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1. Introduction

The results of this paper lie in the arithmetic intersection theory of
Arakelov, Faltings and Gillet–Soulé.

We prove effective upper bounds on the number of effective sec-
tions of a hermitian line bundle over an arithmetic surface. The first
two results are respectively for general arithmetic divisors and for nef
arithmetic diviors. They can be viewed as effective versions of the
arithmetic Hilbert–Samuel formula.

The third result improves the upper bound substantially for special
nef line bundles, which particularly includes the Arakelov canonical
bundle. As a consequence, we obtain effective lower bounds on the
Faltings height and on the self-intersection of the canonical bundle
in terms of the number of singular points on fibers of the arithmetic
surface. It recovers a result of Bost.

Throughout this paper, K denotes a number field, and X denotes a
regular and geometrically connected arithmetic surface of genus g over
OK . That is, X is a two-dimensional regular scheme, projective and
flat over Spec(OK), such that XK is connected curve of genus g.

1.1. Effective bound for arbitrary line bundles. By a hermitian
line bundle over X, we mean a pair L = (L, ‖ ·‖), where L is an invert-
ible sheaf over X, and ‖ · ‖ is a continuous metric on the line bundle
L(C) over X(C), invariant under the complex conjugation. Denote by

P̂ic(X) the group of isometry class of hermitian line bundles on X.
For any hermitian line bundle L = (L, ‖ · ‖) over X, denote

Ĥ0(L) = {s ∈ H0(X,L) : ‖s‖sup ≤ 1}.
It is the set of effective sections. Define

ĥ0(L) = log #Ĥ0(L).

and

v̂ol(L) = lim sup
n→∞

2

n2
ĥ0(nL).

Here we always write tensor product of (hermitian) line bundles addi-

tively, so nL means L⊗n.
By Chen [Ch], the “limsup” in the right-hand side is actually a limit.

Thus we have the expansion

ĥ0(nL) =
1

2
v̂ol(L) n2 + o(n2), n→∞.

The first main theorem of this paper is the following effective version
of the above expansion in one direction.
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Theorem A. Let X be a regular and geometrically connected arith-
metic surface of genus g over OK. Let L be a hermitian line bundle
on X. Denote d◦ = deg(LK), and denote by r′ the OK-rank of the

OK-submodule of H0(L) generated by Ĥ0(L). Assume r′ ≥ 2.

(1) If g > 0, then

ĥ0(L) ≤ 1

2
v̂ol(L) + 4d log(3d).

Here d = d◦[K : Q].
(2) If g = 0, then

ĥ0(L) ≤ (
1

2
+

1

2(r′ − 1)
) v̂ol(L) + 4r log(3r).

Here r = (d◦ + 1)[K : Q].

1.2. Effective bound for nef line bundles. Theorem A will be re-
duced to the case of nef hermitian line bundles.

Recall that a hermitian line bundle L over X is nef if it satisfies the
following conditions:

• d̂eg(L|Y ) ≥ 0 for any integral subscheme Y of codimension one
in X.
• The metric of L is semipositive, i.e., the curvature current of L

on X(C) is positive.

The conditions imply deg(LK) ≥ 0. They also imply that the self-

intersection number L2 ≥ 0. It is a consequence of [Zh1, Theorem 6.3].
See also [Mo2, Proposition 2.3].

The arithmetic nefness is a direct analogue of the nefness in alge-
braic geometry. It generalizes the arithmetic ampleness of S. Zhang
[Zh1], and serves as the limit notion of the arithmetic ampleness. In
particular, a nef hermitian line bundle L on X satisfies the following
properties:

• The degree deg(LK) ≥ 0, which follows from the definition.

• The self-intersection number L2 ≥ 0. It is a consequence of
[Zh1, Theorem 6.3]. See also [Mo2, Proposition 2.3].
• It satisfies the arithmetic Hilbert–Samuel formula

ĥ0(nL) =
1

2
n2L2

+ o(n2), n→∞.

Therefore, v̂ol(L) = L2
. The formula is essentially due to

Gillet–Soulé and S. Zhang. See [Yu1, Corollary 2.7] for more
details.
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The following result is an effective version of the Hilbert–Samuel
formula in one direction.

Theorem B. Let X be a regular and geometrically connected arith-
metic surface of genus g over OK. Let L be a nef hermitian line bundle
on X with d◦ = deg(LK) > 0.

(1) If g > 0 and d◦ > 1, then

ĥ0(L) ≤ 1

2
L2

+ 4d log(3d).

Here d = d◦[K : Q].
(2) If g = 0 and d◦ > 0, then

ĥ0(L) ≤ (
1

2
+

1

2d◦
)L2

+ 4r log(3r).

Here r = (d◦ + 1)[K : Q].

The theorem is new even in the case that L is ample. It is not a direct
consequence of the arithmetic Riemann–Roch theorem of Gillet and
Soulé, due to difficulties on effectively estimating the analytic torsion
and the contribution of H1(L).

Theorem B is a special case of Theorem A under slightly weaker
assumptions, but Theorem B actually implies Theorem A. To obtain
Theorem A, we decompose

L = L1 + E

with a nef hermitian line bundle L1 and an effective hermitian line
bundle E , which induces a bijection Ĥ0(L1)→ Ĥ0(L). The effectivity

of E also gives v̂ol(L) ≥ v̂ol(L1) = L2

1. Then the result is obtained by
applying Theorem B to L1. See Theorem 3.1.

The following are some consequences and generalities related to the
theorems:

• In the setting of Theorem B, for deg(LK) = 1 and any genus

g ≥ 0, we can bound ĥ0(L) in terms of L2
(with coefficient 1).

See Proposition 4.8.
• In both theorems, the assumption that X is regular can be

removed by the resolution of singularity proved by Lipman [Li].
• In §6, we generalize Theorem A, Theorem B and Theorem C

below to arithmetic R-divisors of C0-type in the sense of Mori-
waki [Mo6] and to adelic line bundles in the sense of S. Zhang
[Zh3].
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• The theorems easily induce upper bounds for the Euler charac-
teristic

χsup(L) = log
vol(Bsup(L))

vol(H0(X,L)R/H0(X,L))
.

Here Bsup(L) is the unit ball in H0(X,L)R bounded by the
supremum norm ‖ · ‖sup. In fact, Minkowski’s theorem gives

χsup(L) ≤ ĥ0(L) + d log 2.

The bounds are “accurate” if L is nef.

Our implication from Theorem B to Theorem A is inspired by the
arithmetic Zariski decomposition of Moriwaki [Mo6], though we do not
use it in this paper. To fit the setting of the Zariski decomposition,
let D be an arithmetic divisor linearly equivalent to L. The Zariski
decomposition (for D big) writes

D = P +N

for a nef arithmetic R-divisor P and an effective arithmetic R-divisor
N . The decomposition induces

v̂ol(D) = v̂ol(P ) = P
2
, Ĥ0(nD) = Ĥ0(nP ), n ≥ 0.

If P is a Z-divisor, apply Theorem B to P . We obtain the bound of

ĥ0(D) in Theorem A. If P is not a Z-divisor (which often happens even
when D is a Z-divisor), the argument can still go through by the results
in §6.

1.3. Effective bound for special line bundles. Theorem B is very
accurate when deg(LK) is large by the arithmetic Hilbert–Samuel for-
mula. However, it may be too weak if deg(LK) is very small. Here we
present a substantial improvement of Theorem B for special line bun-
dles, and consider the application to the Arakelov canonical bundle.

Recall that a line bundle L on a projective and smooth curve over
a field is special if both h0(L) > 0 and h1(L) > 0. In particular, the
canonical bundle is special if the genus is positive. The following is the
improvement of Theorem B in the special case. One can easily obtain
the improvement of Theorem A along the line.

Theorem C. Let X be a regular and geometrically connected arith-
metic surface of genus g > 1 over OK. Let L be a nef hermitian line
bundle on X with d◦ = deg(LK) > 1. Assume that LK is a special line
bundle on XK. Then

ĥ0(L) ≤ (
1

4
+

2 + ε

4d◦
)L2

+ 4d log(3d).
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Here d = d◦[K : Q]. The number ε = 1 if XK is hyperelliptic and d◦ is
odd; otherwise, ε = 0.

The most interesting case of Theorem C happens when L is the
canonical bundle. Following [Ar], let ωX = (ωX , ‖·‖Ar) be the Arakelov
canonical bundle of X over OK . That is, ωX = ωX/OK is the relative
dualizing sheaf of X over OK and ‖ · ‖Ar is the Arakelov metric on ωX .
By Faltings [Fa], ωX is nef if X is semistable over OK .

Theorem D. Let X be a semistable regular arithmetic surface of genus
g > 1 over OK. Then

ĥ0(ωX) ≤ g

4(g − 1)
ω2
X + 4d log(3d).

Here d = (2g − 2)[K : Q].

Next we state a consequence of the theorem. Recall from Faltings
[Fa] that χFal(ωX) is defined as the arithmetic degree of the hermitian
OK-module H0(X,ωX) endowed with the natural metric

‖α‖2nat =
i

2

∫
X(C)

α ∧ α, α ∈ H0(X(C),Ω1
X(C)).

It is usually called the Faltings height of X. The arithmetic Noether
formula proved by Faltings (cf. [Fa, MB1]) gives

χFal(ωX) =
1

12
(ω2

X + δX)− 1

3
g[K : Q] log(2π).

Here the delta invariant of X is defined by

δX =
∑
v

δv,

where the summation is over all places v of K. If v is non-archimedean,
δv is just the product of log qv with the number of singular points on
the fiber of X above v. Here qv denotes the cardinality of the residue
field of v. If v is archimedean, δv is an invariant of the corresponding
Riemann surface.

To state the consequence, we introduce another archimedean invari-
ant. Let M be a compact Riemann surface of genus g ≥ 1. There are
two norms on H0(M,Ω1

M). One is the canonical inner product ‖ · ‖nat,
and the other one is the supremum norm ‖ ·‖sup of the Arakelov metric
‖·‖Ar. Denote by Bnat(Ω

1
M) and Bsup(Ω1

M) the unit balls in H0(M,Ω1
M)

corresponding to ‖ · ‖nat and ‖ · ‖sup. Denote

γM =
1

2
log

vol(Bnat(Ω
1
M))

vol(Bsup(Ω1
M))

.
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The volumes are defined by choosing a Haar measure on H0(M,Ω1
M),

and the quotient does not depend on the choice of the Haar measure.
It is easy to see that both the invariants δ and γ define real-valued

continuous functions on the moduli space Mg(C) of compact Riemann
surfaces of genus g.

Corollary E. Let X be a semistable regular arithmetic surface of genus
g > 1 over OK. Denote

γX∞ =
∑

σ:K↪→C

γXσ .

Then (
2 +

3

g − 1

)
ω2
X ≥ δX − 12γX∞ − 3 C(g,K),(

8 +
4

g

)
χFal(ωX) ≥ δX −

4(g − 1)

g
γX∞ − C(g,K).

Here

C(g,K) = 2g log |DK |+ 18d log d+ 25d,

where DK denotes the absolute discriminant of K.

The inequalities are equivalent up to error terms by Faltings’s arith-
metic Noether formula. We describe briefly how to deduce them from
Theorem D. It is standard to use Minkowski’s theorem to transfer
the upper bound for ĥ0(ωX) to an upper bound for χsup(ωX). It fur-
ther gives an upper bound of χFal(ωX) since the difference χFal(ωX)−
χsup(ωX) is essentially given by γX∞ . Now the inequalities are obtained
by the arithmetic Noether formula.

The first inequality is in the opposite direction of the conjectural
arithmetic Bogomolov–Miyaoka–Yau inequality proposed by Parshin
[Pa] and Moret-Baily [MB2]. Recall that the conjecture asserts

ω2
X ≤ A(δX + (2g − 2) log |DK |) +

∑
σ

ξXσ .

Here A is an absolute constant, and ξ is a continuous real-valued func-
tion on Mg(C). Note that both δ and γ are such functions.

Many results similar to Corollary E are known in the literature.
Let us first compare the corollary with a result of Bost [Bo]. The

second inequality of the corollary is an effective version of [Bo, Theorem
IV], with explicit “error terms” γX∞ and C(g,K). Note that our proofs
are completely different. Bost obtained his result as a special case of
his inequality between the slope of a hermitian vector bundle and the
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height of a semi-stable cycle, while our result is a consequence of the
estimation of the corresponding linear series.

Many explicit bounds of the above type are previously in the litera-
ture. Moriwaki [Mo1] proved an explicit lower bound of ω2

X in terms of
reducible fibers. Using Weierstrass points, Robin de Jong [Jo] obtained
an explicit bound on the Faltings height. Their bounds are weaker than
ours.

It will also be interesting to compare the first inequality with the
main result of S. Zhang [Zh3], which proves a formula expressing ω2

a in
terms of the Beilinson–Bloch height 〈∆ξ,∆ξ〉 of the Gross–Schoen cycle
and some canonical local invariants of XK . Note that the difference
between ω2

X − ω2
a is well understood by [Zh2]. Then our result gives a

lower bound of 〈∆ξ,∆ξ〉 by some local invariants. It is also worth noting
that if XK is hyperelliptic, then 〈∆ξ,∆ξ〉 = 0. Thus the comparison
gives an inequality between two different sums of local invariants of
XK .

1.4. Classical Noether inequalities. The main results of this paper
can be viewed as arithmetic versions of Noether type inequalities. The
classical Noether inequality sits naturally in the geography theory of
surfaces. We recall the theory briefly, and refer readers to [BHPV] for
more details.

Theorem 1.1. let X be a complex minimal surface of general type.
Denote the Chern numbers c21 = c1(X)2 = deg(ωX) and c2 = c2(X) =
deg c2(ΩX). The following are true:

(a) Noether formula

χ(ωX) =
1

12
(c21 + c2).

(b) Noether inequality

h0(ωX) ≤ 1

2
c21 + 2.

(c) Bogomolov–Miyaoka–Yau inequality

c21 ≤ 3c2.

The geography theory asks for what pair in Z2 can be equal to
(c1(X)2, c2(X)) for a minimal surface X. The following concise result
is almost a complete answer of the question.

Theorem 1.2 (geography theorem). Let X be a complex minimal sur-
face. Then (c21, c2) = (c1(X)2, c2(X)) ∈ Z2 satisfies the following con-
ditions:
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(1) 12 | (c21 + c2),
(2) c21 > 0, c2 > 0,
(3) c21 ≤ 3c2,
(4) 5c21 − c2 + 36 ≥ 0 when 2|c21,
(5) 5c21 − c2 + 30 ≥ 0 when 2 - c21.

Conversely, for any pair (m,n) ∈ Z2 satisfying the above conditions
for (c21, c2), there is a complex minimal surface X of general type with
(c1(X)2, c2(X)) = (m,n), except for some points on the following 348
lines:

m− 3n+ 4k = 0, k = 0, 1, · · · , 347.

The conditions (1)-(5) are easily derived from Theorem 1.1. For
example, (4) is obtained by combining (a) and (b) with the naive bound

χ(ωX) = h0(ωX)− h1(ωX) + h2(ωX) ≤ h0(ωX) + 1.

And (5) is obtained with an extra simple divisibility argument.
Consider arithmetic surfaces in the the setting of Arakelov geometry.

The arithmetic Noether formula was proved by Faltings [Fa]. The
arithmetic Noether inequality is proved in this paper. We have actually
proved a more delicate bound in Theorem D in terms of the genus of
the generic fiber. Then Corollary E is the arithmetic version of (4) and
(5) in the geography theorem.

The arithmetic Bogomolov–Miyaoka–Yau inequality, as proposed by
Parshin [Pa] and Moret-Baily [MB2], is equivalent to the abc conjec-
ture. Recently, Shinichi Mochizuki announced a proof of the conjecture.

Go back to the classical setting, delicate inequalities for deg(π∗ωX/B)
of Noether type were obtained by Xiao [Xi] and Cornalba–Harris [CH]
for fibered algebraic surfaces π : X → B via stability consideration.
The treatment of Bost [Bo] can be viewed as an arithmetic analogue of

[CH]. Theorem D, which treats ĥ0 instead of d̂eg, has the same leading
coefficients as their results. In a forthcoming paper, we will address a
classical version of Theorem D, i.e., a delicate upper bound of h0(ωX/B)
for the fibration π : X → B.

In the end, we mention a result of Shin [Sh]. He proves that, on a
complex algebraic surface X with non-negative Kodaira dimension,

h0(L) ≤ 1

2
L2 + 2

for any nef and big line bundle L on X such that the rational map
X 99K P(H0(X,L)) is generically finite (cf. [Sh, Theorem 2]).

Theorem B of this paper is an arithmetic analogue of Shin’s result,
but the proof in [Sh] is not available here due to the essential use of
the adjunction formula.
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1.5. Idea of proof. Our proofs of Theorem B and Theorem C are very
similar. Theorem C is sharper than Theorem B by the application of
Clifford’s theorem, which gives a very good bound on linear series of
special line bundles on curves.

Now we describe the main idea to prove Theorem B. Let L be a nef
line bundle. Denote

∆(L) = ĥ0(L)− 1

2
L2
.

We first find the largest constant c ≥ 0 such that

L(−c) = (L, ec‖ · ‖)

is still nef on X. It is easy to control ∆(L) by ∆(L(−c)). Then the
problem is reduced to L(−c).

Denote by E1 the line bundle associated to the codimension one part
of the base locus of the strictly effective sections of L(−c). We obtain
a decomposition

L(−c) = L1 + E1.
In Theorem 3.2, we construct hermitian metrics such that L1 is nef
and E1 is effective, and such that strictly effective sections of L1 can
be transfered to those on L(−c). Then it is easy to control ∆(L(−c))
by ∆(L1). Then the problem is reduced to L1.

The key property for L(−c) is that, it usually has a large base locus,
due to the lack of effective sections. In particular, deg(E1,K) > 0. It
gives a strict inequality deg(L1,K) < deg(LK).

Keep the reduction process. We obtain L2,L3, · · · . The process ter-
minates due to the strict decreasing of the degree. We eventually end
up with Ln such that Ln(−cn) has no strictly effective sections. It leads
to the proof of the theorem.

The successive minima of Gillet and Soulé is used to control the error
terms in the reduction process.

The structure of the paper is as follows. In §2, we state some results
bounding lattice points on normed modules. They will be used in the
proof of the main theorems. In §3, we explore our major construction
of the decomposition L(−c) = L1 + E1, and reduce Theorem A to
Theorem B. In §4, we prove Theorem B. In §5, we prove Theorem C
and Corollary E.

Acknowledgments. The authors are very grateful for many impor-
tant discussions with Huayi Chen, Atsushi Moriwaki, Sheng-Li Tan and
Shou-Wu Zhang. In particular, Shou-Wu Zhang’s question on appli-
cations of Theorem B motivated the authors to conceive Theorem C,
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and the discussions with Moriwaki provided the bridge from Theorem
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The authors are also indebted to the anonymous referees. Their
valuable comments improve our proof and our writing significantly.

The authors would also like to thank the hospitality of Columbia
University. The second author is supported by the Ph.D. Program
Scholarship Fund of ECNU, No. 2010025.

2. Some results on normed modules

By a normed Z-module, we mean a pair M = (M, ‖ · ‖) consisting
of a Z-module M and an R-norm ‖ · ‖ on MR = M ⊗Z R. We say that
M is a normed free Z-module of finite rank, if M is a free Z-module of
finite rank. It is the case which we will restrict to.

Let M = (M, ‖ · ‖) be a normed free Z-module of finite rank. Define

Ĥ0(M) = {m ∈M : ‖m‖ ≤ 1}, Ĥ0
sef(M) = {m ∈M : ‖m‖ < 1},

and
ĥ0(M) = log #Ĥ0(M), ĥ0sef(M) = log #Ĥ0

sef(M).

The Euler characteristic of M is defined by

χ(M) = log
vol(B(M))

vol(MR/M)
,

where B(M) = {x ∈MR : ‖x‖ ≤ 1} is a convex body in MR.

2.1. Change of norms. LetM = (M, ‖·‖) be a normed free Z-module
of finite rank. For any α ∈ R, define

M(α) = (M, e−α‖ · ‖).

Since ĥ0sef(M) is finite, it is easy to have

ĥ0sef(M) = lim
α→0-

ĥ0(M(α)).

Then many results on ĥ0 can be transfered to ĥ0sef . We first present a
simple result on the change of effective sections.

Proposition 2.1. Let M = (M, ‖ · ‖) be a normed free module of rank
r. The following are true:

(1) For any α ≥ 0, one has

ĥ0(M(−α)) ≤ ĥ0(M) ≤ ĥ0(M(−α)) + rα + r log 3,

ĥ0sef(M(−α)) ≤ ĥ0sef(M) ≤ ĥ0sef(M(−α)) + rα + r log 3.

(2) One has

ĥ0sef(M) ≤ ĥ0(M) ≤ ĥ0sef(M) + r log 3.
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Proof. The first inequality of (1) implies the other two inequalities. In
fact, (2) is obtained by setting α→ 0 in the first inequality of (1). It is
also easy to deduce the second inequality of (1) by the first inequality
of (1). In fact, replace M by M(−β) with β > 0 in the first inequality.
Set β → 0. The limit gives the second inequality.

Now we prove the first inequality. For any β > 0, denote

B(β) = {x ∈MR : ‖x‖ ≤ β}.

It is a symmetric convex body in MR. Then B(1) and B(e−α) are
exactly the unit balls of the metrics of M and M(−α). Consider the
set

S = {x+B(2−1e−α) : x ∈ Ĥ0(M)}.

All convex bodies in S are contained in the convex body B(1+2−1e−α).
Comparing the volumes, we conclude that there is a point y ∈ B(1 +
2−1e−α) covered by at least N convex bodies in S, where

N ≥ #S · vol(B(2−1e−α))

vol(B(1 + 2−1e−α))

= #S · (2−1e−α)r

(1 + 2−1e−α)r
= #S · 1

(1 + 2eα)r
.

Then

logN ≥ log #S − r log(1 + 2eα) ≥ ĥ0(M)− r(α + log 3).

Let x1, · · · , xN be the centers of theseN convex bodies. Then xi−y ∈
B(2−1e−α), and thus xi − xj ∈ B(e−α). In particular, we have

{xi − x1 : i = 1, · · · , N} ⊂ Ĥ0(M(−α)).

Therefore,

ĥ0(M(−α)) ≥ logN ≥ ĥ0(M)− r(α + log 3).

It proves the result. �

Remark 2.2. There are many bounds for ĥ0(M) − ĥ0(M(−α)) in the
literature. See [GS1, Mo3, Yu2, Mo5] for example.

The following filtration version of the proposition will be used in the
proof of our main theorem.

Proposition 2.3. Let M = (M, ‖ · ‖) be a normed free Z-module of
finite rank. Let 0 = α0 ≤ α1 ≤ · · · ≤ αn be an increasing sequence.
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For 0 ≤ i ≤ n, denote by ri the rank of the submodule of M generated

by Ĥ0(M(−αi)). Then

ĥ0(M) ≤ ĥ0(M(−αn)) +
n∑
i=1

ri−1(αi − αi−1) + 4r0 log r0 + 2r0 log 3,

ĥ0(M) ≥
n∑
i=1

ri(αi − αi−1)− 2r0 log r0 − r0 log 3.

The same results hold for the pair (ĥ0sef(M), ĥ0sef(M(−αn))).

Remark 2.4. We will only use the first inequality in this paper. In a
forthcoming paper, Yuan will use both inequalities to improve [Yu2,
Theorem A].

The proposition is a consequence of the successive minima of Gillet
and Soulé. One may try to use Proposition 2.1 to prove the first in-
equality. Namely, for each i = 1, · · · , n, one has

h0(M(−αi−1)) ≤ ĥ0(M(−αi)) + ri−1(αi − αi−1) + ri−1 log 3.

Summing over i, we obtain

ĥ0(M) ≤ ĥ0(M(−αn)) +
n∑
i=1

ri−1(αi − αi−1) + (r0 + · · ·+ rn−1) log 3.

The error term may be bigger than that in Proposition 2.3, if the
sequence {ri}i has too many terms and decays too slowly. It would
actually be the case in our application.

2.2. Successive minima. Here we prove Proposition 2.3. We first
recall the successive minima of Gillet and Soulé.

Let M = (M, ‖ · ‖) be a normed free Z-module of finite rank r. For
i = 1, · · · , r, the i-th logarithmic minimum of M is defined to be

µi(M) = sup{µ ∈ R : rank〈Ĥ0(M(−µ))〉Z ≥ i}.

Here 〈Ĥ0(M(−µ))〉Z denotes the Z-submodule ofM generated by Ĥ0(M(−µ)).

The following classical result gives a way to estimate ĥ0(M) and
χ(M) in terms of the minima of M .

Theorem 2.5 (successive minima). Let M = (M, ‖ · ‖) be a normed
free Z-module of finite rank r. Then

r log 2− log(r!) ≤ χ(M)−
r∑
i=1

µi(M) ≤ r log 2,
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and ∣∣∣∣∣ĥ0(M)−
r∑
i=1

max{µi(M), 0}

∣∣∣∣∣ ≤ r log 3 + 2r log r.

The second result still holds if replacing ĥ0(M) by ĥ0sef(M).

Proof. The first result is a restatement of Minkowski’s second theorem
on successive minima.

The second result for ĥ0(M) is essentially due to Gillet–Soulé [GS1],
where the error term is not explicit. It implies the same result for

ĥ0sef(M). In fact, apply it to M(−α) for α > 0, we have∣∣∣∣∣ĥ0(M(−α))−
r∑
i=1

max{µi(M)− α, 0}

∣∣∣∣∣ ≤ r log 3 + 2r log r.

Set α → 0. Note that ĥ0(M(−α)) converges to ĥ0sef(M). It gives the

bound for ĥ0sef(M).
Now we check the explicit error terms. We will use some effective

error terms collected by Moriwaki [Mo3]. We will use similar notations.
Without loss of generality, assume M = Zr. Define by M0 the sub-

module of M generated by Ĥ0(M), and denote r0 = rank(M0). Denote

B = {x ∈MR : ‖x‖ ≤ 1},
which is a convex centrally symmetric bounded absorbing set in Rr.
Let B0 = B ∩ (M0 ⊗Z R) and let B∗0 be the polar body of B0. That is,

B∗0 = {x ∈M0 ⊗Z R : |〈x, y〉| ≤ 1 for all y ∈ B0}.
Since M0 is generated by M0 ∩B0, we have #(M0 ∩B∗0) = 1.

As in [Mo3], we have

6−r0 ≤ #Ĥ0(M)

vol(B0)
≤ 6r0(r0!)

2

4r0
.

Apply Minkowski’s second theorem on successive minima to B0, we
obtain

2r0

r0!

r0∏
i=1

1

λi(B0)
≤ vol(B0) ≤ 2r0

r0∏
i=1

1

λi(B0)
,

where λi(B0) is the i-th successive minimum of B0. Note that we used
a different normalization of the minima here, but the relation is simply
log λi(B0) = µi(M) for i = 1, · · · r0. Thus we can get

1

3r0r0!

r0∏
i=1

1

λi(B0)
≤ Ĥ0(M) ≤ 3r0(r0!)

2

r0∏
i=1

1

λi(B0)
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Therefore we finally get∣∣∣∣∣
n∑
i=1

max{µi(M), 0} − ĥ0(M)

∣∣∣∣∣ ≤ r0 log 3 + 2r0 log r0.

It proves the second result.
�

Proof of Proposition 2.3. By the same limit trick as above, the results
for h0 implies that for h0sef .

We first prove the first inequality. By definition,

r0 ≥ r1 ≥ · · · ≥ rn.

If ri−1 = ri for some i, the inequality does not depend on M i. We can
remove M i from the data. Thus we can assume that

r0 > r1 > · · · > rn.

For j = 1, · · · , r0, denote by µj the j-th logarithmic successive min-
imum of M . By the definition, it is easy to have

αi−1 ≤ µri−1
≤ µ1+ri < αi, i = 1, · · · , n.

Then we can bound the sequence {µj}j by the sequence {αi}i.
By Theorem 2.5,

ĥ0(M) ≤
r0∑
j=1

max{µj, 0}+ r0 log 3 + 2r0 log r0.

Replace µj by αi for any ri + 1 ≤ j ≤ ri−1 in the bound. It gives

ĥ0(M) ≤
n∑
i=1

(ri−1 − ri)αi +
rn∑
j=1

max{µj, 0}+ r0 log 3 + 2r0 log r0.

Applying Theorem 2.5 to M(−αn), we obtain

ĥ0(M(−αn)) ≥
rn∑
j=1

max{µj − αn, 0} − rn log 3− 2rn log rn

≥
rn∑
j=1

max{µj, 0} − rnαn − r0 log 3− 2r0 log r0.
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It follows that

ĥ0(M) ≤
n∑
i=1

(ri−1 − ri)αi + ĥ0(M(−αn)) + rnαn

+2r0 log 3 + 4r0 log r0

= ĥ0(M(−αn)) +
n∑
i=1

ri−1(αi − αi−1)

+2r0 log 3 + 4r0 log r0.

It proves the first inequality.
Now we prove the second inequality. Still apply Theorem 2.5. We

have

ĥ0(M) ≥
r0∑
j=1

max{µj, 0} − r0 log 3− 2r0 log r0.

It follows that

ĥ0(M) ≥
r1∑
j=1

max{µj, 0} − r0 log 3− 2r0 log r0.

Replace µj by αi−1 for any ri + 1 ≤ j ≤ ri−1. It gives

ĥ0(M) ≥ rnαn +
n∑
i=2

(ri−1 − ri)αi−1 − r0 log 3− 2r0 log r0

=
n∑
i=1

ri(αi − αi−1)− r0 log 3− 2r0 log r0.

It finishes the proof.
�

3. The key decompositions

The key idea of the proof the main theorems is to reduce the sections
of L to sections of nef line bundles of smaller degree. The goal here is
to introduce this process.

3.1. Notations and preliminary results. Let X be an arithmetic
surface, and L = (L, ‖ · ‖) be a hermitian line bundle over X. We
introduce the following notations.
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Effective sections. Recall that the set of effective sections is

Ĥ0(X,L) = {s ∈ H0(X,L) : ‖s‖sup ≤ 1}.

Define the set of strictly effective sections to be

Ĥ0
sef(X,L) = {s ∈ H0(X,L) : ‖s‖sup < 1}.

Denote

ĥ0(X,L) = log #Ĥ0(X,L), ĥ0sef(X,L) = log #Ĥ0
sef(X,L).

We say that L is effective (resp. strictly effective) if ĥ0(X,L) 6= 0 (resp.

ĥ0sef(X,L) 6= 0).

We usually omit X in the above notations. For example, Ĥ0(X,L)

is written as Ĥ0(L).
Note that M = (H0(X,L), ‖ · ‖sup) is a normed Z-module. The

definitions are compatible in that

Ĥ0(L), Ĥ0
sef(L), ĥ0(L), ĥ0sef(L)

are identical to

Ĥ0(M), Ĥ0
sef(M), ĥ0(M), ĥ0sef(M).

Hence, the results in last section can be applied here.
For example, Proposition 2.1 gives

ĥ0sef(L) ≤ ĥ0(L) ≤ ĥ0sef(L) + h0(LQ) log 3.

Note that if X is also defined over Spec(OK) for some number field
K. Then we obtain two projective curves XQ = X ×Z Q and XK =
X×OKK, and two line bundles LQ and LK . It is easy to have h0(LQ) =
[K : Q]h0(LK).

Change of metrics. For any continuous function f : X(C)→ R, denote

L(f) = (L, e−f‖ · ‖).

In particular, O(f) = (O, e−f ) is the trivial line bundle with the metric
sending the section 1 to e−f . The case OX = O(0) is exactly the trivial
hermitian line bundle on X.

If c > 0 is a constant, one has

ĥ0(L(−c)) ≤ ĥ0(L) ≤ ĥ0(L(−c)) + h0(LQ)(c+ log 3)

ĥ0sef(L(−c)) ≤ ĥ0(L) ≤ ĥ0sef(L(−c)) + h0(LQ)(c+ log 3).

These also follow from Proposition 2.1.
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Base loci. Let H denote Ĥ0(L) or Ĥ0
sef(L) in the following. Consider

the natural map

H × L∨ −→ L× L∨ −→ OX .

The image of the composition generates an ideal sheaf of OX . The zero
locus of this ideal sheaf, defined as a closed subscheme of X, is called
the base locus of H in X. The union of the irreducible components of
codimension one of the base locus is called the fixed part of H in X.

Absolute minima. For any irreducible horizontal divisor D of X, define
the normalized height function

hL(D) =
d̂eg(L|D)

degDQ
.

Define the absolute minimum eL of L to be

eL = inf
D
hL(D).

It is easy to verify that

eL(α) = eL + α, α ∈ R.

By definition, the absolute minimum eL ≥ 0 if L is nef. Then L(−eL)
is a nef line bundle whose absolute minimum is zero. It is a very
important fact in our treatment in the following.

We refer to [Zh1] for more results on the minima of L for nef her-
mitian line bundles.

3.2. The key decompositions. The goal of this section is to prove
two basic decompositions of hermitian line bundles. They are respec-

tively decompositions keeping Ĥ0(L) and Ĥ0
sef(L). The proofs are the

same, but we state them in separate theorems since they will be used
for different purposes.

Theorem 3.1. Let X be a regular arithmetic surface, and L be a her-

mitian line bundle with ĥ0(L) 6= 0. Then there is a decomposition

L = E + L1

where E is an effective hermitian line bundle on X, and L1 is a nef
hermitian line bundle on X satisfying the following conditions:

• There is an effective section e ∈ Ĥ0(E) such that div(e) is the

fixed part of Ĥ0(L) in X.
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• The map L1 → L defined by tensoring with e induces a bijection

Ĥ0(L1)
⊗e−→ Ĥ0(L).

Furthermore, the bijection keeps the supremum norms, i.e.,

‖s‖sup = ‖e⊗ s‖sup, ∀ s ∈ Ĥ0(L1).

Theorem 3.2. Let X be a regular arithmetic surface, and L be a her-

mitian line bundle with ĥ0sef(L) 6= 0. Then there is a decomposition

L = E + L1

where E is an effective hermitian line bundle on X, and L1 is a nef
hermitian line bundle on X satisfying the following conditions:

• There is an effective section e ∈ Ĥ0(E) such that div(e) is the

fixed part of Ĥ0
sef(L) in X.

• The map L1 → L defined by tensoring with e induces a bijection

Ĥ0
sef(L1)

⊗e−→ Ĥ0
sef(L).

Furthermore, the bijection keeps the supremum norms, i.e.,

‖s‖sup = ‖e⊗ s‖sup, ∀ s ∈ Ĥ0
sef(L1).

Before proving the theorems, we deduce Theorem A from Theorem
B using Theorem 3.1.

Let L be as in Theorem A. The theorem is trivial if ĥ0(L) = 0.

Assume that ĥ0(L) 6= 0. As in Theorem 3.1, decompose

L = L1 + E .
It particularly gives ĥ0(L) = ĥ0(L1). For any n ≥ 1, we have an
injection

Ĥ0(nL1)
e⊗n−→ Ĥ0(nL).

It follows that ĥ0(nL) ≥ ĥ0(nL1), and thus

v̂ol(L) ≥ v̂ol(L1) = L2

1.

By Ĥ0(L) = Ĥ0(L1), we have h0(L1,K) ≥ r′ ≥ 2. It yields that
deg(L1,K) ≥ r′ ≥ 2 if g > 0, and deg(L1,K) ≥ r′− 1 ≥ 1 if g = 0. Then
we are exactly in the situation to apply Theorem B to L1. It gives
exactly Theorem A since deg(L1,K) ≤ deg(LK) = d◦.

3.3. Construction of the decompositions. Now we prove Theorem
3.2. We will see that Theorem 3.1 can be proved in the same way. The
proof is very similar to the arithmetic Fujita approximation in [Yu2].
We prove Theorem 3.2 by the following steps.
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Step 1. Denote by Z the fixed part of Ĥ0
sef(X,L). Set E to be the line

bundle on X associated to Z, and let e ∈ H0(E) be the section defining
Z. Define a line bundle L1 on X by the decomposition

L = E + L1.

We need to construct suitable metrics on E and L1.
For convenience, in the following we write

Ĥ0
sef(X,L) = {0, s1, s2, · · · , sk}.

Denote ti = e−1si for any i = 1, · · · , k, viewed as a global section of
L1.

Step 2. Define a metric ‖ · ‖E on E by assigning any x ∈ X(C) to

‖e(x)‖E = max{‖si(x)‖/‖si‖sup : i = 1, · · · , k}.
It is easy to see that ‖e‖E,sup = 1. Define a metric ‖ · ‖L1 on L1 by the
decomposition

L = (E , ‖ · ‖E) + (L1, ‖ · ‖L1).
Set E = (E , ‖ · ‖E) and L1 = (L1, ‖ · ‖L1). We will prove that the

decomposition L = E + L1 satisfies the theorem. We first verify that
‖ · ‖E and ‖ · ‖L1 are continuous metrics.

It suffices to prove that ‖ · ‖L1 is continuous. By definition, for any
local section t of L1(C) at a point x ∈ X(C),

‖t(x)‖L1 =
‖(et)(x)‖
‖e(x)‖E

= min
i

(
‖si‖sup

‖(et)(x)‖
‖si(x)‖

)
= min

i
(‖si‖sup · |(t/ti)(x)|) .

It is a continous metric since the set {t1, · · · , tk} is base-point-free on
X(C) by definition.

Step 3. We claim that the map L1 → L defined by tensoring with e
induces a bijection

Ĥ0
sef(L1) −→ Ĥ0

sef(L)

which keeps the supremum norms. In other words, we have

Ĥ0
sef(L1) = {0, t1, t2, · · · , tk},

and ‖ti‖L1,sup = ‖si‖sup for i = 1, · · · , k.
In fact, it suffices to verify ‖ti‖L1,sup = ‖si‖sup for each i. By defini-

tion of the metrics, ‖e(x)‖E ≤ 1 and thus

‖si(x)‖ ≤ ‖ti(x)‖L1 ≤ ‖si‖sup, x ∈ X(C).

Taking supremum, we have

‖si‖sup ≤ ‖ti‖L1,sup ≤ ‖si‖sup.
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The equality is obtained.

Step 4. We show that the continuous metric ‖ · ‖L1 in Step 2 is semi-
positive. For any point x ∈ X(C), take a trivialization of L(C) in
neighborhood of x. Recall that for any local section t of L1(C) at a
point x ∈ X(C), the metric

‖t(x)‖L1 = min
i

(‖si‖sup · |(t/ti)(x)|) = |t(x)|e−φ(x),

where

φ(x) = max
i

(log |ti(x)| − log ‖si‖sup) .

Note that each function log |ti(x)| − log ‖si‖sup is pluri-subharmonic.
Then φ is pluri-subharmonic since being pluri-subharmonic is stable
under taking maximum. It follows that the metric is semipositive.

Step 5. Finally, we prove that the hermitian line bundle L1 is nef on

X. We only need to show d̂eg(L1|Y ) ≥ 0 for any integral subscheme

Y . By definition, the set Ĥ0
sef(L1) has no fixed part. For any integral

subscheme Y of X, we can find a section s ∈ Ĥ0
sef(L1) nonvanishing on

Y . Then d̂eg(L1|Y ) ≥ 0 by this section.

4. Proof of Theorem B

In this section, we use the construction above to prove Theorem B.
We first prove a trivial bound, and then prove the theorem.

4.1. A trivial Bound. The following is an easy bound on ĥ0(L),
which serves as the last step of our reduction.

Proposition 4.1. Let L be a nef hermitian line bundle on X with
deg(LK) > 0. Denote by r- the Z-rank of the Z-submodule of H0(L)

generated by Ĥ0
sef(L). Then we have

ĥ0sef(L) ≤ r-

deg(LQ)
L2

+ r- log 3.

The same result holds for ĥ0(L) by replacing r- by the Z-rank of the

Z-submodule of H0(L) generated by Ĥ0(L).

Proof. We can assume that the metric of L is positive and smooth,
since we can always approximate semipositive and continuous metrics
by positive and smooth metrics uniformly. Denote

α =
1

r-
ĥ0sef(L)− log 3− ε, ε > 0.
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By Proposition 2.1,

ĥ0sef(L(−α)) ≥ ĥ0sef(L)− (α + log 3)r- = εr- > 0.

It follows that there is a section s ∈ H0(L) with

− log ‖s‖sup > α.

Then we have

L2
= L · div(s)−

∫
X(C)

log ‖s‖c1(L) > α deg(LQ).

Therefore, we have

1

r-
ĥ0sef(L)− log 3− ε < L2

deg(LQ)
.

Take ε→ 0. The inequality follows.
�

Remark 4.2. The result can be extended to arithmetic varieties of any
dimensions without extra work.

4.2. The reduction process. Let L be a nef line bundle. We are
going to apply Theorem 3.2 to reduce L to “smaller” nef line bundles.
The problem is that the fixed part of L may be empty, and then The-
orem 3.2 is a trivial decomposition. The idea is to enlarge the metric
of L by constant multiples to create base points. To keep the nefness,
the largest constant multiple we can use gives the case that the abso-
lute minimum is 0. The following proposition says that the situation
exactly meets our requirement.

Proposition 4.3. Let X be a regular arithmetic surface, and L be a
nef hermitian line bundle on X satisfying

ĥ0sef(L) > 0, eL = 0.

Then the base locus of Ĥ0
sef(L) contains some horizontal divisor of X.

Proof. Denote by S the set of horizontal irreducible divisors D of X
such that hL(D) = 0. The result follows from the properties that S is

non-empty and contained in the base locus of Ĥ0
sef(L).

First, S is non-empty. Note that the absolute minimum of L is 0,
so it suffices to prove that 0 is not an accumulation point of the range

of hL. Choose any nonzero section s ∈ Ĥ0
sef(L). For any horizontal

irreducible divisor D not contained in the support of div(s), one has

hL(D) =
1

deg(DQ)
(div(s) ·D − log ‖s‖(D(C))) ≥ − log ‖s‖sup > 0.
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It follows that 0 is not an accumulation point, and there must be an
irreducible component of div(s) lying in X.

Second, every element of S is contained in the base locus of Ĥ0
sef(L).

Take any D ∈ S and s ∈ Ĥ0
sef(L). If s does not vanish on D, then the

above estimate gives

hL(D) ≥ − log ‖s‖sup > 0.

It is a contradiction.
�

Now let us try to prove Theorem B by Theorem 3.2. Denote by
c = eL the absolute minimum. By definition, L(−c) is still nef, and its

absolute minimum is 0. If ĥ0sef(L(−c)) 6= 0, applying Theorem 3.2 to
L(−c), we obtain a decomposition

L(−c) = E + L1

with E effective and L1 nef, which gives

ĥ0sef(L(−c)) = ĥ0sef(L1).

By Proposition 2.1,

ĥ0sef(L) ≤ ĥ0sef(L(−c)) + (c+ log 3)h0(LQ).

Note that

L(−c)2 − L2

1 = E · (L(−c) + L1) ≥ 0.

Thus
L2

= L(−c)2 + 2cd ≥ L2

1 + 2cd.

Therefore,

ĥ0sef(L)− 1

2
L2 ≤ ĥ0sef(L1)−

1

2
L2

1 + deg(LQ) log 3.

By Proposition 4.3, the degree decreases:

deg(LQ) > deg(L1,Q).

Then we can reduce the theorem for L to that for L1. One problem is
that, when we keep the reduction process to obtain L2, · · · , the accu-
mulated error term

deg(LQ) log 3 + deg(L1,Q) log 3 + deg(L2,Q) log 3 + · · ·
may grow as

(d+ (d− 1) + · · ·+ 1) log 3 =
1

2
d(d+ 1) log 3.

It is too big for our consideration.
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The key of our solution of the problem is Proposition 2.3. We put

all the sections Ĥ0(Li) in one space, the error term will be decreased
to a multiple of d log d in Proposition 4.5. See also the remark after
Proposition 2.3.

For convenience of application, we describe the total construction as
a theorem. The proof of Theorem B will be given in next section.

Theorem 4.4. Let X be a regular arithmetic surface, and let L be a
nef hermitian line bundle on X. There is an integer n ≥ 0, and a
sequence of triples

{(Li, E i, ci) : i = 0, 1, · · · , n}
satisfying the following properties:

• (L0, E0, c0) = (L,OX , eL).
• For any i = 0, · · · , n, the constant ci = eLi ≥ 0 is the absolute

minimum of Li.
• ĥ0sef(X,Li(−ci)) > 0 for any i = 0, · · · , n− 1.
• For any i = 0, · · · , n− 1,

Li(−ci) = Li+1 + E i+1

is a decomposition of Li(−ci) as in Theorem 3.2.

• ĥ0sef(X,Ln(−cn)) = 0.

The following are some properties by the construction:

• For any i = 0, · · · , n, Li is nef and every E i is effective.
• deg(L0,Q) > deg(L1,Q) > · · · > deg(Ln,Q).

• For any i = 0, · · · , n − 1, there is a section ei+1 ∈ Ĥ0(E i+1)
inducing a bijection

Ĥ0
sef(Li+1) −→ Ĥ0

sef(Li(−ci))
which keeps the supremum norms.

Proof. The triple (Li+1, E i+1, ci+1) is obtained by decomposing Li(−ci).
The extra part is that Proposition 4.3 ensures the degrees on the generic

fiber decreases strictly. The process terminates if ĥ0sef(X,Li(−ci)) = 0.
It always terminates since deg(Li,Q) decreases. �

4.3. Case of positive genus. Here we prove Theorem B in the case
g > 0. Assume the notations of Theorem 4.4. We first bound the

changes of ĥ0sef(Lj) and L2

j .

Recall that Theorem 4.4 starts with a nef line bundle L0 = L and
constructs the sequence

(Li, E i, ci), i = 0, · · · , n.
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Here Li is nef and E i is effective, and ci = eLi ≥ 0. In particular,

Li(−ci) is still nef. For any i = 0, · · · , n− 1, the decomposition

Li(−ci) = Li+1 + E i+1

yields a bijection

Ĥ0
sef(Li+1) −→ Ĥ0

sef(Li(−ci)).

It is given by tensoring some distinguished element ei ∈ Ĥ0(E i). It is
very important that the bijection keeps the supremum norms. In the
following, we denote

L′i = Li(−ci), i = 0, · · · , n.
Proposition 4.5. For any j = 0, · · · , n, one has

L2 ≥ L′2j + 2d0c0 +

j∑
i=1

(di−1 + di)ci ≥ L
′2
j + 2

j∑
i=0

dici,

ĥ0sef(L) ≤ ĥ0sef(L
′
j) +

j∑
i=0

rici + 4r0 log r0 + 2r0 log 3.

Here we denote di = deg(Li,Q) and ri = h0(Li,Q).

Proof. Denote α0 = 0 and

αi = c0 + · · ·+ ci−1, i = 1, · · · , n.
The key is the bijection

Ĥ0
sef(Li) −→ Ĥ0

sef(L(−αi)).
It is given by tensoring the section e1 ⊗ · · · ⊗ ei. Denote by r-i the

rank of the Z-submodule of H0(L) generated by Ĥ0
sef(L(−αi)). Apply

Proposition 2.3 to M = (H0(L), ‖ · ‖sup). We obtain

ĥ0sef(L) ≤ ĥ0sef(Lj(−cj)) +

j∑
i=0

r-ici + 4r log r-0 + 2r-0 log 3.

The result follows since r-i ≤ ri.
It is also easy to bound the intersection numbers. By definition, we

have
L′i = Li+1 + E i+1 = L′i+1 + E i+1 +O(ci+1).

Here L′i and L′i+1 are nef, and E i+1 is effective. It follows that

L′2i − L
′2
i+1 = (L′i + L′i+1) · (E i+1 +O(ci+1))

≥ (L′i + L′i+1) · O(ci+1)

= (di + di+1)ci+1.
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Summing over i = 0, · · · , j − 1, we can get

L′20 ≥ L
′2
j +

j∑
i=1

(di−1 + di)ci.

Then the conclusion follows from the fact that

L2

0 = L′20 − 2d0c0.

�

Now we prove Theorem B. By Proposition 2.1, it suffices to prove

ĥ0sef(L) ≤ 1

2
L2

+ 4d log d+ 3d log 3.

It is classical that g > 0 implies

ri ≤ di, i = 0, · · · , n− 1.

It also holds for i = n if deg(Ln,Q) 6= 0. Then the proposition gives,
for j = 0, · · · , n− 1,

ĥ0sef(L)− 1

2
L2 ≤ ĥ0sef(L

′
j)−

1

2
L′2j + 4d log d+ 2d log 3.

If deg(Ln,Q) > 0, the inequality also holds for j = n. Then the

theorem is proved since ĥ0sef(L
′
n) = 0 and L′2n ≥ 0.

It remains to treat the case deg(Ln,Q) = 0. Note that Ln,Q is trivial

since ĥ0sef(Ln) is base-point-free on the generic fiber by construction.
The inequality is not true for j = n. We use the case j = n−1 instead.

To bound ĥ0sef(L
′
n−1), we apply Proposition 4.1. It gives

ĥ0sef(L
′
n−1) ≤

r-n
deg(Ln−1,Q)

L′2n−1 + r-n log 3.

Here r-n is the Z-rank of Ĥ0
sef(L

′
n−1) = Ĥ0

sef(Ln). It is easy to have
r-n ≤ [K : Q] since Ln,Q is trivial.

We claim that deg(Ln−1,Q) ≥ 2[K : Q], or equivalently degLn−1,K ≥
2. If n = 1, it is true by the assumption on L. Otherwise, by the

construction from Ln−2, the base locus of Ĥ0
sef(Ln−1) is empty or has

dimension zero on X. It follows that Ln−1,K is base-point-free on XK .
Its degree is at least two since g > 0.

By the claim, we have

ĥ0sef(L
′
n−1) ≤

1

2
L′2n−1 + [K : Q] log 3.

It finishes proving Theorem B for g > 0.
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4.4. Case of genus zero. Here we prove Theorem B in the case g = 0.
Still apply Proposition 4.5. We use the more delicate bounds

L2 ≥ L′2n + 2d0c0 +
n∑
i=1

(di−1 + di)ci,

ĥ0sef(L) ≤ ĥ0sef(L
′
n) +

n∑
i=0

rici + 4r0 log r0 + 2r0 log 3.

We still need to compare them.
Denote κ = [K : Q]. Then

di = deg(Li,Q) = κ deg(Li,K), ri = h0(Li,Q) = κh0(Li,K).

Note that we do not have ri ≤ di any more. But we have

h0(Li,K) = deg(Li,K) + 1,

and thus
ri = di + κ, i = 0, · · · , n.

Hence, the inequalities yield

ĥ0sef(L)− 1

2
L2

≤ ĥ0sef(L
′
n)− 1

2
L′2n + κ

n∑
i=0

ci −
1

2

n∑
i=1

(di−1 − di)ci + 4r0 log r0 + 2r0 log 3

≤ κ
n∑
i=0

ci −
1

2

n∑
i=1

(di−1 − di)ci + 4r0 log r0 + 2r0 log 3.

Note that

di−1 − di = κ(deg(Li−1,K)− deg(Li,K)) ≥ κ.

We have

ĥ0sef(L)− 1

2
L2 ≤ κc0 +

1

2
κ

n∑
i=1

ci + 4r0 log r0 + 2r0 log 3.

The proof is completed by the following result.

Lemma 4.6. In the setting of Theorem 4.4, for any genus g ≥ 0,

c0 +
n∑
i=0

ci ≤
1

deg(LQ)
L2
.

Proof. Denote β = c1 + · · · + cn and F = E1 + · · · + En. We have the
decomposition

L′0(−β) = L′n + F .
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Note that L′0(−β) is not nef any more. But we can still have a weaker
bound as follows:

L′20 = L′0 · (L
′
n + F +O(β))

≥ L′0 · L
′
n + d0β

= (L′n + F +O(β)) · L′n + d0β

≥ L′2n + dnβ + d0β.

Here di = deg(Li,Q) as usual.
Combine with

L2
= L(−c0)2 + 2d0c0.

We have

L2 ≥ L′2n + dnβ + d0β + 2d0c0 ≥ d0(2c0 + β).

The result follows.
�

Remark 4.7. The result is in the spirit of the successive minima of S.
Zhang [Zh1].

4.5. Extra case of degree one.

Proposition 4.8. Let X be a regular and geometrically connected
arithmetic surface of genus g over OK. Let L be a nef hermitian line
bundle on X with deg(LK) = 1.

(1) If g > 0, then

ĥ0(L) ≤ L2
+ [K : Q] log 3.

(2) If g = 0, then

ĥ0(L) ≤ L2
+ 5[K : Q] log 3.

Proof. If g > 0, the result follows from Proposition 4.1. If g = 0, we
use the method of §4.3 to get a good bound. Denote κ = [K : Q] as
usual. We still have

L2
= L′2 + 2κc0, ĥ0sef(L) ≤ ĥ0sef(L

′
) + 2κc0 + 2κ log 3.

It follows that

ĥ0sef(L)− L2 ≤ ĥ0sef(L
′
)− L′2 + 2κ log 3.

Because the OK-rank Ĥ0(L′) is at most one, Proposition 4.1 gives

ĥ0sef(L
′
) ≤ L′2 + κ log 3.

It follows that
ĥ0sef(L) ≤ L2

+ 3κ log 3.
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The result follows from Proposition 2.1.
�

5. Proof of Theorem C

Our tool to get the strong bound in Theorem C is Clifford’s theorem
in the classical setting. For convenience, we recall it here.

Let C be a projective, smooth and geometrically connected curve
over a field k. Recall that a line bundle L on C is special if

h0(L) > 0, h1(L) > 0.

The following is Clifford’s theorem (cf.[Ha, Theorem IV.5.4]).

Theorem 5.1 (Clifford). If L is a special line bundle on C, then

h0(L) ≤ 1

2
deg(L) + 1.

Furthermore, if C is not hyperelliptic, then the equality is obtained if
and only if L ' OC or L ' ωC/k.

We also need the following basic fact, whose proof we include for
convenience of readers.

Lemma 5.2. Let L be a special line bundle on a hyperelliptic curve C.
If L is base-point-free, then deg(L) is even.

Proof. Let ι be the hyperelliptic involution of C. Then any divisor in
|ωC/k| is of the form D0 + ι∗D0 for some divisor D0 on C. In fact,
let π : C → P1 be the quotient map of degree two. Then ωC/k is
isomorphic to the pull-back of some line bundle M on P1, and any
global section of ωC/k is the pull-back of some global section of M by
counting dimensions.

Prove the lemma by contradiction. Assume that deg(L) is odd. Fix
a divisor D ∈ |ωC/k − L|. Then deg(D) is also odd. There is a closed
point P0 on C such that one of the following holds:

• P0 6= ι(P0), and the support of D contains P0 but does not
contain ι(P0).
• P0 = ι(P0), and the multiplicity of P0 in D is odd.

In both cases, any divisor E ∈ |L| contains ι(P0) since D +E ∈ |ωC/k|
is of the form D0 + ι∗D0. In another word, ι(P0) is a base point of L.
It is a contradiction. �
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5.1. Hyperelliptic case. We first prove Theorem C in the hyperel-
liptic case. The proof is very similar to that in §4.4.

By Proposition 4.5,

L2 ≥ L′2n + 2d0c0 +
n∑
i=1

(di−1 + di)ci,

ĥ0sef(L) ≤ ĥ0sef(L
′
n) +

n∑
i=0

rici + 4r0 log r0 + 2r0 log 3.

Here di = deg(Li,Q) and ri = h0(Li,Q).
By construction, each Li,K is special. Clifford’s theorem gives

h0(Li,K) ≤ 1

2
deg(Li,K) + 1,

and thus

ri ≤
1

2
di + κ, κ = [K : Q].

Hence, the inequalities yield

ĥ0sef(L)− 1

4
L2

≤ ĥ0sef(L
′
n)− 1

4
L′2n + κ

n∑
i=0

ci −
1

4

n∑
i=1

(di−1 − di)ci + 4r0 log r0 + 2r0 log 3

≤ κ
n∑
i=0

ci −
1

4

n∑
i=1

(di−1 − di)ci + 4r0 log r0 + 2r0 log 3.

By definition,

di−1 − di = κ(deg(Li−1,K)− deg(Li,K)) ≥ κ

for i = 1, · · · , n. It follows that

ĥ0sef(L) ≤ 1

4
L2

+ κc0 +
3

4
κ

n∑
i=1

ci + 4r0 log r0 + 2r0 log 3

≤ (
1

4
+

3

4d◦
)L2

+ 4r0 log r0 + 2r0 log 3.

Here we have used Lemma 4.6, which asserts

c0 +
n∑
i=0

ci ≤
1

d0
L2
.

If deg(LK) is even, we can have a stronger estimate. In fact, for
i = 1, · · · , n, the line bundle Li is base-point-free by construction, so
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deg(Li,K) is even by Lemma 5.2. Thus we have

di−1 − di = κ(deg(Li−1,K)− deg(Li,K)) ≥ 2κ

for i = 1, 2, · · · , n. It especially holds for i = 1 by the assumption that
deg(LK) is even. In that case, we have

ĥ0sef(L) ≤ 1

4
L2

+ κc0 +
1

2
κ

n∑
i=1

ci + 4r0 log r0 + 2r0 log 3

≤ (
1

4
+

1

2d◦
)L2

+ 4r0 log r0 + 2r0 log 3.

The result is proved.

5.2. Non-hyperelliptic case. For i = 1, · · · , n−1, Clifford’s theorem
gives a stronger bound

h0(Li,K) ≤ 1

2
deg(Li,K) +

1

2
,

and thus

ri ≤
1

2
di +

1

2
κ.

It is also true for i = 0 or i = n as long as Li,K is neither the canonical
bundle nor the trivial bundle. For i = 0 or i = n, it is always safe to
use the bound

ri ≤
1

2
di + κ.

The proof of Theorem C is similar, but more subtle due to the possible
failure of the strong bound for i = 0 and i = n.

We first assume that Ln,K is non-trivial. By the strong bounds,
Proposition 4.5 gives

ĥ0sef(L)− 1

4
L2

≤ ĥ0sef(L
′
n)− 1

4
L′2n +

1

2
κ(c0 +

n∑
i=0

ci) + 4r0 log r0 + 2r0 log 3.

By Lemma 4.6,

c0 +
n∑
i=0

ci ≤
1

d0
L2
.

It follows that

ĥ0sef(L) ≤ 1

4
L2

+
1

2d◦
L2

+ 4r0 log r0 + 2r0 log 3.

It gives

ĥ0(L) ≤ (
1

4
+

1

2d◦
)L2

+ 4r0 log r0 + 3r0 log 3.
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It remains to treat the case that Ln,K is trivial. As in the proof of
Theorem B in §4.3, we go back to n− 1. Proposition 4.5 gives

ĥ0sef(L)− 1

4
L2

≤ ĥ0sef(L
′
n−1)−

1

4
L′2n−1 +

1

2
κ(c0 +

n−1∑
i=0

ci) + 4r0 log r0 + 2r0 log 3.

As in §4.3, deg(Ln−1,K) > 1 since Ln−1,K is base-point-free by con-

struction, and Ĥ0
sef(L

′
n−1) has Z-rank at most κ. Apply Proposition

4.1. We have

ĥ0sef(L
′
n−1) ≤

1

2
L′2n−1 + κ log 3.

This is actually a special case of Theorem B, but the error term here
is better. Thus

ĥ0sef(L
′
n−1)−

1

4
L′2n−1 ≤

1

2
ĥ0sef(L

′
n−1) +

1

2
κ log 3.

By Proposition 2.1,

ĥ0sef(L
′
n−1) = ĥ0sef(Ln) ≤ ĥ0sef(L

′
n) + κcn + κ log 3 = κcn + κ log 3.

It follows that

ĥ0sef(L
′
n−1)−

1

4
L′2n−1 ≤

1

2
κcn + κ log 3.

Therefore, the bound on ĥ0sef(L) becomes

ĥ0sef(L)− 1

4
L2

≤ 1

2
κ(c0 +

n∑
i=0

ci) + 4r0 log r0 + 2r0 log 3 + κ log 3.

By Lemma 4.6,

c0 +
n∑
i=0

ci ≤
1

d0
L2
.

It follows that

ĥ0sef(L) ≤ 1

4
L2

+
1

2d◦
L2

+ 4r0 log r0 + 2r0 log 3 + κ log 3.

Thus

ĥ0(L) ≤ (
1

4
+

1

2d◦
)L2

+ 4r0 log r0 + 4r0 log 3.

It finishes the proof.
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5.3. Application to the canonical bundle. Theorem D is a special
case of Theorem C by Faltings’s result that ωX is nef on X. Corollary E
is an easy consequence of Theorem D and Faltings’s arithmetic Noether
formula. Here we briefly track the “error terms” in Corollary E.

Recall that ωX = (ωX , ‖ · ‖Ar) is endowed with the Arakelov metric
‖ · ‖Ar. It induces on H0(X,ωX)C the supremum norm

‖α‖sup = sup
z∈M
‖α(z)‖Ar, α ∈ H0(X(C),Ω1

X(C)).

Consider

χsup(ωX) = log
vol(Bsup(ωX))

vol(H0(X,ωX)R/H0(X,ωX))
.

Here Bsup(ωX) is the unit ball in H0(X,ωX)R associated to ‖ · ‖sup.
By Minkowski’ theorem,

ĥ0(ωX) ≥ χsup(ωX)− r log 2.

Here

r = g[K : Q] ≤ (2g − 2)[K : Q] = d.

Thus Theorem D implies

χsup(ωX) ≤ g

4(g − 1)
ω2
X + 4d log(3d) + r log 2.

Now we compare χsup(ωX) with the Faltings height χFal(ωX). The
latter is the arithmetic degree of the hermitian OK-module H0(X,ωX)
endowed with the natural metric

‖α‖2nat =
i

2

∫
X(C)

α ∧ α, α ∈ H0(X(C),Ω1
X(C)).

By definition, it is easy to obtain

χFal(ωX) = log
vol(Bnat(ωX))

vol(H0(X,ωX)R/H0(X,ωX))
− χ(Og

K).

Here Bnat(ωX) is the unit ball in H0(X,ωX)R associated to ‖ · ‖nat, and

χ(Og
K) = r1 log V (g) + r2 log V (2g)− 1

2
g log |DK |.

Here DK is the absolute discriminant of K, r1 (resp. 2r2) is the number
of real (resp. complex) embeddings of K in C, and V (n) = π

n
2 /Γ(n

2
+1)

is the volume of the standard unit ball in the Euclidean space Rn.
It follows that

χFal(ωX)− χsup(ωX) = log
vol(Bnat(ωX))

vol(Bsup(ωX))
− χ(Og

K) = γX∞ − χ(Og
K).
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The second equality follows from the definition of

γX∞ =
∑

σ:K↪→C

γXσ .

Therefore,

χFal(ωX) ≤ g

4(g − 1)
ω2
X + γX∞ − χ(Og

K) + 4d log(3d) + r log 2.

Stirling’s approximation gives

χ(Og
K) >

1

2
r log(2π)− 1

2
r log r − 1

2
g log |DK |.

Thus the inequality implies

χFal(ωX) ≤ g

4(g − 1)
ω2
X + γX∞ +

1

2
g log |DK |+

9

2
d log d+ 4d log 3.

The coefficient before ω2
X is exactly the same as the inequality of

Bost [Bo] concerning the height and the slope in this case. In the
following, denote

C ′ =
1

2
g log |DK |+

9

2
d log d+ 4d log 3.

Combine with Faltings’s arithmetic Noether formula

χFal(ωX) =
1

12
(ω2

X + δX)− 1

3
r log(2π).

We have (
2 +

3

g − 1

)
ω2
X

≥ δX − 12γX∞ − 12C ′ − 4r log(2π)

≥ δX − 12γX∞ − 6g log |DK | − 54d log d− 61d.

Similarly, (
8 +

4

g

)
χFal(ωX)

≥ δX −
4(g − 1)

g
γX∞ −

4(g − 1)

g
C ′ − 4r log(2π)

≥ δX −
4(g − 1)

g
γX∞ − 4C ′ − 4r log(2π)

≥ δX −
4(g − 1)

g
γX∞ − 2g log |DK | − 18d log d− 25d.

It completes the inequalities.
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6. Extension to R-divisors and adelic line bundles

In this section, we extend the main results to arithmetic R-divisors
and adelic line bundles. The proofs are similar to the integral case. We
will focus on the terminology, and only sketch the proofs.

6.1. Arithmetic R-divisors. We first recall the definition of arith-
metic R-divisors following Moriwaki [Mo4, Mo6]. To be compatible
with the setting of this article, we only work on regular arithmetic
varieties.

Let K be a number field, and X be a regular arithmetic surface over
OK . By an arithmetic Z-divisor (resp. arithmetic R-divisor) (of C0-
type) on X, we mean a pair D = (D, g) consisting of a finite formal
sum

D =
∑
i

aiCi

of integral subschemes Ci of codimension one on X with coefficients
ai ∈ Z (resp. ai ∈ R), and a continuous function

gD : X(C)− supp(D(C))→ R

with logarithmic singularity along the divisor D(C) and invariant under
the complex conjugation on X(C) =

∐
σ:K↪→CXσ(C). Here supp(D(C))

denotes the support of the divisor D(C) on X(C).

Denote by D̂iv(X) the additive group of arithmetic Z-divisors on

X, and by D̂iv(X)R the R-vector space of arithmetic R-divisors on X.

Note that D̂iv(X)R 6= D̂iv(X)⊗Z R, but

D̂iv(X)R =
D̂iv(X)⊗Z R

{
∑k

i=1(0, φi)⊗ ai : φi ∈ C0(X), ai ∈ R,
∑

i aiφi = 0}
.

Here C0(X) denotes the space of real-valued continuous functions on
X(C), invariant under the complex conjugation.

The arithmetic R-divisorD = (D, gD) is called effective (resp. strictly
effective) if all coefficients ai ≥ 0 and the Green function gD ≥ 0 (resp.
gD > 0) on X(C)− |D(C)|. Effectivity defines a partial order “≥” on

D̂iv(X)R. Namely, the notation D1 ≥ D2 for D1, D2 ∈ D̂iv(X)R means
that D1 − D2 is effective. Similarly, strict effectivity defines a partial

order “≥sef” on D̂iv(X)R.

For any D ∈ D̂iv(X)R, denote

Ĥ0(D) := {φ ∈ K(X)× : d̂iv(φ) +D ≥ 0} ∪ {0}.
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Here K(X) denotes the function field of X, and the principal divisor

d̂iv(φ) := (div(φ),− log |φ|2).

We will see that Ĥ0(D) is a finite subset of K(X). Define

ĥ0(D) := log #Ĥ0(D)

and

v̂ol(D) := lim sup
n→∞

2

n2
ĥ0(nD).

We can still associate a normed Z-module M = (M, ‖ · ‖D,sup) to D.
In fact, we set

M = H0(D) := {φ ∈ K(X)× : div(φ) +D ≥ 0} ∪ {0}.
It is a finite Z-module since we simply have

H0(D) = H0(bDc),
where the integral part

bDc =
∑
i

baicCi.

The norm on MC = H0(DC) = H0(bDCc) is defined as

‖f‖D,sup = sup
z∈X(C)

|f(z)|e−
1
2
gD(z).

Then we simply have Ĥ0(D) = Ĥ0(M). In particular, Ĥ0(D) is finite.
An arithmetic Z-divisor is also called an arithmetic divisor. For an

arithmetic divisor D = (D, gD), one introduces a hermitian line bundle
O(D) = (O(D), ‖ · ‖D) consisting of the line bundle O(D) on X and
the metric

‖f‖D = |f |e−
1
2
gD ,

where f is any local section of O(D). The correspondence D 7→ O(D)

keeps Ĥ0, ĥ0, v̂ol.

By Chen [Ch], the “limsup” in the definition of v̂ol(D) is a limit if
D is an arithmetic Z-divisor. Moriwaki [Mo3, Mo4] extends Chen’s

result to all arithmetic R-divisors, and proves that v̂ol : D̂iv(X)R → R
defines a continuous function on D̂iv(X)R, homogeneous of degree 2.

Now Theorem A is extended to the following result.

Theorem A1. Let X be a regular and geometrically connected arith-
metic surface of genus g over OK. Let D be an arithmetic R-divisor
on X. Denote d◦ = deg(DK), and denote by r′ the OK-rank of the

OK-submodule of H0(D) generated by Ĥ0(D). Assume that r′ ≥ 2.
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(1) If g > 0, then

ĥ0(D) ≤ 1

2
v̂ol(D) + 4d log(3d).

Here d = d◦[K : Q].
(2) If g = 0, then

ĥ0(D) ≤ (
1

2
+

1

2(r′ − 1)
) v̂ol(D) + 4r log(3r).

Here r = (d◦ + 1)[K : Q].

An arithmetic R-divisor D = (D, gD) on X is called nef if it satisfies
the following conditions:

• d̂eg(D|C) ≥ 0 for any integral subscheme C of dimension one
in X.
• The Green function gD is pluri-subharmonic, i.e., the curvature

current

ωD := − ∂∂
2πi

gD + δD(C)

on X(C) is positive.

The basic properties we listed for nef hermitian line bundles also hold
for nef arithmetic R-divisors. In particular, we still have the arithmetic
Hilbert–Samuel formula

ĥ0(nD) =
1

2
n2D

2
+ o(n2), n→∞.

Theorem B is extended to the following result.

Theorem B1. Let X be a regular and geometrically connected arith-
metic surface of genus g over OK. Let D be a nef arithmetic R-divisor
on X with d◦ = deg(DK).

(1) If g > 0 and d◦ ≥ 2, then

ĥ0(D) ≤ 1

2
D

2
+ 4d log(3d).

Here d = d◦[K : Q].
(2) If g = 0 and d◦ ≥ 1, then

ĥ0(D) ≤ (
1

2
+

1 + ε

2d◦
)D

2
+ 4r log(3r).

Here r = (d◦ + 1)[K : Q]. The number ε = 0 if d◦ ∈ Z;
otherwise, ε = 1.

We say an R-divisor E on a projective and smooth curve Y over a
field is special if its integer part bEc is special.
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Theorem C1. Let X be a regular and geometrically connected arith-
metic surface of genus g > 1 over OK. Let D be a nef arithmetic
R-divisor on X with d◦ = deg(DK) ≥ 2. Assume that DK is a special
divisor on the generic fiber XK. Then

ĥ0(D) ≤ (
1

4
+

2 + ε

4d◦
)D

2
+ 4d log(3d).

Here d = d◦[K : Q]. If XK is non-hyperelliptic, the number ε = 0. If
XK is hyperelliptic, ε = 0 if d◦ ∈ 2Z, ε = 1 if d◦ ∈ 2Z + 1, and ε = 2
if d◦ /∈ Z.

6.2. Adelic line bundles. Here we generalize the theorems to adelic
line bundles introduced by S. Zhang [Zh3]. We first recall the definition
of adelic line bundles briefly.

Let Y be a projective variety over a number field K, and let L be
a line bundle on Y . A Kv-metrics ‖ · ‖v on L is a collection of Kv-
metrics on L(x) over x ∈ Y (Kv), which is continuous and invariant
under the action of Gal(Kv/Kv) when varying x. An adelic metric on
L is a coherent collection {‖ · ‖v}v of bounded Kv-metrics ‖ · ‖v on L
over all places v of K. That the collection {‖ · ‖v}v is coherent means
that, there exist a finite set S of non-archimedean places of K and a
(projective and flat) integral model (Y ,L) of (Y, L) over OK , such that
the Kv-norm ‖ · ‖v is induced by (YOKv ,LOKv ) for all non-archimedean
places v /∈ S.

In the above situation, we write L = (L, {‖ · ‖v}v) and call it an
adelic line bundle on X. We further call L the generic fiber of L.
An adelic line bundle is called nef (or semipositive by S. Zhang) if its
adelic metric is a uniform limit of metrics induced by integer models

(Ym,Lm) with Lm ∈ P̂ic(Ym)⊗Z Q nef on Ym.
Let L = (L, {‖ · ‖v}v) be an adelic line bundle on Y . Define

Ĥ0(L) := {s ∈ H0(L) : ‖s‖v,sup ≤ 1, ∀v},

where the supremum norm ‖s‖v,sup = supz∈X(Kv)
‖s(z)‖v. Define

ĥ0(L) := log #Ĥ0(L),

and

v̂ol(L) := lim sup
n→∞

2

n2
ĥ0(nL).

By approximation, Chen’s result on v̂ol holds for adelic line bundles,
and the arithmetic Hilbert–Samuel formula holds for nef adelic line
bundles. Now the theorems can be generalized as follows.
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Theorem A2. Let Y be a smooth and geometrically connected curve
of genus g over a number field K. Let L = (L, {‖ · ‖v}v) be an adelic
line bundle on Y . Denote d◦ = deg(L), and denote by r′ the dimension

of the K-subspace of H0(L) generated by Ĥ0(L). Assume that r′ ≥ 2.

(1) If g > 0, then

ĥ0(L) ≤ 1

2
v̂ol(L) + 4d log(3d).

Here d = d◦[K : Q].
(2) If g = 0, then

ĥ0(L) ≤ (
1

2
+

1

2(r′ − 1)
) v̂ol(L) + 4r log(3r).

Here r = (d◦ + 1)[K : Q].

Theorem B2. Let Y be a smooth and geometrically connected curve
of genus g over a number field K. Let L = (L, {‖ · ‖v}v) be a nef adelic
line bundle on Y with d◦ = deg(L).

(1) If g > 0 and d◦ ≥ 2, then

ĥ0(L) ≤ 1

2
L
2

+ 4d log(3d).

Here d = d◦[K : Q].
(2) If g = 0 and d◦ ≥ 1, then

ĥ0(L) ≤ (
1

2
+

1

2d◦
)L

2
+ 4r log(3r).

Here r = (d◦ + 1)[K : Q].

Theorem C2. Let Y be a smooth and geometrically connected curve
of genus g > 1 over a number field K. Let L = (L, {‖ · ‖v}v) be a nef
adelic line bundle on Y with d◦ = deg(L) ≥ 2. Assume that L is a
special divisor on Y . Then

ĥ0(L) ≤ (
1

4
+

2 + ε

4d◦
)L

2
+ 4d log(3d).

Here d = d◦[K : Q]. The number ε = 1 if Y is hyperelliptic and d◦ is
odd; otherwise, ε = 0.

As a counterpart of Theorem D, we can apply Theorem C2 to the
admissible canonical bundle ωa on Y introduced by S. Zhang [Zh2].

It is easy to deduce Theorems A2, B2, C2 from Theorems A1, B1,
C1. In the following, we take Theorem A2 as an example.

Let (Y, L) be as in the Theorem. The adelic metric {‖ · ‖v}v of L is
a uniform limit of a sequence of adelic metrics {‖ · ‖m,v}v on L, where
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for each m ≥ 1, the adelic metric {‖ · ‖m,v}v is induced by an integral

model (Ym,Lm) of (Y, L) over OK . Here we allow Lm ∈ P̂ic(Y)⊗Z Q,
i.e., Lm a hermitian Q-line bundle on Ym with Lm,K = L. We can
assume Ym to be regular.

Both Ĥ0(Lm) and Ĥ0(L) are subsets of H0(Y, L). Note that Ĥ0(L)

is a finite set. We have Ĥ0(Lm) = Ĥ0(L) for sufficiently large m.

By continuity, it is not hard to see that v̂ol(Lm) converges to v̂ol(L).
Theorem A1 holds for Lm by the correspondence between hermitian
Q-line bundles and arithmetic Q-divisors. Taking limit as m→∞, we
get the result for L.

6.3. Proofs for R-divisors. Now we sketch the proofs for Theorem
A1, B1, C1. We only focus on the parts that are different from the
integral case.

Let D = (D, gD) be an arithmetic R-divisor on X. Recall that

ĥ0(D) = log #Ĥ0(D),

where

Ĥ0(D) = {φ ∈ K(X)× : d̂iv(φ) +D ≥ 0} ∪ {0}.
We also introduce

ĥ0sef(D) := log #Ĥ0
sef(D),

where

Ĥ0
sef(D) := {φ ∈ K(X)× : d̂iv(φ) +D ≥sef 0} ∪ {0}.

Denote

|D| = {d̂iv(φ) +D : φ ∈ Ĥ0(D), φ 6= 0},

|D|sef = {d̂iv(φ) +D : φ ∈ Ĥ0
sef(D), φ 6= 0}.

For S = |D| or |D|sef , the fixed part ES of S is an effective R-divisor
on X defined by

ES =
∑
C⊂X

(min
D
′∈S

ordCD
′
) · C.

Here the summation is over all prime divisors of X. Note that D−ES
is a Z-divisor on X. It follows that ES 6= 0 if D is not an arithmetic
Z-divisor.

To translate the proofs of the theorem, we need the following R-
version of Theorem 3.2. One can also formulate the R-version of The-
orem 3.1 in the same manner.
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Theorem 6.1. Let X be a regular arithmetic surface, and D be an

arithmetic R-divisor on X with ĥ0sef(D) 6= 0. Then there is a decompo-
sition

D = E +D1

where E is an effective arithmetic R-divisor on X, and D1 is a nef
arithmetic Z-divisor on X satisfying the following conditions:

• The finite part E of E is the fixed part of |D|sef in X.
• The natural inclusion

Ĥ0
sef(D1)−→Ĥ0

sef(D)

as subsets of K(X) is bijective. Furthermore, the bijection keeps
the supremum norms, i.e.,

‖f‖D1,sup
= ‖f‖D,sup, ∀ f ∈ Ĥ0

sef(D1).

Proof. The proof is similar to that of Theorem 3.2. The statement
already defines E to be the fixed part of |D|sef . Set D = (E, gE) with

gE = min
D
′∈|D|sef

(gD′ − inf
X(C)

gD′).

One checks that gE is a Green function for E. Set D1 = D−E. Then
we can prove the theorem as in the proof of Theorem 3.2. �

It is straightforward to define the heights and the absolute minimum
associated to an arithmetic R-divisor. Thus one can also formulate
Proposition 4.3 and Theorem 4.4.

Recall that we have associated the normed Z-moduleM = (H0(D), ‖·
‖D,sup) to D. Under the relation, we simply have

Ĥ0(D) = Ĥ0(M), Ĥ0
sef(D) = Ĥ0

sef(M).

It follows that there is no problem to apply the results of normed Z-
modules to the current setting. Then we obtain the proofs of Theorems
A1, B1, C1. In the following, we mention a few places different from
the integral case.

It is worth nothing that, even if D is an arithmetic R-divisor, the
resulting D1 in Theorem 6.1 is an arithmetic Z-divisor. In particular,
in the proof of Theorem A1, we only need Theorem B, the integral
version of Theorem B1.

Similarly, in the counterpart of Theorem 4.4, start with an arithmetic
R-divisor D0 = D, we get a series of arithmetic Z-divisors D1, · · · , Dn.

In the proof of Theorem A1(2), one needs to use the bound

deg(Di−1,K)− deg(Di,K) ≥ 1, i = 2, · · · , n.



42 XINYI YUAN AND TONG ZHANG

If deg(DK) ∈ Z, the bound also holds for i = 1, and we get the same
result as in Theorem A(2). If deg(DK) /∈ Z, we can only use the weaker
bound deg(D0,K)− deg(D1,K) ≥ 0. It gives the case ε = 1.

As for Theorem C1, Clifford’s theorem extends to R-divisors on
curves by reducing to their integral parts. In the hyperelliptic case, the
occurrence of ε = 0, 1, 2 still comes from the degrees. Since deg(Di,K)
is even for i = 1, · · · , n as in Lemma 5.2, we have

deg(Di−1,K)− deg(Di,K) ≥ 2, i = 2, · · · , n.

If deg(DK) ∈ 2Z, the bound also holds for i = 1, and we get ε = 0.
If deg(DK) ∈ 2Z + 1, we use deg(D0,K) − deg(D1,K) ≥ 1, which gives
ε = 1. If deg(DK) /∈ Z, we can only use deg(D0,K) − deg(D1,K) ≥ 0,
which gives ε = 2.
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[GS1] H. Gillet, C. Soulé, On the number of lattice points in convex symmetric
bodies and their duals, Israel J. Math., 74 (1991), no. 2-3, 347–357.
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