v vol(Dn(a) ∩OEv jv).

The sum is nonzero only if v(a) ≥ −v(dv) − v(Dv) + 1. The behavior of kφv(1, y, u) when
−v(dv) − v(Dv) + 1 ≤ v(a) < 0 does affect our final result. So we assume that v(a) ≥ 0 in the
following.
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The computation is similar to the inert case. Recall that vol(OEv jv) = ∣Dv ∣
1
2 ∣dv ∣ and

Dn(a) = {x2 ∈ Evjv ∶ uq(x2) − a ∈ p
n
vd

−1
v }.

Split the summation as
∞

∑
n=0

=
v(dv)−1

∑
n=0

+
v(adv)

∑
n=v(dv)

+
v(adv)+v(Dv)−1

∑
n=v(adv)+1

.

The first sum gives

logNv

2∣Dv ∣
1
2

v(dv)−1

∑
n=0

Nn
v vol(OEv jv) =

∣dv ∣ − 1

2(1 −Nv)
logNv. (7.3.2)

The second sum gives

logNv

2∣Dv ∣
1
2

v(adv)

∑
n=v(dv)

Nn
v vol(Dn) =

logNv

2∣Dv ∣
1
2

v(adv)

∑
n=v(dv)

Nn
v ⋅N

−(n−v(dv))
v ∣Dv ∣

1
2 ∣dv ∣

=
1

2
(v(a) + 1) logNv. (7.3.3)

By Lemma 7.5, the third sum gives

logNv

2∣Dv ∣
1
2

v(adv)+v(Dv)−1

∑
n=v(adv)+1

Nn
v vol(Dn)

=
logNv

2∣Dv ∣
1
2

v(adv)+v(Dv)−1

∑
n=v(adv)+1

Nn
v ⋅ ∣Dv ∣

1
2 ⋅ ∣dv ∣ ⋅ ∣a∣v ⋅N

v(adv)−n
v

=
1

2
(v(Dv) − 1) logNv. (7.3.4)

Combining equations (7.3.1)-(7.3.4), we obtain the result for ramified v. The proof of Lemma
7.4 is complete.

Derivative of intertwining operator

Recall that if φv = φ1,v ⊗ φ2,v for a place v, then

cφv(g, y, u) = φ1,v(y, u)W
○
0,v

′(0, g, u, φ2,v) + log δ(gv)r(g)φv(y, u),

where the normalization

W ○
0,v(s, g, u, φ2,v) = γ−1

u,v ∣Dv ∣
− 1

2 ∣dv ∣
− 1

2
L(s + 1, ηv)

L(s, ηv)
W0,v(s, g, u, φ2,v).

Lemma 7.6. (1) For any archimedean place v,

cφv(g, y, u) = 0, g ∈ GL2(R), (y, u) ∈ Ev × F
×
v .
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(2) For any non-archimedean place v and any (y, u) ∈ Ev × F ×
v ,

cφv(1, y, u) = φv(y, u)⋅log ∣dvq(jv)∣ +

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φv(y, u) ⋅
2(∣dvq(jv)∣ − 1)

(1 +N−1
v )(1 −Nv)

logNv, if Ev/Fv inert;

φv(y, u) ⋅
∣dvq(jv)∣ − 1

1 −Nv

logNv + αv(y, u), if Ev/Fv ramified;

0, if Ev/Fv split.

Here

αv(y, u) =
logNv

∣Dv ∣
1
2

⋅ 1D−1
v OEv−OEv

(y)
v(dv)−1

∑
n=0

Nn
v ∫

Dn
φv(y + x2, u)dx2

as in Lemma 7.4.

Proof. If v is archimedean, it suffices to check that

W ○
0,v(s, g, u) = δ(g)

−sr(g)φ2,v(0, u), g ∈ GL2(Fv).

The behaviors of the intertwining operator W ○
0,v(s, g, u) under the left action of P (R) and

the right action of SO(2,R) are the same as those of δ(g)−sr(g)φ2,v(0, u). It follows that
two sides are equal up to a constant possibly depending on s. To determine the constant,
it suffices to check W ○

0,v(s,1, u) = 1. By a change of variable, we can assume that u = 1. At
the end of the proof of [YZZ, Proposition 2.11], there is a formula for W0,v(s,1, u) in terms
of gamma functions, which implies the result we need here.

Assume that v is non-archimedean in the following. The proof is similar to that of
Lemma 7.4. We first introduce some formulas for cφv(1, y, u). Note that the statement of
[YZZ, Proposition 6.10(1)] is only correct for a ∈ F ×

v due to the different normalizing factor
defining W ○

0,v(0,1, u, φ2,v). However, its proof actually gives

W0,v(s,1, u, φ2,v) = γu,v ∣dv ∣
1
2 (1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn
φ2,v(x2, u)dux2,

where
Dn = {x2 ∈ Evjv ∶ uq2(x2) ∈ p

n
vd

−1
v }

and the measure dux2 gives vol(OEv jv) = ∣Dv ∣
1
2 ∣dvuq(jv)∣. Putting these together, we have

cφv(1, y, u) = φ1,v(y, u) ⋅
d

ds
∣s=0 (∣Dv ∣

− 1
2
L(s + 1, ηv)

L(s, ηv)
(1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn
φ2,v(x2, u)dux2)

=
d

ds
∣s=0 (∣Dv ∣

− 1
2
L(s + 1, ηv)

L(s, ηv)
(1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn
φv(y + x2, u)dux2) .

The last expression actually works for any φv (not necessarily of the form φ1,v ⊗ φ2,v).
For convenience, denote

c̃φv(s) = ∣Dv ∣
− 1

2
L(s + 1, ηv)

L(s, ηv)
(1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn
φv(y + x2, u)dux2,
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so that
cφv(1, y, u) = c̃

′
φv

(0).

Note that c̃φv(s) or cφv(1, y, u) is nonzero only if u ∈ O×
Fv

, which we assume in the following.
We will check the lemma case by case.

First, assume that v is inert in E. Then φv = φ1,v ⊗ φ2,v with φ2,v = 1OEv jv×O×
Fv

, and

cφv(1, y, u) = φ1,v(y, u)W
○
0,v

′(0,1, u).

Split the sum in

W0,v(s,1, u) = γu,v ∣dv ∣
1
2 (1 −N−s

v )
∞

∑
n=0

N−ns+n
v ∫

Dn
φ2,v(x2, u)dx2

into two parts: n < v(dvq(jv)) and n ≥ v(dvq(jv)). Denote n = m + v(dvq(jv)) in the second

case, and note Dm+v(dvq(jv)) = p
[m+1

2
]

v OEv jv. We have

W0,v(s,1, u)

= γu,v ∣dv ∣
1
2 (1 −N−s

v )
⎛

⎝

v(dvq(jv))−1

∑
n=0

N
−n(s−1)
v vol(OEv jv) +

∞

∑
m=0

N
−(m+v(dvq(jv)))(s−1)
v vol(Dm+v(dvq(jv)))

⎞

⎠

= γu,v ∣dv ∣
1
2 ∣Dv ∣

1
2 (1 −N−s

v )
⎛

⎝

∣dvq(jv)∣ − ∣dvq(jv)∣s

1 −N
−(s−1)
v

+ ∣dvq(jv)∣
s1 +N

−(s+1)
v

1 −N−2s
v

⎞

⎠
.

Then

W ○
0,v(s,1, u) = (1 −N−s

v )
1 +N−s

v

1 +N
−(s+1)
v

∣dvq(jv)∣ − ∣dvq(jv)∣s

1 −N
−(s−1)
v

+ ∣dvq(jv)∣
s.

We get

W ○
0,v

′(0,1, u) = log ∣dvq(jv)∣ +
2(∣dvq(jv)∣ − 1)

(1 +N−1
v )(1 −Nv)

logNv.

This finishes the inert case.
Second, assume that v is ramified in E. Consider

c̃φv(s) = ∣Dv ∣
− 1

2 (1 −N−s
v )

∞

∑
n=0

N−ns+n
v ∫

Dn
φv(y + x2, u)dx2.

As in the proof of Lemma 7.4, the first complication of this ramified case is that c̃φv(s) can
be nonzero for some y ∉ OEv , but it can be treated similarly.

In fact, assume that y ∉ OEv and c̃φv(s) ≠ 0. In order to make φv(y + x2, u) nonzero in
the formula of c̃φv(s), we have

y ∈D−1
v OEv −OEv , x2 ∈D

−1
v OEv jv −OEv jv.
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Then x2 ∈Dn gives
n ≤ v(q(x2)) + v(dv) ≤ v(dv).

Then the summation for c̃φv(s) is a finite sum. We have

cφv(1, y, u) = c̃
′
φv

(0) = ∣Dv ∣
− 1

2 (logNv)
v(dv)

∑
n=0

Nn
v ∫

Dn
φv(y + x2, u)dx2.

This is exactly the function αv in the lemma.
Now we assume that y ∈ OEv . Then

c̃φv(s) = ∣Dv ∣
− 1

2 (1 −N−s
v )

∞

∑
n=0

N−ns+n
v vol(Dn ∩OEv jv).

The computation is similar to the inert case. Split the sum into two parts: n < v(dv) and

n ≥ v(dv). Denote n =m + v(dv) in the second case, and note Dm+v(dv) = p
m
2
v OEv jv. We have

c̃φv(s)

= ∣Dv ∣
− 1

2 (1 −N−s
v )

⎛

⎝

v(dv)−1

∑
n=0

N
−n(s−1)
v vol(OEv jv) +

∞

∑
m=0

N
−(m+v(dv))(s−1)
v vol(Dm+v(dv))

⎞

⎠

= (1 −N−s
v )

∣dv ∣ − ∣dv ∣s

1 −N
−(s−1)
v

+ ∣dv ∣
s.

Thus

cφv(1, y, u) = c̃
′
φv

(0) = log ∣dv ∣ +
∣dv ∣ − 1

1 −Nv

logNv.

Third, consider the case that Ev/Fv is split and v ∉ S2. Then ∣q(jv)∣ = ∣Dv ∣ = 1 and we use
it to relieve the notation burden. We compute

cφv(1, y, u) = φ1,v(y, u)W
○
0,v

′(0,1, u).

As before, split the sum into n < v(dv) and n ≥ v(dv) and write n =m + v(dv) in the second
case. We have

W0,v(s,1, u)

= γu,v ∣dv ∣
1
2 (1 −N−s

v )(
∣dv ∣ − ∣dv ∣s

1 −N
−(s−1)
v

+ ∣dv ∣
s

∞

∑
m=0

N
−m(s−1)
v

vol(Dm+v(dv) ∩OEv jv)

vol(OEv jv)
) .

Identify Ev = Fv ⊕ Fv and OEv = OFv ⊕ OFv . For simplicity, we identify Evjv with Ev by
sending jv to 1. Then

Dm+v(dv)∩OEv = {(z1, z2) ∈ OFv⊕OFv ∶ z1z2 ∈ p
m
v } = OEv−{(z1, z2) ∈ OFv⊕OFv ∶ v(z1)+v(z2) ≤m−1}.
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Thus

vol(Dm+v(dv) ∩OEv) =vol(OEv) −
m−1

∑
k=0

vol($k
vO

×
Fv)vol(OFv − p

m−k
v )

=vol(OEv) − vol(OEv)
m−1

∑
k=0

N−k
v (1 −N−1

v )(1 −N
−(m−k)
v )

=vol(OEv)(N
−m
v + (1 −N−1

v )mN−m
v ).

Therefore,

W0,v(s,1, u) = γu,v ∣dv ∣
1
2 (1 −N−s

v )(
∣dv ∣ − ∣dv ∣s

1 −N
−(s−1)
v

+ ∣dv ∣
s

∞

∑
m=0

N
−m(s−1)
v (N−m

v + (1 −N−1
v )mN−m

v ))

= γu,v ∣dv ∣
1
2 (1 −N−s

v )
⎛

⎝

∣dv ∣ − ∣dv ∣s

1 −N
−(s−1)
v

+ ∣dv ∣
s1 −N

−(s+1)
v

(1 −N−s
v )2

⎞

⎠
.

Hence,

W ○
0,v(s,1, u) = γ

−1
u,v

1 −N−s
v

1 −N
−(s+1)
v

∣dv ∣
− 1

2W0,v(s,1, u) =
(1 −N−s

v )2

1 −N
−(s+1)
v

∣dv ∣ − ∣dv ∣s

1 −N
−(s−1)
v

+ ∣dv ∣
s.

The first term has a double zero and no contribution to the derivative, so

W ○
0,v

′(0,1, u) = log ∣dv ∣.

This finishes the case that Ev/Fv is split and v ∉ S2.
Fourth, we treat the case v ∈ S2, which is the last case. Then v is split in E, and

φv = 1O×
Bv×O

×
Fv
−

1

1 +Nv +N2
v

1$−1
v (OBv )2×O×

Fv
.

Note that ∣q(jv)∣ = ∣dv ∣ = 1 by assumption, so the result to prove is exactly cφv(1, y, u) = 0.
Recall that cφv(1, y, u) is the derivative of

c̃φv(s) =
(1 −N−s

v )2

1 −N
−(s+1)
v

∞

∑
n=0

N−ns+n
v ∫

Dn
φv(y + x2, u)dx2.

We will make separate computations for

ψ1 = 1O×
Bv×O

×
Fv
, ψ2 = 1$−1

v (OBv )2×O×
Fv
.

The results will be 0 for both functions. Make identifications Evjv ≃ Ev ≃ Fv ⊕ Fv as above.
Start with

c̃ψ1(s) =
(1 −N−s

v )2

1 −N
−(s+1)
v

∞

∑
n=0

N−ns+n
v ∫

Dn
ψ1(y + x2, u)dx2.
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It is nonzero only if y ∈ OEv , which we assume. For the integral, write x2 = (z1, z2) ∈ Fv ⊕Fv.
Then we have

c̃ψ1(s) =
(1 −N−s

v )2

1 −N
−(s+1)
v

∞

∑
n=0

N−ns+n
v

⋅vol{(z1, z2) ∈ OFv ⊕OFv ∶ z1z2 ∈ p
n
v , q(y) − z1z2 ∈ O

×
Fv}.

If q(y) ∈ pv, in order for the volume to be nonzero, we have to have z1z2 ∈ O×
Fv

and n = 0.
The summation has a single nonzero term equal to 1. Then cψ1(1, y, u) = 0.

If q(y) ∈ O×
Fv

, we can neglect the term with n = 0, since a single term does not change the
derivative due to the double zero of the factor (1 −N−s

v )2. Then the remaining terms give

(1 −N−s
v )2

1 −N
−(s+1)
v

∞

∑
n=1

N−ns+n
v ⋅ vol{(z1, z2) ∈ OFv ⊕OFv ∶ z1z2 ∈ p

n
v}.

A similar summation has just been computed above, and the eventual result is still cψ1(1, y, u) =
0. (Note that dv = 1 in the current case.)

Now we treat

c̃ψ2(s) =
(1 −N−s

v )2

1 −N
−(s+1)
v

∞

∑
n=0

N−ns+n
v ∫

Dn
ψ2(y + x2, u)dx2

=
(1 −N−s

v )2

1 −N
−(s+1)
v

∞

∑
n=0

N−ns+n
v

⋅vol{(z1, z2) ∈ p
−1
v ⊕ p−1

v ∶ z1z2 ∈ p
n
v , q(y) − z1z2 ∈ O

×
Fv}.

Here we have assumed u ∈ O×
Fv

and will assume y ∈ $−1
v OEv in order to make the situation

nontrivial. It is similar to the case ψ1.
If q(y) ∉ OFv , the summation has no nonzero term and thus cψ1(1, y, u) = 0.
If q(y) ∈ pv, the summation has a single nonzero term coming from n = 0. Then

cψ1(1, y, u) = 0 again.
If q(y) ∈ O×

Fv
, we can neglect the term with n = 0 again. The remaining terms give

(1 −N−s
v )2

1 −N
−(s+1)
v

∞

∑
n=1

N−ns+n
v ⋅ vol{(z1, z2) ∈ p

−1
v ⊕ p−1

v ∶ z1z2 ∈ p
n
v}

=
(1 −N−s

v )2

1 −N
−(s+1)
v

∞

∑
n=1

N−ns+n
v ⋅N2

v ⋅ vol{(z′1, z
′
2) ∈ OFv ⊕OFv ∶ z

′
1z

′
2 ∈ p

n+2
v }.

Here we have used the substitution zi = $−1
v z

′
i. Then it is similar to the computation above

and still gives cψ1(1, y, u) = 0. This finishes the case v ∈ S2.

Remark 7.7. It is not surprising that some (complicated and un-wanted) terms in the result
of Lemma 7.4 appear in that of Lemma 7.6. In fact, it just reflexes that the identity

lim
a→0

W ′
a,v(0,1, u) =W

′
0,v(0,1, u),

which fails due to convergence issues, actually holds for some pieces of the two sides. Even-
tually we need these terms to cancel each other in order to get a neat Proposition 9.2.
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8 Height series

In this section, we study the intersection series of CM points, the main geometric ingredient
for proving Theorem 1.7. We will first review the construction of the series Z(g, (t1, t2), φ)
in [YZZ]. Then we will compute this series under some assumption of Schwartz functions.
In particular, we will obtain a term for the self-intersection of CM points which contributes
a main term for the identity in Theorem 1.7. In [YZZ], this term was killed under a stronger
assumption of Schwartz functions.

8.1 Height series

Let F be a totally real number field, and B be a totally definite incoherent quaternion algebra
over F with ramification set Σ. To avoid complication of cusps, we assume that ∣Σ∣ > 1. For
any open compact subgroup U of B×

f , we have a Shimura curve XU , which is a projective
and smooth curve over F . For any embedding τ ∶ F ↪ C, it has the usual uniformization

XU,τ(C) = B(τ)×/h± ×B×
f /U.

Here B(τ) denotes the nearby quaternion algebra, i.e., the unique quaternion algebra over
F with ramification set Σ ∖ {τ}.

For any x ∈ B×
f , we have a correspondence Z(x)U defined as the image of the morphism

(πUx,U , πUx,U ○Tx) ∶ XUxÐ→XU ×XU .

Here Ux = U ∩ xUx−1, πUx,U denotes the natural projection, and Tx denotes the right multi-
plication by x. In terms of the complex uniformization, the push-forward action gives

Z(x)U ∶ [z, β]U z→ ∑
y∈UxU/U

[z, βy]U .

Generating series

We first recall the generating series in [YZZ, §3.4.5]. For any φ ∈ S(B ×A×) invariant under
K = U ×U , form a generating series

Z(g, φ)U = Z0(g, φ)U +Z∗(g, φ)U , g ∈ GL2(A),

where

Z0(g, φ)U = − ∑
α∈F×+ /A×

f
/q(U)

∑
u∈µ2

U /F×
E0(α

−1u, r(g)φ) LK,α,

Z∗(g, φ)U = wU ∑
a∈F×

∑
x∈U/B×

f
/U

r(g)φ(x, aq(x)−1) Z(x)U .

Here µU = F × ∩U , and wU = ∣{1,−1} ∩U ∣ is equal to 1 or 2. We often abbreviate

Z(g, φ)U , Z0(g, φ)U , Z∗(g, φ)U
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as
Z(g)U , Z0(g)U , Z∗(g)U .

For our purpose on the height series, we will see that the constant term Z0(g, φ)U can be
neglected in our consideration, since its contribution is always zero.

Theorem 8.1. [YZZ, Theorem 3.17] The series Z(g, φ)U is absolutely convergent and defines
an automorphic form on g ∈ GL2(A) with coefficients in Pic(XU ×XU)C.

Height series

Let E/F be a totally imaginary quadratic extension, with a fixed embedding EA ↪ B over A.
In [YZZ], we consider a CM point P ∈XE×

(Eab) on the limit of the Shimura curves. In this
paper, we only consider the point PU ∈XU(Eab) for fixed U . For a more precise description,
fixing an embedding τ ∶ F ↪ C, take PU = [z0,1]U based on the uniformization

XU,τ(C) = B(τ)×/h± ×B×
f /U,

where z0 ∈ h is the unique fixed point of E× in h via the action induced by the embedding
E ↪ B(τ). For simplicity, we write P for PU .

In terms of the uniformization, there are two sets of CM points in XU(Eab) for our
purpose:

CU = {[z0, t]U ∶ t ∈ E
×(Af)}, CMU = {[z0, β]U ∶ β ∈ B×

f}.

It is easy to see canonical bijections

CU ≅ E×/E×(Af)/(E
×(Af) ∩U), CMU ≅ E×/B×

f /U.

We will abbreviate [z0, β]U as [β]U , [β] or just β.
For any t ∈ E×(A), denote by

[t] = [t]U = [z0, tf ]U

the CM point of XU,τ(C), viewed as an algebraic point of XU . Denote by

t○ = [t]○U = [t]U − ξU,t

the degree-zero divisor on XU , where ξt = ξU,t is the normalized Hodge class of degree one on
the connected component of [t]U .

Recall from [YZZ, §3.5.1, §5.1.2] that we have a height series

Z(g, (t1, t2), φ)U = ⟨Z(g, φ)U t○1, t
○
2⟩NT, t1, t2 ∈ E

×(Af).

Here Z(g, φ)U acts on t○1 as correspondences, and the pairing is the Néron–Tate height pairing

⟨⋅, ⋅⟩NT ∶ JU(F )C × JU(F )CÐ→C

on the Jacobian variety JU of XU over F .
By linearity, Z(g, (t1, t2), φ)U is an automorphic form in g ∈ GL2(A). By [YZZ, Lemma

3.19], it is actually a cusp form. In particular, the constant term Z0(g, φ) of the generating
function plays no role here.
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Decomposition of the height series

By the theory of [YZZ, §7.1], we are going to decompose the height series into local pairings
and some global terms. We will use (possibly) different integral models to do the decompo-
sition.

Assume that (B,E,U) satisfies the assumptions of §7.2 in the following. In particular,
U is maximal at every place, and there is no non-archimedean place of F ramified in both
E and B.

Let XU be the integral model of XU over OF introduced before Corollary 4.6, and let LU
be the arithmetic Hodge bundle introduced in Theorem 4.7. We are going to use (XU ,LU)
to decompose the Neron–Tate height pairing.

Note that every point of CMU is defined over a finite extension H of F that is unramified
above Σ(Bf). The composite of two such extensions still satisfies the same property. By
Corollary 4.6, the base change XU,OH is Q-factorial for such H. Then arithmetic intersection
numbers of Arakelov divisors are well-defined on XU,OH . Take the integral model YU used
in [YZZ, §7.2.1] to be XU,OH (without any desingularization). We get a decomposition of
Z(g, (t1, t2))U by the process of [YZZ, §7.2.2].

We do not know whether XU is regular everywhere or smooth above any prime of F split
in B. If both are true, then XU,OH is already regular, and the decomposition here is the same
as that in [YZZ].

Vanishing of the pairing with Hodge class

Now we use freely the notations of [YZZ, §7.1-7.2]. For the height series, the linearity gives
a decomposition

Z(g, (t1, t2))U = ⟨Z∗(g)U t1, t2⟩ − ⟨Z∗(g)U t1, ξt2⟩ − ⟨Z∗(g)Uξt1 , t2⟩ + ⟨Z∗(g)Uξt1 , ξt2⟩.

Here Z∗(g)U = Z∗(g, φ)U , and the pairings on the right-hand side are arithmetic intersection
numbers in terms of admissible extensions, as introduced in [YZZ, §7.1.6].

Now we resume the degeneracy assumption in 7.1, which mainly requires that there is a
set S2 consisting of 2 non-archimedean places of F split in E and unramified over Q such
that

r(g)φv(0, u) = 0, ∀ g ∈ GL2(Fv), u ∈ F
×
v , v ∈ S2.

By [YZZ, Proposition 7.5], the assumption kills the last three terms on the right-hand side
and gives the simplification

Z(g, (t1, t2))U = ⟨Z∗(g)U t1, t2⟩.

As in [YZZ, Proposition 7.5], we have a decomposition

Z(g, (t1, t2))U = −i(Z∗(g)U t1, t2) − j(Z∗(g)U t1, t2).

Here the i-part is essentially the arithmetic intersection number of horizontal parts, and the
j-part is the contribution from vertical parts.
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Now we have a decomposition to local intersection numbers by

j(Z∗(g)t1, t2) =∑
v

jv(Z∗(g)t1, t2) logNv.

The sum is over all places of F , and we take the convention logNv = 1 if v is real. Decom-
posing the local intersection number in terms of Galois orbits, we further have

jv(Z∗(g)t1, t2) = ∫
CU
jv̄(Z∗(g)tt1, tt2)dt.

Here the pairing jv̄ is introduced in [YZZ, §7.1.7], and

CU = E×/E×(Af)/E
×(Af) ∩U

is a finite group and the integration is just the usual average over this finite group.
Unlike the j-part, the decomposition of the i-part into local intersection numbers is com-

plicated due to the occurrence of self-intersections. We have to isolate the self-intersections
before the decomposition. Such a complication is diminished in [YZZ] by Assumption 5.3
in it, but we cannot impose this assumption here. In fact, the assumption kills all possible
self-intersections, but the purpose of this paper is to compute these self-intersections!

Self-intersection

The self-intersection in ⟨Z∗(g)t1, t2⟩ comes from the multiplicity of [t2]U in Z∗(g)t1. By
definition,

Z∗(g)t1 = wU ∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a[t1x].

Here r(g)φ(x)a = r(g)φ(x, a/q(x)). See also [YZZ, §4.3.1] for this formula.
Note that [t1x] = [t2] as CM points on XU if and only if x ∈ t−1

1 t2E
×U . It follows that

the coefficient of [t2]U in Z∗(g)t1 is equal to

wU ∑
a∈F×

∑
x∈t−1

1 t2E×U/U

r(g)φ(x)a = wU ∑
a∈F×

∑
y∈E×/(E×∩U)

r(g)φ(t−1
1 t2y)a.

Note that µU = F × ∩U has finite index in E× ∩U , the above becomes

wU
[E× ∩U ∶ µU]

∑
a∈F×

∑
y∈E×/µU

r(g, (t1, t2))φ(y)a

=
1

[E× ∩U ∶ µU]
∑

u∈µ2
U /F×

∑
y∈E×

r(g, (t1, t2))φ(y, u).

The last double sum already appeared in the derivative series, and will continue to appear
in local heights. So, we introduce the notation

Ωφ(g, (t1, t2)) = ∑
u∈µ2

U /F×
∑
y∈E×

r(g, (t1, t2))φ(y, u).
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Finally, we can write

i(Z∗(g)t1, t2) = i(Z∗(g)t1, t2)proper +
Ωφ(g, (t1, t2))

[E× ∩U ∶ µU]
i(t2, t2).

Here

i(Z∗(g)t1, t2)proper = i(Z∗(g)t1 −
Ωφ(g, (t1, t2))

[E× ∩U ∶ µU]
t2, t2)

is a proper intersection. The proper intersection has decompositions

i(Z∗(g)t1, t2)proper = ∑
v

iv(Z∗(g)t1, t2)proper logNv,

iv(Z∗(g)t1, t2)proper = ∫
CU
iv̄(Z∗(g)tt1, tt2)properdt.

We further have an identity i(t2, t2) = i(1,1) since [1] and [t] are Galois conjugate CM
points.

8.2 Local heights as pseudo-theta series

Now we are going to express the local heights iv̄(Z∗(g)t1, t2)proper and jv̄(Z∗(g)t1, t2) in
terms of multiplicity functions on local models of the Shimura curve. The idea is similar to
[YZZ, Chapter 8], with extra effort to take care of the self-intersections. Note that in [YZZ],
self-intersections vanish due to a degeneracy assumption, which we cannot put here.

Archimedean case

Let v be an archimedean place. Fix an identification B(Af) = Bf , and write B = B(v). The
formula is based on the uniformization

XU,v(C) = B×
+/h ×B

×(Af)/U.

Resume the notations in [YZZ, §8.1]. In particular, we have the local multiplicity function

ms(γ) = Qs(1 − 2λ(γ)), γ ∈ B×
v −E

×
v .

Here

Qs(t) = ∫
∞

0
(t +

√
t2 − 1 coshu)

−1−s
du

is the Legendre function of the second kind. For any two distinct CM points [β1]U , [β2]U ∈
CMU , denote

gs(β1, β2) = ∑
γ∈µU /(B×+−E×)

ms(γ) 1U(β
−1
1 γβ2),

Then the local height has the expression

iv̄(β1, β2) = l̃ims→0gs(β1, β2).
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Here l̃ims→0 denotes the constant term at s = 0 of gs((z1, β1), (z2, β2)), which converges for
Re(s) > 0 and has meromorphic continuation to s = 0 with a simple pole.

In [YZZ], the formula works for distinct points [β1]U and [β2]U . In this paper, we extend
it formally to any two points. Namely, for any β1, β2 ∈ CMU , we denote

gs(β1, β2) = ∑
γ∈µU /(B×+−E×)

ms(γ) 1U(β
−1
1 γβ2),

and define
iv̄(β1, β2) = l̃ims→0gs(β1, β2).

With the extra new notation, we have the following result.

Proposition 8.2. For any t1, t2 ∈ CU ,

iv̄(Z∗(g, φ)t1, t2)proper =M
(v)
φ (g, (t1, t2)) −

iv̄(t2, t2)

[E× ∩U ∶ µU]
Ωφ(g, (t1, t2))

where

Ωφ(g, (t1, t2)) = ∑
u∈µ2

U /F×
∑
y∈E×

r(g, (t1, t2))φ(y, u),

M
(v)
φ (g, (t1, t2)) = wU ∑

a∈F×
l̃ims→0 ∑

y∈µU /(B×+−E×)
r(g, (t1, t2))φ(y)ams(y).

Proof. By definition,

iv̄(Z∗(g)t1, t2)proper = iv̄(Z∗(g)t1, t2) − iv̄ (
Ωφ(g, (t1, t2))

[E× ∩U ∶ µU]
t2, t2) .

Here the first term on the right-hand side makes sense by the extended definition of iv̄ to
self-intersections. The rest of the proof is the same as [YZZ, Proposition 8.1].

Supersingular case and superspecial case

Let v be a non-archimedean place of F non-split in E. Let B = B(v) be the nearby quaternion
algebra over F . We will write the local pairing iv̄ as a sum of pseudo-theta series following
the idea [YZZ]. The situation is more complicated by the self-intersections here. Note that
v can be either split or non-split in B, but the exposition here are the same (before going to
explicit computations).

Recall from [YZZ, Lemma 8.2] that for any two distinct CM-points [β1]U ∈ CMU and
[t2]U ∈ CU , their local height is given by

iv̄(β1, t2) = ∑
γ∈µU /B×

m(γt2,v, β
−1
1v )1Uv((β

v
1)

−1γtv2).

Here the multiplicity function m is defined everywhere on

hUv = B
×
v ×E×

v
B×
v/Uv
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except at the image of (1,1). It satisfies the symmetry m(b−1, β−1) =m(b, β).
The summation is only well-defined for [β1]U ≠ [t2]U . Otherwise, we can find γ ∈ E× such

that β−1
1 γt2 ∈ U , and the term at γ is not well-defined. Hence, we extend the definition to

any two CM-points [β1]U ∈ CMU and [t2]U ∈ CU by

iv̄(β1, t2)

= ∑
γ∈µU /(B×−E×∩β1Ut−1

2 )

m(γt2v, β
−1
1v )1Uv((β

v
1)

−1γtv2)

= ∑
γ∈µU /(B×−E×)

m(γt2v, β
−1
1v )1Uv((β

v
1)

−1γtv2) + ∑
γ∈µU /(E×−β1Ut−1

2 )

m(γt2v, β
−1
1v )1Uv((β

v
1)

−1γtv2)

= ∑
γ∈µU /(B×−E×)

m(γt2v, β
−1
1v )1Uv((β

v
1)

−1γtv2) + ∑
γ∈µU /(E×−β1Uvt−1

2 )

m(γt2v, β
−1
1v )1Uv((β

v
1)

−1γtv2).

The definition is equal to the previous one if [β1]U ≠ [t2]U . In Lemma 9.4, we will see that
iv̄(t2, t2) can be realized as a proper intersection number via pull-back to XU ′ for sufficiently
small U ′ with U ′

v = Uv.
With the extended definition, our conclusion is as follows.

Proposition 8.3. For any t1, t2 ∈ CU ,

iv̄(Z∗(g, φ)t1, t2)proper =M
(v)
φ (g, (t1, t2)) +N

(v)
φ (g, (t1, t2)) −

iv̄(t2, t2)

[E× ∩U ∶ µU]
Ωφ(g, (t1, t2)),

where

Ωφ(g, (t1, t2)) = ∑
u∈µ2

U /F×
∑
y∈E×

r(g, (t1, t2))φ(y, u),

M
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈B−E

r(g, (t1, t2))φ
v(y, u) mr(g,(t1,t2))φv(y, u),

N
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈E×

r(g, (t1, t2))φ
v(y, u) r(t1, t2)nr(g)φv(y, u),

and

mφv(y, u) = ∑
x∈B×v/Uv

m(y, x−1)φv(x,uq(y)/q(x)), (y, u) ∈ (Bv −Ev) × F
×
v ;

nφv(y, u) = ∑
x∈(B×v−yUv)/Uv

m(y, x−1)φv(x,uq(y)/q(x)), (y, u) ∈ E×
v × F

×
v .

Proof. By the extended definition of iv̄, it suffices to prove

iv̄(Z∗(g, φ)t1, t2) =M
(v)
φ (g, (t1, t2)) +N

(v)
φ (g, (t1, t2)).

The left-hand side is equal to

wU ∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a ∑
γ∈µU /(B×−E×)

m(γt2, x
−1t−1

1 )1Uv(x
−1t−1

1 γt2)

+ wU ∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a ∑
γ∈µU /(E×−t1xUvt−1

2 )

m(γt2, x
−1t−1

1 )1Uv(x
−1t−1

1 γt2).
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The first triple sum is converted to M
(v)
φ (g, (t1, t2)) as in [YZZ, Proposition 8.4], and the

second triple sum is converted to N
(v)
φ (g, (t1, t2)) similarly.

Here we use the convention

r(t1, t2)nr(g)φv(y, u) = nr(g)φv(t
−1
1 yt2, q(t1t

−1
2 )u).

Note that in the above series, we write the dependence on (t1, t2) in different manners for
mφv and nφv . This is because mφv(y, u) translates well under the action of P (Fv)×(E×

v ×E
×
v ),

but nφv(y, u) only translates well under the action of P (Fv).

Ordinary case

Assume that v is a non-archimedean place of F split in E. Then Bv is split because of
the embedding Ev → Bv. In this case, the treatment of [YZZ, §8.4] is not sufficient for our
current purpose, so we write more details here.

Let ν1 and ν2 be the two primes of E lying over v. Fix an identification Bv ≅ M2(Fv)

under which Ev = (
Fv

Fv
). Assume that ν1 corresponds to the ideal (

Fv
0

) and ν2

corresponds to (
0

Fv
) of Ev.

We will make use of results of [Zh]. The reduction map of CM-points to ordinary points
above ν̄1 is given by

E×/B×
f /U Ð→ E×/(N(Fv)/GL2(Fv)) ×Bv×f /U.

The intersection multiplicity is a function

mν̄1 ∶ GL2(Fv)/UvÐ→Q

supported on N(Fv)Uv/Uv explicitly as follows. If Uv = (1 + prvOBv)
× for some r ≥ 0, then

[Zh, Lemma 5.5.1] gives

mν̄1 (
1 b

1
) =

1

N
r−v(b)−1
v (Nv − 1)

for b ∈ Fv with v(b) ≤ r − 1. Note that the case v(b) ≥ r corresponds to self-intersection and
is thus not well-defined.

Lemma 8.4. The local height pairing of two distinct CM points [β1]U ∈ CMU and [t2]U ∈ CU
is given by

iν̄1(β1, t2) = ∑
γ∈µU /E×

mν̄1(t
−1
2 γ

−1β1)1Uv(β
−1
1 γt2).
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Proof. Denote the right-hand side by iν̄1(β1, t2)′. We first prove that iν̄1(β1, t2) = iν̄1(β1, t2)′

if U v is sufficiently small. In that case, by the local moduli of [Zh], iν̄1(β1, t2) is nonzero only
if there is γ0 ∈ E× such that γ0tv2U

v = βv1U
v and t−1

2 γ
−1
0 β1 ∈ N(Fv)Uv. In this case, iν̄1(β1, t2)

is equal to mν̄1(t
−1
2 γ

−1
0 β1). Then it suffices to check that in the expression of iν̄1(β1, t2)′, the

summation has only one nonzero term which is exactly given by γ = γ0. In fact, assume that
γ ∈ E× satisfies

mν̄1(t
−1
2 γ

−1β1)1Uv(β
−1
1 γt2) ≠ 0.

Write γ = γ′γ0. Then the condition becomes

mν̄1(γ
′−1t−1

2 γ
−1
0 β1)1Uv(β

−1
1 γ0t2γ

′) ≠ 0.

It gives γ′−1N(Fv)Uv ⊂ N(Fv)Uv at v and γ′ ∈ U v outside v. The former actually implies
γ′ ∈ Uv. Then we have γ′ ∈ U ∩E×. The condition that U is sufficiently small implies that
U ∩E× = µU . In fact, [U ∩E× ∶ µU] is exactly the ramification index of [t2]U . Hence, γ = γ0

in µU/E×. This proves the case that U is sufficiently small.
Now we extend the result to general U . Let U ′ = UvU ′v be an open compact subgroup of

Bf with U ′v ⊂ U v normal. Assume that U ′v is sufficiently small so that the lemma holds for
XU ′ . Consider the projection π ∶XU ′ →XU . By the projection formula, we have

iν̄1([β1]U , [t2]U) = iν̄1(π
−1([β1]U), [t2]U ′).

To compute the right-hand side, we need to examine π ∶ XU ′ → XU more carefully. By the
right multiplication of U on XU ′ , it is easy to see that the Galois group of XU ′ → XU is
isomorphic to U/(U ′µU). It follows that

π−1([β1]U) = ∑
u∈U/(U ′µU )

[β1u]U ′ =
1

[µU ∶ µU ′]
∑

u∈U/U ′
[β1u]U ′ .

We can further change the summation to u ∈ U v/U ′v. Then

iν̄1([β1]U , [t2]U) = iν̄1(π
−1([β1]U), [t2]U ′)

=
1

[µU ∶ µU ′]
∑

u∈U/U ′
iν̄1([β1u]U ′ , [t2]U ′)

=
1

[µU ∶ µU ′]
∑

u∈Uv/U ′v
∑

γ∈µU ′/E×
mν̄1(t

−1
2 γ

−1β1)1U ′v(u−1β−1
1 γt2)

=
1

[µU ∶ µU ′]
∑

γ∈µU ′/E×
mν̄1(t

−1
2 γ

−1β1)1Uv(β
−1
1 γt2)

= ∑
γ∈µU /E×

mν̄1(t
−1
2 γ

−1β1)1Uv(β
−1
1 γt2).

This finishes the general case.
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Just like the other cases, the above summation is only well-defined for [β1]U ≠ [t2]U . But
we extend the definition to any [β1]U and [t2]U by

iν̄1(β1, t2) = ∑
γ∈µU /(E×−β1Ut−1

2 )

mν̄1(t
−1
2 γ

−1β1)1Uv(β
−1
1 γt2)

= ∑
γ∈µU /(E×−β1Uvt−1

2 )

mν̄1(t
−1
2 γ

−1β1)1Uv(β
−1
1 γt2).

It is equal to the original pairing if [β1]U ≠ [t2]U .
If [β1]U = [t2]U , then we can assume that β1 = t2, a simple calculation taking advantage

of the commutativity of E× simply gives

iν̄1(t2, t2) = 0, ∀ [t2]U ∈ CU .

So in this case, the definition does not give anything new.
The results hold for ν2 by changing upper triangular matrices to lower triangular ma-

trices. For example, the intersection multiplicity mν̄2 ∶ GL2(Fv)/UvÐ→Q is supported on
N t(Fv)Uv/Uv and given by

mν̄1 (
1
b 1

) =
1

N
r−v(b)−1
v (Nv − 1)

for b ∈ Fv with v(b) ≤ r − 1. Then we also have a similar extension for iν̄1(β1, t2).
Passing to v̄, we have

mv̄ =
1

2
(mν̄2 +mν̄2), iv̄ =

1

2
(iν̄1 + iν̄2).

Now we have the following result.

Proposition 8.5. For any t1, t2 ∈ CU ,

iv̄(Z∗(g, φ)t1, t2)proper = N
(v)
φ (g, (t1, t2)),

where

N
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈E×

r(g, (t1, t2))φ
v(y, u) r(t1, t2)nr(g)φv(y, u),

and

nφv(y, u) =
1

2
∑

xv∈(N(Fv)Uv−Uv)/Uv

φv(yxv, u) mν̄1(x)

+
1

2
∑

xv∈(Nt(Fv)Uv−Uv)/Uv

φv(yxv, u) mν̄2(x)

for any (y, u) ∈ E×
v × F

×
v .
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Proof. Note that the extended intersection number iv̄(t2, t2) = 0 automatically. It suffices to
check

iv̄(Z∗(g, φ)t1, t2) = N
(v)
φ (g, (t1, t2)).

The left-hand side is equal to

wU ∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a ∑
γ∈µU /(E×−t1xUvt−1

2 )

mv̄(t
−1
2 γ

−1t1x)1Uv(x
−1t−1

1 γt2).

By 1Uv(x−1t−1
1 γt2) = 1, we have xv ∈ t−1

1 γt2U
v; by γ ∉ t1xUvt−1

2 , we have xv ∉ t−1
1 γt2Uv. Thus

it becomes

wU ∑
a∈F×

∑
γ∈µU /E×

r(g)φv(t−1
1 γt2)a ∑

xv∈(B×v−t−1
1 γt2Uv)/Uv

r(g)φv(xv)a mv̄(t
−1
2 γ

−1t1x).

It remains to convert the last sum to the desired form, which is reduced to similar results
for ν1 and ν2. We have

∑
xv∈(B×v−t−1

1 γt2Uv)/Uv

r(g)φv(xv)a mν̄1(t
−1
2 γ

−1t1x)

= ∑
xv∈(t−1

1 γt2N(Fv)Uv−t−1
1 γt2Uv)/Uv

r(g)φv(xv)a mν̄1(t
−1
2 γ

−1t1x)

= ∑
xv∈(N(Fv)Uv−Uv)/Uv

r(g)φv(t
−1
1 γt2xv)a mν̄1(x).

A similar result holds for ν2.

Decomposition of the height series

Finally, we end up with the following summary.

Theorem 8.6. Assume that Assumption 7.1 holds. Then for any t1, t2 ∈ CU ,

Z(g, (t1, t2), φ))U = − ∑
v nonsplit

(logNv)∫
CU
M

(v)
φ (g, (tt1, tt2))dt

− ∑
v∤∞

N
(v)
φ (g, (t1, t2)) logNv − ∑

v∤∞

jv(Z∗(g, φ)t1, t2) logNv

−
i0(t2, t2)

[E× ∩U ∶ µU]
Ωφ(g, (t1, t2)).

The right-hand side is explained in the following.

(1) The modified arithmetic self-intersection number

i0(t2, t2) = i(t2, t2) −∑
v

iv(t2, t2) logNv,

where the local term
iv(t2, t2) =∫

CU
iv̄(tt2, tt2)dt

uses the extended definition of iv̄.
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(2) The pseudo-theta series

Ωφ(g, (t1, t2)) = ∑
u∈µ2

U /F×
∑
y∈E×

r(g, (t1, t2))φ(y, u).

(3) For any place v non-split in E,

M
(v)
φ (g, (t1, t2)) = wU ∑

a∈F×
l̃ims→0 ∑

y∈µU /(B×+−E×)
r(g, (t1, t2))φ(y)ams(y), v∣∞,

M
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈B−E

r(g, (t1, t2))φ
v(y, u) mr(g,(t1,t2))φv(y, u), v ∤∞.

(4) For any non-archimedean v,

N
(v)
φ (g, (t1, t2)) = ∑

u∈µ2
U /F×

∑
y∈E×

r(g, (t1, t2))φ
v(y, u) r(t1, t2)nr(g)φv(y, u),

The only new information used above is the identity

∫
CU
N

(v)
φ (g, (tt1, tt2))dt = N

(v)
φ (g, (t1, t2)).

This follows from the invariance

N
(v)
φ (g, (tt1, tt2)) = N

(v)
φ (g, (t1, t2)),

which in turn follows from the special situation that the summation only involves y ∈ E× in
the definition of N

(v)
φ .

8.3 Explicit local heights

Let (U,φ, jv, jv) be as in §7.2. The goal of this subsection is to compute mφv(y, u) and
nφv(y, u), and treat jv(Z∗(g, φ)t1, t2). The results are parallel to those in §7.3.

Local intersection numbers

Lemma 8.7. (1) Let v be a non-archimedean place nonsplit in E. For any (y, u) ∈
(B(v)v −Ev) × F ×

v ,

mφv(y, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φv(y1, u)1OEv jv(y2) ⋅
1

2
(v(q(y2)) + 1), Bv split, Ev inert;

φv(y1, u)1OEv jv(y2) ⋅
1

2
(v(q(y2)) + v(Dv)), Bv split, Ev ramified;

φv(y1, u)1OEv jv(y2) ⋅
1

2
v(q(y2)), Bv nonsplit.
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(2) Let v be a non-archimedean place of F . For any (y, u) ∈ E×
v × F

×
v ,

nφv(y, u) = φv(y, u) ⋅
1

2
v(q(y)).

Proof. If v is nonsplit in E, by Proposition 8.3,

mφv(y, u) = ∑
x∈B×v/Uv

m(y, x−1)φv(x,uq(y)/q(x)), (y, u) ∈ (Bv −Ev) × F
×
v ;

nφv(y, u) = ∑
x∈(B×v−yUv)/Uv

m(y, x−1)φv(x,uq(y)/q(x)), (y, u) ∈ E×
v × F

×
v .

If v is nonsplit in E and split in B, then (1) is computed in [YZZ, Proposition 8.7], except
that there is a mistake in the case that Ev is wildly ramified over Fv. The mistake came
from [YZZ, Lemma 8.6], which was in turn caused by the wrong formula of [Zh, Lemma
5.5.2]. As a digression, we remark that the mistake did not impact the main result of [YZZ]
because the result in this case was not used in the book elsewhere.

The correct version of [YZZ, Lemma 8.6] is as follows. The multiplicity function m(b, β) ≠
0 only if q(b)q(β) ∈ O×

Fv
. In this case, assume that β ∈ E×

v hcGL2(OFv). Then

m(b, β) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2(v(λ(b)) + 1) if c = 0, Ev/Fv is unramified;
1
2v(Dvλ(b)) if c = 0, Ev/Fv is ramified;

N1−c
v (Nv + 1)−1 if c > 0, Ev/Fv is unramified;

1
2N

−c
v if c > 0, Ev/Fv is ramified.

Only the second case is different, and it can be verified by going back to the canonical lifting
of Gross [Gr1]. Then it is easy to have the correct formula (1) of the current case.

If v is nonsplit in E and split in B, then (2) can be verified by the same method as in
[YZZ, Proposition 8.7], where the only difference is that

nφv(y, u) =
∞

∑
c=1

m(y−1, hc)vol(E×
v hcGL2(OFv) ∩M2(OFv)n)

is a sum omitting c = 0.
If v is inert in E and nonsplit in B, by Lemma 8.8,

m(y, x−1) =
1

2
v(λ(y)) 1E×

v (1+OEv$vjv)
(y)10(v(q(x)/q(y))).

It follows that

mφv(y, u) =
1

2
v(λ(y)) 1E×

v (1+OEv$vjv)
(y) ∑

x∈B×v/Uv
10(v(q(x)/q(y)))φv(x,uq(y)/q(x)).

Note that B×
v/Uv ≅ Z. It is easy to get (1). For (2), since the conditions x ∉ yUv and

10(v(q(x)/q(y))) are contradictory, we get nφv(y, u) = 0.
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If v is split in E, in the setting of Proposition 8.5,

nφv(y, u) =
1

2
∑

xv∈(N(Fv)−N(OFv ))/N(OFv )

φv(yxv, u) mν̄1(x)

+
1

2
∑

xv∈(Nt(Fv)−Nt(OFv ))/N
t(OFv )

φv(yxv, u) mν̄2(x).

We first consider the case v ∉ S2. Then φv is the standard characteristic function. Write

y = (
a

d
). The summations are nonzero only if a, d ∈ OFv and u ∈ O×

Fv
, which we assume.

For the first sum, write xv = (
1 b

1
). Then we need ab ∈ OFv . Eventually, the first sum

becomes

∑
b∈(a−1OFv−OFv )/OFv

1

N
−v(b)−1
v (Nv − 1)

=
v(a)

∑
i=1

∣(p−iv − p−i+1
v )/OFv ∣

N i−1
v (Nv − 1)

= v(a).

Similarly, the second sum equals v(d). Then

nφv(y, u) =
1

2
(v(a) + v(d)) =

1

2
v(q(y)).

This finishes the proof for v ∉ S2. If v ∈ S2, the computation is similar, and we will get
everywhere 0.

Multiplicity function: superspecial case

Let v be non-archimedean place nonsplit in B and inert in E. Recall that the multiplicity
function m is defined on

hUv = B(v)×v ×E×
v
B×
v/Uv.

Note that we have assumed that Uv is maximal. The following result does not need any
restriction on U v.

Lemma 8.8. For any (γ, β) ∈ B(v)×v ×E×
v
B×
v , we have m(γ, β) ≠ 0 only if q(γ)q(β) ∈ O×

Fv
and γ ∈ E×

v ⋅ (1 +OEv$vjv). In this case,

m(γ, β) =
1

2
v(λ(γ)).

Here λ(γ) = q(γ2)/q(γ), where γ = γ1 + γ2 is the decomposition according to Bv = Ev +Evjv.

Instead of deformation theory, our proof uses directly the theorem of p-adic uniformiza-
tion of Čerednik [Ce]. See also [BC].
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Write B = B(v) for simplicity. Denote by F ur
v the completion of the maximal unram-

ified extension of Fv, and Cv the completion of the algebraic closure of Fv. The p-adic
uniformization in terms of rigid-analytic space is

Xan
U ×Fv F

ur
v = B×/(Ω ×Fv F

ur
v ) ×B×

f /U.

Here Ω is the Drinfe’ld (rigid-analytic) upper half plane over Fv, which gives Ω(Cv) = Cv−Fv.
The group B×

v ≅ GL2(Fv) acts on Ω by the fractional linear transformation, and on B×
v/Uv ≅ Z

via translation by v ○ q = v ○ det.
To study the intersection multiplicity, we need the integral version of the uniformization.

The uniformization theory also gives a canonical integral model Ω̂ of Ω. It is a formal scheme
over OFv obtained from successive blowing-up of rational points on the special fiber of POFv
constructed by Deligne. The uniformization takes the form:

X̂U ×SpfOFv
SpfOFur

v
= B×/(Ω̂ ×SpfOFv

SpfOFur
v
) ×B×

f /U.

Here XU is the canonical integral model over OF , which is semistable at v, and X̂U denotes
the formal completion along the special fiber above v.

The special fiber of Ω̂, or equivalently the underlying topological space of Ω̂, is a union
of P1’s indexed by scalar equivalence classes of OFv -lattices of F 2

v . Then its irreducible
components are indexed by

GL2(Fv)/F
×
v GL2(OFv).

It follows that the irreducible components of the special fiber of XU above v are indexed by

B×/(GL2(Fv)/F
×
v GL2(OFv)) ×B×

f /U.

Consider the set

CMU = E×/B×(Af)/U = B×/(B× ×E× B×
v/Uv) ×B

×(Av
f)/U

v.

The natural embedding CMU →XU(Cv) is given by the embedding

B× ×E× B×
v/UvÐ→Ω ×Z, (γ, β)z→ (γz0, v(q(γ)q(β))),

where z0 ∈ Ω(Ev) is the unique point in Ω(Cv) fixed by E×
v . Thus the CM-points on Ω are

given by
h○Uv = {(γ, β) ∈ B×

v ×E×
v
B×
v/Uv ∶ v(q(γ)q(β)) = 0} .

As Uv is maximal, the class of (γ, β) in h○Uv it determined by γ. Thus h○Uv can be identified
with

B×
v /E

×
v = B

×
v z0.

Then we have a multiplicity function m on B×
v /E

×
v such that

m(γ, β) =m(γ)10(v(q(γ)q(β))), γ ∈ B×
v , β ∈ Bv×.
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The problem is reduced to compute m(γ), which is the intersection number of z0 with γz0

on the special fiber.
The intersection number is on Ω̂ ×SpfOFv

SpfOFur
v

. Since the irreducible components of
its special fiber are indexed by GL2(Fv)/F ×

v GL2(OFv), we see that m(γ) is nonzero only if γ
lies in GL2(Fv)/F ×

v GL2(OFv). Then we can assume that γ ∈ GL2(OFv), since the center acts
trivially on z0.

By the assumption, z0 and γz0 reduce to the same irreducible component on the special
fiber of Ω̂ ×SpfOFv

SpfOFur
v

. Remove the other irreducible components of Ω̂ ×SpfOFv
SpfOFur

v
.

We obtain a formal scheme, which is just the formal completion of P1
OFur

v
− P1(kv) along the

special fiber. Here kv denotes the residue field of OFv , and the kv-points on the special fiber
are removed. Now the problem is elementary: z0 and γz0 are points of P1

OFur
v

, and the goal

is to find their intersection number on the special fiber. We further replace P1
OFur

v
by P1

OEv
,

which does not change the intersection number.
The point z0 ∈ P1(OEv) corresponds to an OFv -linear isomorphism `0 ∶ O2

Fv
→ OEv , which

is determined by z0 up to O×
Ev

-action. Then γz0 corresponds to the isomorphism `0 ○ γ ∶
O2
Fv
→ OEv . We need to find the maximal integer n such that `0 and `0 ○ γ reduce to the

same point in P1(OEv/p
n
v). Identify Ev with F 2

v by `0, so that M2(Fv) acts on Ev. The action
is compatible with the embedding E ↪ B(v) we specify at the very beginning because z0 is
the fixed point of E×

v . Then the problem becomes finding the maximal integer m such that
the image of γ in GL2(OFv/p

n
v) actually lies in (OEv/p

n
v)

×.
Write γ = a + bjv according to the orthogonal decomposition M2(Fv) = Ev +Evjv. Here

q(jv) ∈ O×
Fv

by assumption. Some O×
Ev

-multiple of jv acts on Ev by the nontrivial element of
Gal(Ev/Fv). Hence, m(γ) ≠ 0 only if a ∈ O×

Ev
and b ∈ pvOEv . In that case, m(γ) = v(b).

Go back to an arbitrary γ ∈ GL2(Fv). We have m(γ) ≠ 0 only if γ ∈ E×
v ⋅ (1 +OEv$vjv).

In that case, m(γ) = v(λ(γ))/2.

The j-part

If v is a non-archimedean place of F split in B, then the j-part jv(Z∗(g, φ)t1, t2) = 0 au-
tomatically. This is a trivial consequence of the fact that the special fiber of XU at v is a
disjoint union of irreducible curves. For the fact, in the construction of XU before Corollary
4.6, we can take the prime p to be coprime to v, then XU ′ is smooth at v. The special fiber of
XU ′ at v is a disjoint union of irreducible curves, and the quotient XU has the same property
since it is also a quotient of the underlying topological space.

In the following, assume that v is a non-archimedean place nonsplit in B and inert in E.
Note that Uv is maximal and φv = 1O×

Bv×O
×
Fv

. It is proved that the j-part jv(Z∗(g)t1, t2) is a

non-singular pseudo-theta series in [YZZ] under [YZZ, Assumption 5.3]. The result is also
true in the current situation. Recall that

jv(Z∗(g)t1, t2) =∫
CU
jv̄(Z∗(g)tt1, tt2)dt.

The integration is a finite sum, so it suffices to prove the same result for jv̄(Z∗(g)t1, t2).

86



Lemma 8.9. Let v be a non-archimedean place nonsplit in B and inert in E. The j-part
jv̄(Z∗(g, φ)U t1, t2) is a non-singular pseudo-theta series of the form

∑
u∈µ2

U /F×
∑

y∈B(v)−{0}

r(g)φv(y, u) lr(g)φv(y, u).

Proof. Resume the notations of Lemma 8.8. As above, denote by F ur
v the completion of the

maximal unramified extension of Fv. As all CM points of CMU are defined over F ur
v , the

intersection number jv(Z∗(g)t1, t2) can be computed on the integral model XU,OFur
v

. By the

definition in [YZZ, §7.1.7],

jv(Z∗(g)t1, t2) = Z∗(g)t1 ⋅ Vt2 .

Here Z∗(g)t1 is the Zariski closure in XU,OFur
v

, and Vt2 is a vertical divisor on XU,OFur
v

, i.e., a
linear combination of irreducible components in the special fibers of XU,OFur

v
which gives the

ξ̂-admissible arithmetic extension of t2.
We still use the p-adic uniformization

X̂U ×SpfOFv
SpfOFur

v
= B×/(Ω̂ ×SpfOFv

SpfOFur
v
) ×B×

f /U.

Here B = B(v) as before. The map from X̂U ×SpfOFv
SpfOFur

v
to its set of connected compo-

nents is exactly the natural composition

B×/(Ω̂ ×SpfOFv
SpfOFur

v
) ×B×

f /UÐ→B
×/B×

f /U
q
Ð→ F ×

+ /A×
f /q(U).

For the case t2 = 1, write V1 = ∑i aiWi, where {Wi}i is the set of irreducible components
of the special fiber of XU,OFur

v
lying in the same connected component as 1. Let W̃i be an

irreducible component of the special fiber of Ω̂×SpfOFv
SpfOFur

v
liftingWi. Note that the choice

of W̃i is not unique, but we fix such choice. Write Ṽ = ∑i aiW̃i, viewed as a vertical divisor of
Ω̂ ×SpfOFv

SpfOFur
v

. The vertical divisor (Ṽ ,1) = ∑i ai(W̃i,1) of (Ω̂ ×SpfOFv
SpfOFur

v
) ×B×

f /U
is a lifting of the vertical divisor V1 = ∑i aiWi.

For general t2 ∈ A×
f , the vertical divisor (Ṽ , t2) = ∑i ai(W̃i, t2) of (Ω̂×SpfOFv

SpfOFur
v
)×B×

f

is a lifting of the vertical divisor Vt2 . In fact, by the projection formula, it suffices to verify the
intersection number of (Ṽ , t2) with any B×-invariant vertical divisors of (Ω̂×SpfOFv

SpfOFur
v
)×

B×
f /U are the expected ones. But these intersection numbers are given by the corresponding

ones from the case t2 = 1.
For any point β ∈ CMU , the projection formula gives

β ⋅ Vt2 = ∑
γ∈µU /B×

(γ−1z0 ⋅ Ṽ )1O×
Fv

(q(γ)q(t2)/q(β))1Uv(t
−1
2 γ

−1β).

Here z0 ∈ Ω̂(OFur
v
) is the unique fixed section of E×

v , and the intersection (γ−1z0 ⋅ Ṽ ) is taken

on Ω̂ ×SpfOFv
SpfOFur

v
.
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Hence, as in all the previous cases of local heights, we have

Z∗(g)t1 ⋅ Vt2 =wU ∑
a∈F×

∑
x∈B×

f
/U

r(g)φ(x)a ∑
γ∈µU /B×

(γ−1z0 ⋅ Ṽ )1O×
Fv

(q(γ)q(t2)/q(t1x))1Uv(t
−1
2 γ

−1t1x)

=wU ∑
a∈F×

∑
γ∈µU /B×

r(g)φv(t−1
1 γt2)a ∑

x∈B×v/Uv
r(g)φv(x)a(γ

−1z0 ⋅ Ṽ )1O×
Fv

(q(t−1
1 γt2)/q(x))

= ∑
u∈µ2

U /F×
∑
γ∈B×

r(g, (t1, t2))φ
v(γ, u) r(t1, t2)lr(g)φv(γ, u),

where
lφv(γ, u) = ∑

x∈B×v/Uv
φv(x,uq(γ)/q(x))1O×

Fv
(q(x)/q(γ)) (γ−1z0 ⋅ Ṽ ).

Here we have used (t−1
2 γ

−1t1z0 ⋅ Ṽ ) = (γ−1z0 ⋅ Ṽ ), which is explained as follows. In fact,
t1z0 = z0 by definition. For t2, since the intersection number is invariant under the action of
B×
v , we have (t−1

2 γ
−1z0 ⋅ Ṽ ) = (γ−1z0 ⋅ t2Ṽ ). But then t2Ṽ = Ṽ since t2 ∈ F ×

v GL2(OFv) fixes
every irreducible component of the special fiber of Ω̂ ×SpfOFv

SpfOFur
v

.
Hence, the intersection number jv(Z∗(g)t1, t2) is a pseudo-theta series. It remains to

prove that the function

lφv(γ, u) = ∑
x∈B×v/Uv

φv(x,uq(γ)/q(x))1O×
Fv

(q(x)/q(γ)) (γ−1z0 ⋅ Ṽ ), (γ, u) ∈ B×
v × F

×
v

extends to a Schwartz function of Bv ×F ×
v . The function is locally constant on B×

v ×F
×
v , and

we need to prove that its support is actually compactly supported in B×
v × F

×
v . In order for

the contribution of x ∈ B×
v/Uv to the summation to be nonzero, we need

x ∈ O×
Bv , uq(γ)/q(x) ∈ O×

Fv , q(x)/q(γ) ∈ O×
Fv .

It follows that
lφv(γ, u) = (γ−1z0 ⋅ Ṽ ) ⋅ 1O×

Fv
(q(γ)) ⋅ 1O×

Fv
(u).

In particular, it is already compactly supported in u.
To get extra information on γ, go back to the uniformization. Note that the irreducible

components of the special fiber of Ω̂ ×SpfOFv
SpfOFur

v
are indexed by

GL2(Fv)/F
×
v GL2(OFv).

Denote by αiF ×
v GL2(OFv) the coset representing the component Wi of Ṽ = ∑i aiWi. Then

we simply have
γ−1z0 ⋅ Ṽ =∑

i

ai1αiF×v GL2(OFv )
(γ−1).

Combining with q(γ) ∈ O×
Fv

, we conclude that the support of γ in lφv(1, γ, u) is the union of
finitely many cosets of GL2(OFv). This finishes the proof.

Remark 8.10. As we can see from the proof, the result holds under the more general condition
that φv(0, u) = 0. This condition is weaker than [YZZ, Assumption 5.3].
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9 Quaternionic height

In this section, we will combine results in the last two sections to prove Theorem 1.7. We
will prove a formula for the modified self-intersection i0(1,1) by applying Lemma 6.1 (2) to
the difference

D(g, φ) = PrI ′(0, g, φ)U − 2Z(g, (1,1))U .

Then we will connect i0(1,1) to the height of CM points defined by arithmetic Hodge bundles
by proving an adjunction formula.

9.1 Derivative series vs. height series

Let (F,E,B, U, φ) be as in §7.2. By comparing the height series and the derivative series,
we will show a formula of the modified self-intersection

i0(P,P ) = i0(1,1) = i(1,1) −∑
v

iv(1,1) logNv.

Here i(1,1) represents the horizontal arithmetic intersection of the CM point [1]U ∈ CU with
itself, while the local term

iv(1,1) =∫
CU
iv̄(t, t)dt

uses the extended definition of iv̄(t, t) introduced in §8.2 case by case.
The following is the main theorem of this section.

Theorem 9.1.
1

[O×
E ∶ O

×
F ]
i0(P,P ) =

L′f(0, η)

Lf(0, η)
+

1

2
log(

dE/F

dB
).

The theorem is already very close to Theorem 1.7. The bridge between these two theorems
is the arithmetic adjunction formula in Theorem 9.3.

The comparison

Let (B, U, φ) be as in §7.2. Go back to

D(g, φ) = PrI ′(0, g, φ)U − 2Z(g, (1,1))U .

By Theorem 7.2,

PrI ′(0, g, φ)U = −∑
v∣∞

2∫
CU
K

(v)

φ (g, (t, t))dt − ∑
v∤∞ nonsplit

2∫
CU
K

(v)
φ (g, (t, t))dt

+ ∑
u∈µ2

U /F×
∑
y∈E×

(2 log δf(gf) + log ∣uq(y)∣f) r(g)φ(y, u)

− ∑
v∤∞

∑
u∈µ2

U /F×
∑
y∈E×

cφv(g, y, u) r(g)φ
v(y, u)

− c1Ωφ(g).
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Here

c1 = 2
L′f(0, η)

Lf(0, η)
+ log

dE
dF

and

Ωφ(g) = ∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u).

By Theorem 8.6,

Z(g, (1,1), φ))U = − ∑
v nonsplit

(logNv)∫
CU
M

(v)
φ (g, (t, t))dt

− ∑
v∤∞

N
(v)
φ (g, (1,1)) logNv − ∑

v∤∞

jv(Z∗(g, φ)U1,1) logNv

−
1

e
i0(1,1)Ωφ(g).

Here we write e = [O×
E ∶ O

×
F ] for simplicity. We already know that jv(Z∗(g, φ)U1,1) ≠ 0 only

if v is nonsplit in B.
Group the terms in the difference as follows:

D(g, φ) = − 2∑
v∣∞
∫

CU
(K

(v)

φ (g, (t, t)) −M
(v)
φ (g, (t, t)))dt

− 2 ∑
v∤∞ nonsplit

∫
CU

(K
(v)
φ (g, (t, t)) −M

(v)
φ (g, (t, t)) logNv)dt

+ 2 ∑
v∈Σf

jv(Z∗(g, φ)U1,1) logNv

+ ∑
v∤∞

∑
u∈µ2

U /F×
∑
y∈E×

dφv(g, y, u) r(g)φ
v(y, u)

+ (
2

e
i0(1,1) − c1)Ωφ(g).

Here

dφv(g, y, u) = 2nφv(g, y, u) logNv − cφv(g, y, u) + (2 log δ(g) + log ∣uq(y)∣v)r(g)φv(y, u),

∀ g ∈ GL2(Fv), (y, u) ∈ E×
v × F

×
v , v ∤∞.

The key term for us is the coefficient of Ωφ(g).
Every term in the expression of D(g, φ) is a pseudo-theta series, and each summation

over v is just a finite sum. In fact, we have the following itemized result:

(1) If v∣∞, then

K
(v)

φ (g, (t, t)) −M
(v)
φ (g, (t, t)) = 0.

This follows from [YZZ, Proposition 8.1]. In the following cases, we assume that v is
non-archimedean.
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(2) If v is nonsplit in E, then

kφv(1, y, u) −mφv(y, u) logNv

extends to a Schwartz function on B(v)v × F ×
v . Furthermore, for all but finitely many

such v,
kφv(g, y, u) −mr(g)φv(y, u) logNv = 0

identically and thus

K
(v)

φ (g, (t, t)) −M
(v)
φ (g, (t, t)) = 0.

The second statement is just [YZZ, Proposition 8.8]. The first statement is a conse-
quence of Lemma 7.4 and Lemma 8.7.

(3) For any v ∤∞, the function

dφv(1, y, u) = 2nφv(1, y, u) logNv − cφv(1, y, u) + log ∣uq(y)∣v φv(y, u)

extends to a Schwartz function on Ev × F ×
v . Furthermore, for all but finitely many v,

dφv(g, y, u) = 0

identically. The first statement is a consequence of Lemma 7.6 and Lemma 8.7. From
them, we see that dφv(1, y, u) = 0 for all but finitely many v. The vanishing result
extends to dφv(g, y, u) by considering Iwasawa decompositions as in [YZZ, Proposition
8.8].

(4) For any v nonsplit in B, the j-part jv(Z∗(g, φ)U1,1) is a non-singular pseudo-theta
series of the form

∑
u∈µ2

U /F×
∑

y∈B(v)−{0}

lφv(g, y, u)r(g)φ
v(y, u).

This is Lemma 8.9.

With these results, every term on the right-hand side of D(g, φ) is a non-singular pseudo-
theta series. Therefore, we are finally ready to apply Lemma 6.1 (2).

The outer theta series associated to the pseudo-theta series

Ωφ(g) = ∑
u∈µ2

U /F×
∑
y∈E×

r(g)φ(y, u)

is exactly the weight-one theta series

θΩ,1(g) = ∑
u∈µ2

U /F×
∑
y∈E

rE(g)φ(y, u).

By Lemma 6.1 (2), there is a unique identity including this theta series, and we are going to
write down this identity explicitly. This identity will be a sum of theta series of weight one.
We look at the contribution of every term in the expression.
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The contribution of
K

(v)
φ (g, (t, t)) −M

(v)
φ (g, (t, t)) logNv

to the weight-one identity comes from its inner theta series

∑
u∈µ2

U /F×
∑
y∈E

rE(g)φv(y, u) rE(g)(kφv(1, y, u) −mφv(y, u) logNv).

This sum does not change after averaging on CU . The term jv(Z∗(g, φ)U1,1) does not
contribute to the identity we want. The term

∑
u∈µ2

U /F×
∑
y∈E×

dφv(g, y, u) r(g)φ
v(y, u)

contributes by its outer theta series

∑
u∈µ2

U /F×
∑
y∈E

rE(g)φ
v(y, u) rE(g)dφv(1, y, u).

Hence, we obtain the following identity

0 = 2 ∑
v∤∞ nonsplit

∑
u∈µ2

U /F×
∑
y∈E

rE(g)φv(y, u) rE(g)(kφv(1, y, u) −mφv(y, u) logNv)

+ ∑
v∤∞

∑
u∈µ2

U /F×
∑
y∈E

rE(g)φ
v(y, u) rE(g)dφv(1, y, u)

+ (
2

e
i0(1,1) − c1) ∑

u∈µ2
U /F×
∑
y∈E

rE(g)φ(y, u).

Now we need the following explicit local results.

Proposition 9.2. Let v be a non-archimedean place and (y, u) ∈ Ev × F ×
v .

(1) If v is nonsplit in E, then

2kφv(1, y, u) − 2mφv(y, u) logNv + dφv(1, y, u) = − log ∣dvq(jv)∣vφv(y, u).

(2) If v is split in E, then

dφv(1, y, u) = − log ∣dvq(jv)∣vφv(y, u).

Proof. Recall that

dφv(1, y, u) = 2nφv(1, y, u) logNv − cφv(1, y, u) + log ∣uq(y)∣v φv(y, u).

The proposition is just a combination of Lemma 7.4, Lemma 7.6 and Lemma 8.7.
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Therefore, the identity gives exactly

0 = (∑
v∤∞

− log ∣dvq(jv)∣v +
2

e
i0(1,1) − c1) ∑

u∈µ2
U /F×
∑
y∈E

rE(g)φ(y, u),

which is just

0 = (log ∣dFdB∣ +
2

e
i0(1,1) − c1) θΩ,1(g).

We claim that θΩ,1(g) is not identically zero. Then we get

log ∣dFdB∣ +
2

e
i0(1,1) − c1 = 0,

which proves Theorem 9.1.
It remains to check that the theta series

θΩ,1(g) = ∑
u∈µ2

U /F×
∑
y∈E

rE(g)φ(y, u)

is not identically zero. It suffices to check that the constant term

∑
u∈µ2

U /F×
rE(g)φ(0, u)

is not identically zero. For that, assume that for v ∈ Σf or v ∈ S2

gv = (
1

−1
) ,

and gv = 1 at any other place v. By local computation, rE(g)φ(0,1) > 0 and rE(g)φ(0, u) ≥ 0
for all u ∈ F ×. Then the (finite) sum over u is strictly positive. This shows that the theta
series is nonzero.

9.2 Arithmetic Adjunction Formula

Now we are going to relate

i0(P,P ) = i0(1,1) = i(1,1) −∑
v

iv(1,1) logNv

to the Faltings height. Here iv(1,1) = 0 if v is split in E. It is essentially an arithmetic
adjunction formula. The main result of this subsection is:

Theorem 9.3 (Arithmetic adjunction formula).

1

[O×
E ∶ O

×
F ]
i0(P,P ) = −hLU (P ).
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The theorem and Theorem 9.1 implies Theorem 1.7. The goal of this subsection is to
prove the theorem.

Denote by H the Hilbert class field of E. Then P = [1]U is defined over H, and we view it
as a rational point of XU,H . By assumption, E is unramified at any v ∈ Σf . By Corollary 4.6,
XU,OH is Q-factorial. We will consider arithmetic intersections over XU,OH . We will suppress
the symbol U from the subscripts. For example, XU,OH is written as XOH .

Denote by P the Zariski closure of P in XOH . Then we have an arithmetic divisor

P̄ = (P, gP ),

where the Green function gP = {gP,w}w∶H→C is the admissible Green function as in [YZZ,
§7.1.5]. Denote by O(P̄) the corresponding hermitian line bundle. By definition,

i(1,1) =
1

[H ∶ F ]
⟨P̄,P⟩ =

1

[H ∶ F ]
d̂eg(O(P̄)∣P).

Denote by L̄OH the base change of the arithmetic Hodge class L̄U = L̄ from X to XOH . It
follows that

hω̂(1) =
1

[H ∶ F ]
d̂eg(L̄OH ∣P).

So the goal is to prove

1

e
d̂eg(O(P̄)∣P) + d̂eg(L̄OH ∣P) = [H ∶ F ]

1

e
∑
v

iv(1,1) logNv.

Here we denote e = [O×
E ∶ O×

F ] for simplicity, which is also the ramification index eP of P .
Rewriting the right-hand side according to places w of H, the equality becomes

d̂eg (M̄∣P) =
1

e
∑
w

iw(1,1) logNw.

Here
M̄ = L̄OH ⊗O(e−1P̄)

is a hermitian Q-line bundle on XOH .
Denote byM and M the finite part and the generic fiber of M̄. We first claim that there

is canonical isomorphism
ResP ∶M ∣PÐ→H.

In fact, by definition,
L = ωX/F ⊗ ⊗

Q∈X(F )

OX((1 − e−1
Q )Q).

Then
M = LH ⊗O(e−1P ) = ωXOH /OH ⊗O(P )⊗ ⊗

Q∈X(F ), Q≠P

OX((1 − e−1
Q )Q).
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It follows that we have canonical isomorphisms

M ∣PÐ→(ωXOH /OH ⊗O(P ))∣PÐ→H.

Here the second map is just the residue map

du

u
⊗ 1P z→ 1,

where u is any local coordinate of P in XH , and 1P denotes the section 1 of O(P ). The map
does not depend on the choice of u.

By the residue map ResP ∶ M ∣P → H, we have an induced hermitian line bundle N̄ =
(N , ∥ ⋅ ∥) on Spec(OH). Here N denotes the image of M∣P in H, which is a fractional ideal
of H, and the metric on N is determined by

∥1∥w = ∥
du

u
⊗ 1P∥

w

(P ), w ∶H → C.

Then we have

d̂eg (M̄∣P) = d̂eg(N̄ ) = − ∑
w∶H→C

log ∥1∥w + ∑
w∤∞

dimkw(Nw/OHw) logNw.

Here the second summation is over all non-archimedean places w of H, kw denotes the
residue field of w, and dimkw(Nw/OHw) means −dimkw(OHw/Nw) if Nw is contained in OHw .
However, we will see that Nw always contains OHw .

The theorem is reduced to the local identities

− log ∥1∥w =
1

e
iw(P,P ), w ∶H → C,

and

dimkw(Nw/OHw) =
1

e
iw(P,P ), w ∤∞.

We will see that the ideas in different case are very similar even though the reductions are
completely different.

Archimedean case

We first check the local identity for archimedean case, so w is an embedding H → C. It
restricts to an embedding v ∶ F → C. We have a uniformization

Xv(C) = B×
+/h ×B

×(Af)/U.

Here B = B(v) is the nearby quaternion algebra. Under the uniformization, the point P is
represented by (z0, t) for some t ∈ E×(Af). The metric ∥ ⋅ ∥w of O(P̄) is given by

− log ∥1P ∥w([z, β]) = iv̄([z, β], [z0, t])
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for any other point [z, β] ∈Xv(C) not equal to [z0, t]. Here we recall from [YZZ, §8.1] that

iv̄([z, β], [z0, t]) = l̃ims→0 ∑
γ∈µU /B×+

ms(z0, γz)1U(t
−1γβ),

where

ms(z0, z) = Qs (1 +
∣z − z0∣2

2Im(z0)Im(z)
) .

Consider the covering map

π ∶ h ×B×(Af)/U Ð→Xv(C).

Here the left-hand side is just a countable disjoint union of h. Denote by P̃ the point (z0, t)
in this space, which is a lifting of P = [z0, t]. By the construction of the Hodge bundle, π∗L
is canonically isomorphic to the sheaf Ω1 of holomorphic 1-forms on h × B×(Af)/U . As a
consequence, we have canonical isomorphisms

(M ∣P )⊗w CÐ→(π∗M)∣P̃ = (π∗LH ⊗ π∗O(e−1P ))∣P̃Ð→(Ω1 ⊗O(P̃ ))∣P̃Ð→C.

Here the last map is a residue map again, and the whole composition is exactly the base
change to C of the original residue map ResP ∶M ∣P →H.

Let Q̃ = (z1, t) be a point of h ×B×(Af)/U , and Q = [z1, t] be its image in the quotient
Xv(C). Consider the behavior as z1 approaches z0, which also means Q̃ → P̃ or Q → P in
the complex topology. Let z be the usual coordinate of h ⊂ C, so that z − z0 gives a local
coordinate at P̃ in h ×B×(Af)/U . Then the second residue map gives

∥1∥w = lim
Q̃→P̃

(∥
dz

z − z0

∥
Pet

(Q̃) ⋅ ∥1P (Q)∥
1
e) .

Recall that the Petersson metric gives

∥
dz

z − z0

∥
Pet

(Q̃) =
2 Im(z1)

∣z1 − z0∣
.

On the other hand, the Green function

− log ∥1P ∥w(Q)

=iv̄([z1, t], [z0, t])

=l̃ims→0 ∑
γ∈µU /B×+

ms(z0, γz1)1U(t
−1γt)

=e ⋅m0(z0, z1) + l̃ims→0 ∑
γ∈µU /(B×+−E×)

ms(z0, γz1)1U(t
−1γt).

The definition has been extended to self-intersection as

iv̄([z0, t], [z0, t]) = l̃ims→0 ∑
γ∈µU /(B×+−E×)

ms(z0, γz0)1U(t
−1γt).
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Hence,

− log ∥1∥w = lim
z1→z0

(m0(z0, z1) − log
2 Im(z1)

∣z1 − z0∣
) +

1

e
iv̄(P,P ).

It remains to check that the limit on the right-hand side is exactly zero.
Note that

m0(z0, z1) = Q0 (1 +
∣z1 − z0∣2

2Im(z0)Im(z1)
) .

By [GZ, II, (2.6)],

Q0(t) =
1

t + 1
F (1,1,2,

2

t + 1
) =

1

2
log

t + 1

t − 1
.

It follows that

m0(z0, z1) − log
2 Im(z1)

∣z1 − z0∣
=

1

2
log(1 +

∣z1 − z0∣2

4Im(z0)Im(z1)
) −

1

2
log

Im(z1)

Im(z0)
,

which converges to 0 as z1 → z0. This finishes the archimedean case.

Non-archimedean case

Let w be a non-archimedean place of H. Let v be the restriction of w to F . To prove
the arithmetic adjunction formula, the key is the following geometric interpretation of the
extended intersection iw(P,P ) = iv̄(P,P ). For convenience, denote by R = OHur

w
the integer

ring of the completion Hur
w of the maximal unramified extension of Hw.

Lemma 9.4. Let U ′ = UvU ′v be an open compact subgroup of Bf with U ′v ⊂ U v normal.
Consider the projection π ∶ XU ′,R → XU,R. Denote by P ′ an irreducible component of the
divisor π−1PR on XU ′,R. If U ′v is small enough, then

iw(P,P ) = ⟨π−1PR − eP
′, P ′⟩.

Here the pairing denotes the intersection multiplicity on the special fiber of XU ′,R.

In the lemma, the morphism π is étale, so P ′ must be a section of XU ′,R over R. The
ramification index of P is e. Then the multiplicity of P ′ in π−1P is e if U ′v is small enough,
so the intersection in the lemma is a proper intersection. The lemma can be viewed as a
modified projection formula. We will prove it later, but let us first use it to finish the proof
of the arithmetic adjunction formula.

Recall that it is reduced to the local identity

dimkw(Nw/OHw) =
1

e
iw(P,P ).

Here N denotes the image of M∣P under the residue map

ResP ∶M ∣PÐ→H
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As in the archimedean case, we will use have a different interpretation of the residue
map. Let π ∶ XU ′,R → XU,R and P ′ be as in the lemma. Denote by P ′ the generic fiber of P ′.
By the definition of the Hodge bundle, we have canonical isomorphisms

π∗LU,Hur
w
Ð→ωXU ′,Hur

w
/Hur

w
, π∗LU,RÐ→ωXU ′,R/R.

Thus we have canonical isomorphisms

(M ∣P )⊗H H
ur
w Ð→(π∗LU,Hur

w
⊗ π∗O(e−1P ))∣P ′Ð→(ωXU ′,Hur

w
/Hur

w
⊗O(P ′))∣P ′Ð→H

ur
w .

Here the last map is a residue map again, and the whole composition is exactly the base
change to Hur

w of the original residue map ResP ∶M ∣P →H.
The computation is to track the change of integral structures of the composition. The

composition has the integral version

(M∣P)⊗OH RÐ→(π∗LU,R ⊗ π
∗O(e−1P))∣P ′ ⇢ (ωXU ′,R/R ⊗O(P ′))∣P ′Ð→R.

The first arrow is an isomorphism by definition, and the last arrow is an isomorphism by
the adjunction formula on XU ′,R. The dashed arrow in the middle may only be well-defined
map after base change to Hur

w , but we write it this way to track the change of the integral
structure. Thus dimkw(Nw/OHw) is equal to the dimension of the quotient of two sides of
the dashed arrow. Tensoring with (π∗LU,R∣P ′)⊗(−1), the dashed arrow becomes

π∗O(e−1P)∣P ′ ⇢ O(P ′)∣P ′ .

Tensoring with π∗O(−e−1P)∣P ′ , it further becomes

OP ′ ⇢ O(P ′ − e−1π∗P)∣P ′ .

Note that e−1π∗P −P ′ is an effective divisor. The real map should be the inverse direction

O(P ′ − e−1π∗P)∣P ′Ð→OP ′ .

The image of the last map is the restriction of the ideal sheaf of e−1π∗P − P ′ to P ′, so the
cokernel of the map has dimension exactly equal to the intersection number

⟨O(e−1π∗P −P ′, P ′⟩.

Hence,
dimkw(Nw/OHw) = ⟨O(e−1π∗P −P ′, P ′⟩.

By Lemma 9.4, it further equals
1

e
iw(P,P ).

This finishes the proof of the adjunction formula.
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Proof of the lemma

Here we prove Lemma 9.4. Let U ′ = UvU ′v be as in the lemma. Recall that if v is nonsplit
in E,

iv̄([1]U ′ , [1]U ′) = ∑
γ∈µU ′/(B×−E×∩U ′)

m(γ,1)1U ′v(γ).

Here B = B(v), and the multiplicity function m ∶ B×
v ×E×

v
B×
v/Uv → Q takes the same form for

U and U ′. The key is the following result.

Lemma 9.5. If v is nonsplit in E, then iv̄([1]U ′ , [1]U ′) = 0 if U ′v is small enough.

Proof. Note that m(γ,1), as a function in γ, is supported on an open compact subgroup Wv

of B×
v . In fact, by q(γ) ∈ O×

Fv
, we can take Wv = O×

Bv
if v is nonsplit in B, and Wv still exists if

v is split in B by Lemma 8.8. Then γ contributes to the summation only if γ ∈ B×∩W . Here
we write W = WvU ′v as a open compact subgroup of B×(Af). Since B is totally definite,
µW has finite index in B× ∩W . Let S be set of representatives of the nontrivial cosets of
B× ∩W /µW . Shrinking U ′v if necessary, we can keep µW invariant, but make S ∩U ′v empty.
Hence, we end up with B× ∩W = µW . It follows that B× ∩W ⊂ E× ∩ U ′. Then the sum for
iv̄([1]U ′ , [1]U ′) has no nonzero terms.

Now we prove Lemma 9.4. By the right multiplication of U on XU ′ , it is easy to see that
the Galois group of XU ′ →XU is isomorphic to U/(U ′µU). It follows that

π−1(P ) = π−1([1]U) = ∑
β∈U/(U ′µU )

[β]U ′ =
1

[µU ∶ µU ′]
∑

β∈U/U ′
[β]U ′ .

Denote P ′ = [1]U ′ , and we can assume that P ′ is the Zariski closure of P ′ since the intersection
multiplicity in the lemma does not depend on the choice of P ′ by the action of the Galois
group of XU ′ →XU . Assume that U ′ satisfies Lemma 9.5; i.e., iv̄(P ′, P ′) = 0. Then

⟨π−1P − eP ′, P ′⟩ = iv̄(π
−1P − eP ′, P ′) = iv̄(π

−1P,P ′)

It is reduced to check
iv̄(π

−1P,P ′) = iv̄(P,P ).

Here both sides use our extended definitions. It is straightforward by the expression of
π−1(P ) above.

We first assume that v is nonsplit in E. Recall that for any β ∈ B×
f ,

iv̄([β]U ′ , [1]U ′) = ∑
γ∈µU ′/(B×−E×∩βvUv)

m(γ, β−1
v )1U ′v((βv)−1γ).

99



Then

iv̄(π
−1P,P ′) =

1

[µU ∶ µU ′]
∑

β∈U/U ′
iv̄([β]U ′ , [1]U ′)

=
1

[µU ∶ µU ′]
∑

β∈Uv/U ′v
∑

γ∈µU ′/(B×−E×∩Uv)
m(γ,1)1U ′v(β−1γ)

=
1

[µU ∶ µU ′]
∑

γ∈µU ′/(B×−E×∩Uv)
m(γ,1)1Uv(γ)

= iv̄(P,P ).

This finishes the nonsplit case.
It remains to treat the case that v is split in E. In this case, Lemma 9.5 is automatic,

since iv̄(P ′, P ′) = 0 is actually true for any U ′. The proof is similar to the nonsplit case by
the formula

iv̄([β]U ′ , [1]U ′) = ∑
γ∈µU ′/(E×−βvUv)

mv̄(γ
−1β)1Uv(β

−1γ).

It is also similar to the second half of the proof of Lemma 8.4. An interesting consequence
is that both sides of Lemma 9.4 are 0.
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[AGHM] F. Andréatta, E. Goren, B. Howard, and K. Madapusi-Pera, Faltings heights of
abelian varieties with complex multiplication. arXiv:1508.00178

[BC] J.-F. Boutot; H. Carayol, Uniformisation p-adique des courbes de Shimura: les
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