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1 Introduction

This paper is the algebraic version of the previous works [YZ, Zh] of the
authors about linear series on arithmetic surfaces.

We work over an algebraically closed field k of any characteristic. Let
f : X → Y be a surface fibration of genus g over k. That is:

(1) X is a smooth projective surface over k;

(2) Y is a smooth projective curve over k;

(3) f is flat with connected fibers;

(4) The general fiber F of f is a geometrically integral curve of arithmetic
genus g := pa(F ).

Note that here we do not assume the general fiber F to be smooth. If
char k = 0, then F is a smooth curve of geometric genus g. However, it is
not always true if char k > 0.

A reduced and irreducible curve C over k is called hyperelliptic if its
arithmetic genus pa(C) ≥ 2 and if there exists a flat morphism of degree 2
from C onto P1

k. It follows that C is automatically Gorenstein [Li2]. If F is
hyperelliptic, then f is called a hyperelliptic fibration. Otherwise, f is called
a non-hyperelliptic fibration.

1.1 Relative Noether inequality

The following is the main theorem of this paper.

Theorem 1.1. Let f : X → Y be a surface fibration of genus g ≥ 2 over k,
and L be a nef line bundle on X. Denote d = deg(L|F ), where F is a general
fiber of f . If 2 ≤ d ≤ 2g − 2, then

h0(L) ≤ (
1

4
+

2 + ε

4d
)L2 +

d+ 2 + ε

2
.

Here, ε = 1 if F is hyperelliptic and d is odd. Otherwise, ε = 0.
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The most interesting case of Theorem 1.1 occurs when L is the relative
dualizing sheaf ωf = ωX/Y = ωX/k ⊗ f ∗ω∨Y/k. Let f : X → Y be a surface
fibration of g ≥ 2. We say that f is relatively minimal if X contains no
(−1)-curves in fibers. In this situation, it is known that ωf is nef. We have
the following theorem.

Theorem 1.2 (Relative Noether inequality). Let f : X → Y be a relatively
minimal fibration of genus g ≥ 2 over k. Then

h0(ωf ) ≤
g

4g − 4
ω2
f + g.

If the equality holds, then f is either a trivial fibration or hyperelliptic.

The theorem can be viewed as a relative version of the classical Noether
inequality on algebraic surfaces. Recall that if X is a minimal surface of
general type over k, and ωX is the canonical bundle of X, then the Noether
inequality asserts that

h0(ωX) ≤ 1

2
ω2
X + 2.

See [BHPV] for k = C and [Li1, Li2] for char k > 0. If the equality holds,
then X has a hyperelliptic pencil. See [Ho].

As consequences of Theorem 1.2, we will obtain in the following the s-
lope inequality, the Arakelov inequality, and Severi inequality for surfaces of
maximal Albanese dimension over any field.

1.2 Slope inequality and Arakelov inequality

A surface fibration f : X → Y is called semistable, if all the fibers are
semistable in the sense of Deligne and Mumford. The semistability implies
that there are no (−1)-curves contained in fibers. In characteristic 0, the
general fiber is automatically smooth. As shown in [Ta], it still holds in
positive characteristic.

Theorem 1.3 (Slope inequality). Let f : X → Y be a semistable fibration
of genus g ≥ 2 over k. Then

ω2
f ≥

4g − 4

g
deg(f∗ωf ).
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This theorem recovers the slope inequality of Cornalba-Harris [CH] and
Xiao [Xi1] in characteristic 0, and that of Moriwaki [Mo] in arbitrary char-
acteristics. But our proof is totally different from theirs. Their treatments
respectively make essential uses of geometric invariant theory, the stability of
vector bundles, or the Chow stability result of Bost [Bo]. But we derive the
result from Theorem 1.2 by some arguments using coverings and reduction
mod ℘.

Note that Theorem 1.2 can not be implied by the slope inequality. It
turns out that Theorem 1.2 is quite strong, though the proof only involves
the basic theory of linear series on fibered surfaces. In fact, since the slope
inequality is sharp in characteristic 0, our bound is also the best in positive
characteristic. For instance, if char k 6= 2, one can construct a hyperelliptic
fibration by taking the double cover of a ruled surface branched along a
smooth curve. The slope inequality for this fibration is in fact an equality.
See [Xi2] for examples.

If g(Y ) = 0 or 1, we even do not need f to be semistable. The slope
inequality for general fibrations in these cases is directly implied by Theorem
1.2. See Theorem 3.2.

We also establish a similar result for arbitrary line bundle of small degree
when char k > 0. See Theorem 3.4.

Using Theorem 1.3, we can prove the following Arakelov inequality in
positive characteristic, which generalizes the original result in [Ar] over C.

Theorem 1.4 (Arakelov inequality). Let f be a non-isotrivial semistable
fibration of genus g ≥ 2 over the field k of positive characteristic. Let S ⊂ Y
be the singular locus over which f degenerates. Then

deg(f∗ωf ) < g2 deg ΩY (S).

In [LSZ], Lu, Sheng and Zuo have used a modified version of the stability
method to obtain a bound. Our bound is better than theirs. We refer to the
recent survey article [Vi, Zu] for more information on Arakelov inequality.
We also refer to the works by Viehweg and Zuo [VZ1, VZ2] for the generalized
version of Arakelov inequality.

1.3 Severi conjecture

Let X be a smooth surface of general type over k. We say X is of maximal
Albanese dimension, if the Albanese map AlbX : X → Alb(X) is generically
finite.
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The Albanese map can be defined for X over an arbitrary field k. Note
that since our field k is arbitrary, it is not necessary that dim Alb(X) =
h1,0(X) in general. If k = C, then it is true. However, for arbitrary fields, we
only have dim Alb(X) ≤ h1,0(X) [Ig]. See also [Li1] for a survey in positive
characteristic.

We have the following theorem.

Theorem 1.5 (Severi inequality). Let X be a smooth minimal surface of
general type over k and of maximal Albanese dimension. Then

ω2
X/k ≥ 4χ(OX).

Let us briefly introduce the history of this inequality. It was Severi who
stated it as a theorem in [Se], whose proof was not correct unfortunately. It
became again as a conjecture in [Ca, Re].

When k = C, in the fundamental paper [Xi1], Xiao proved this conjecture
assuming that X has a fibration over a curve of positive genus. Konno [Ko]
proved this conjecture for surfaces with even canonical divisor, namely the
surfaces whose canonical divisor K ≡ 2L for certain divisor L. Also Manetti
[Ma] proved this conjecture for surfaces with ample canonical bundle. The
complete proof of this conjecture in the complex case was given by Pardini
[Pa], which is a very clever application of the slope inequality for certain
fibrations she has constructed.

It is worth mentioning that this theorem is new in positive characteris-
tics. In positive characteristic, if the Albanese map is generically finite onto
its image, it may even become purely inseparable (c.f. [Li3] for examples).
Such effects make estimates on positivity and differentials especially subtle.
The proofs of Konno and Manetti might be available as partial evidences
for this conjecture in positive characteristic, but the direct generalization of
Pardini’s proof should be based on the slope inequality for surface fibrations
in positive characteristic whose fibers are singular, which was still unknown
as we mentioned before. However, our approach again comes from a com-
pletely different point of view. Without using the slope inequality, we just
apply Theorem 1.2 to the fibrations we construct. One interesting fact is
that, since Theorem 1.2 holds for arbitrary fields, the proof we offer here is
also independent on the base field k.
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1.4 Idea of the proofs

The idea of the proof of Theorem 1.1 comes from [YZ, Zh]. Let L be a line
bundle on X as stated in Theorem 1.1. Denote

∆(L) = h0(L)− 1

4
L2.

We can find the largest integer c such that L − (c − 1)F is nef. Denote
L′ = L− cF . We manage to reduce our problem to ∆(L′).

The key observation is that: the linear system |L′| has a horizontal base
locus. See Lemma 2.1. Let |L1| be the movable part of |L′|. Then the
problem is reduced to ∆(L1). Note that now

L1F < L′F = LF.

Keep this reduction and we can get L2, L3, · · · . The whole process will ter-
minate since LiF decreases strictly. Finally, we reach the proof of Theorem
1.1.

The proof of the slope inequality is quite novel. Using Theorem 1.2, we
can almost get the slope inequality for arbitrary fields up to a constant related
to the genera of the fiber and the base curve. See Lemma 3.1.

We first prove Theorem 1.3 in positive characteristic. By iterating the
Frobenius base change, we successfully eliminate the constant term. Based
on a result of Szpiro, we can prove Theorem 1.4. Then we reduce the slope
inequality in characteristic 0 to positive characteristic, which leads to the
final proof of Theorem 1.3.

The proof of the Severi inequality is also from the iteration of the base
change. The difference is that the base change here is actually the multi-
plicative map of an abelian variety. This base change was used in [Pa]. By
doing this, we can get a family of fibrations. Applying Theorem 1.2 to those
fibrations and taking the limit, we eventually prove the Severi inequality once
for all fields.

Acknowledgement. The authors would like to thank Xi Chen for a lot
of valuable help and suggestions, and also Huayi Chen, Jun Lu, Sheng-Li
Tan, Hang Xue, Yanhong Yang for valuable discussions. Special thanks also
go to Christian Liedtke for his careful reading of the earlier version of this
paper and many valuable comments.
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2 Proof of the relative Noether inequality

In this section, we will prove Theorem 1.1. The idea comes from [YZ, Zh],
where a very similar argument was used to prove an effective Hilbert-Samuel
formula for arithmetic surfaces.

2.1 The reduction process

We first resume our notations. Let f : X → Y be a surface fibration, and F
be a general fiber. For any nef divisor L on X, we can find an integer c such
that

• L− cF is not nef;

• L− c′F is nef for any integer c′ < c.

We denote this number c for L by eL. In particular, since L itself is nef, we
have

eL > 0.

We have the following lemma.

Lemma 2.1. Let f : X → Y be a surface fibration, and F be a general fiber.
Let L be a nef line bundle on X such that LF > 0 and h0(L − eLF ) > 0.
Then the linear system |L− eLF | has a fixed part Z > 0. Moreover,

ZF > 0.

Proof. By our assumption, we can write

|L− eLF | = |L1|+ Z,

where |L1| is the movable part, and Z is the fixed part. By the definition of
eL, L − eLF is not nef. Then there exists an irreducible and reduced curve
C on X such that

(L− eLF )C < 0,

which implies Z ≥ C > 0. Again by the definition of eL, L − (eL − 1)F is
nef. For the above C, we have

(L− (eL − 1)F )C = (L− eLF )C + FC ≥ 0,

i.e., FC > 0. Therefore,
ZF ≥ FC > 0.
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We have the following general theorem.

Theorem 2.2. Let f : X → Y be a surface fibration, and F be a general
fiber. Let L be a nef divisor on X such that LF > 0 and h0(L) > 0. We can
get the following sequence of triples

{(Li, Zi, ai) : i = 0, 1, · · · , n}

such that

• (L0, Z0, a0) = (L, 0, eL) and ai = eLi
for i ≥ 0;

• We have
|Li−1 − eLi

F | = |Li|+ Zi,

where Li (resp. Zi) is the movable part (resp. fixed part) of the linear
system |Li−1 − eLi

F | for 0 < i < n;

• h0(L′n) = 0;

• LF = L0F > L1F > · · · > LnF ≥ 0.

Proof. The triple (Li+1, Zi+1, ai+1) can be obtained by applying Lemma 2.1 to
the triple (Li, Zi, ai). The whole process will terminate when h0(Li− aiF ) =
0. It always terminates because by Lemma 2.1, LiF decreases strictly.

Now, we denote ri = h0(Li|F ), di = LiF and L′i = Li − aiF .

Proposition 2.3. For any j = 0, 1, · · ·n, we have

h0(L0) ≤ h0(L′j) +

j∑
i=0

airi;

L0
2 ≥ L′j

2
+ 2a0d0 +

j∑
i=1

ai(di−1 + di)− 2(d0 − dj).

Proof. We have the following exact sequence:

0 −→ H0(Li+1 − F ) −→ H0(Li+1) −→ H0(Li+1|F ).

Then it follows that

h0(Li+1 − F ) ≤ h0(Li+1)− h0(Li+1|F ) = h0(Li+1)− ri+1.
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By induction, we have

h0(L′i+1) = h0(Li+1 − ai+1F ) ≤ h0(Li+1)− ai+1ri+1 = h0(L′i)− ai+1ri+1.

Note that both L′i + F and L′i+1 + F are nef, and Zi is effective. We get

L′i
2 − L′2i+1 = (L′i + L′i+1)(L

′
i − L′i+1)

= (L′i + L′i+1)(ai+1F + Zi+1)

= ai+1(L
′
i + L′i+1)F + [(L′i + F ) + (L′i+1 + F )− 2F ]Zi+1

≥ ai+1(di + di+1)− 2Zi+1F.

For any j = 0, 1, · · · , n− 1, summing over i = 0, 1, · · · , j, we have

h0(L′0) ≤ h0(L′j) +

j∑
i=1

airi;

L′20 ≥ L′2j +

j∑
i=1

ai(di−1 + di)− 2

j∑
i=1

ZiF.

Moreover, we have

j∑
i=1

Zi = L′0 − L′n −
j∑
i=1

aiF.

It follows that
j∑
i=1

ZiF = (L′0 − L′j)F = d0 − dj.

Since
L2
0 − L′0

2
= 2a0d0

and
h0(L0) ≤ h0(L′0) + a0r0,

the result follows.

We also have the following lemma.

Lemma 2.4. In the above setting, we have

2a0 +
n∑
i=1

ai − 2 ≤ L2
0

d0
.
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Proof. Denote b = a1+ · · ·+an and Z = Z1+ · · ·+Zn. We have the following
linear equivalence

L′0 = L′n + bF + Z.

Since L′0 + F and L′n + F are both nef, it follows that

(L′0 + F )2 = (L′0 + F )(L′n + F + bF + Z)

≥ (L′n + F + bF + Z)(L′n + F ) + bd0

≥ (L′n + F )2 + b(d0 + dn).

Combine with
L2
0 − (L′0 + F )2 = 2(a0 − 1)d0.

We get

L2
0 ≥ (L′n + F )2 + 2(a0 − 1)d0 + b(d0 + dn) ≥ d0(2a0 + b− 2).

2.2 Linear systems on curves

We need several results on linear systems on algebraic curves.
First, recall the following Clifford’s theorem for special line bundles on

algebraic curves. Let C be a reduced, irreducible Gorenstein curve over k.
We say a line bundle L is special if

h0(L) > 0, h1(L) > 0.

We have the following theorem.

Theorem 2.5. Let C be a reduced Gorenstein curve over k, pa(C) ≥ 2. Let
L be a line bundle on C such that h0(L) > 0 and deg(L) ≤ 2pa(C)− 2.

1. [Clifford’s Theorem] If L is special, then

h0(L) ≤ 1

2
deg(L) + 1.

Moreover, if C is not hyperelliptic, then the equality holds if and only
if L = OC or L = ωC/k.
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2. If h1(L) = 0, then

h0(L) ≤ 1

2
deg(L).

Proof. If L is special, then the theorem is just the generalized version of
Clifford’s theorem in [Li2]. If h1(L) = 0, by the Riemann-Roch theorem,

h0(L) = deg(L)− pa(C) + 1 ≤ 1

2
deg(L).

We also need the following lemma.

Lemma 2.6. Let L be a special line bundle on a hyperelliptic curve C over
k such that |L| is base-point-free, then deg(L) is even.

Proof. Denote dL = deg(L). Since L is base-point-free, we can choose
D1, D2 ∈ |L| and define a morphism

φ = (φ1, φ2) : C → P1 × P1.

Here φ1 is the degree two map from C to P1 by the definition of hyperelliptic
curves, and φ2 is the degree dL map C to P1 induced by D1 and D2. It is
easy to see that either φ is birational from C to φ(C) or deg φ = 2.

If deg φ = 2, then we are done. Furthermore, we claim that φ can not be
birational to its image.

If φ is birational, denote C ′ = φ(C). By the definition of φ, we can write
C ′ ∈ |dLF1+2F2|, where F1 and F2 are rules on P1×P1. And L = φ∗OC′(F2).
We have the following short exact sequence on C ′:

0 −→ OC′(F2) −→ φ∗L −→ E −→ 0,

where E is a skyscraper sheaf. Hence we have a surjection

H1(OC′(F2)) � H1(φ∗L).

Since L is special and φ is finite, we get h1(OC′(F2)) ≥ h1(φ∗L) = h1(L) > 0.
On the other hand, we have another exact sequence

0 −→ OP1×P1(−C ′ + F2) −→ OP1×P1(F2) −→ OC′(F2) −→ 0,
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which gives

H1(OP1×P1(F2)) −→ H1(OC′(F2)) −→ H2(OP1×P1(−C ′ + F2)).

Now by Serre duality,

h2(OP1×P1(−C ′ + F2)) = h0(OP1×P1((dL − 2)F1 − F2) = 0.

Moreover, using the Riemann-Roch formula on P1 × P1, we get

h1(OP1×P1(F2)) = 0,

which forces h1(OC′(F2)) = 0.

We will divide the proof of Theorem 1.1 into two parts.

2.3 Hyperelliptic case

We first prove Theorem 1.1 when F is hyperelliptic.
We know that by our reduction process, h0(L′n) = 0. By our construction,

L′n + F is nef. So

L′n
2

= ((L′n + F )− F )2 ≥ −2L′nF = −2dn.

By Proposition 2.3, we get

h0(L0) ≤ h0(L′n) +
n∑
i=0

airi =
n∑
i=0

airi,

L0
2 ≥ L′n

2
+ 2a0d0 +

n∑
i=1

ai(di−1 + di)− 2
n∑
i=1

ZiF

≥ 2a0d0 +
n∑
i=1

ai(di−1 + di)− 2d0.

We need to deal with two different cases:

• Each Li|F is special;

• There exists a k > 0 such that L0|F , · · · , Lk−1|F are not special and
Lk|F , · · · , Ln|F are special.
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First, we assume that each Li|F is special. Applying Clifford’s theorem,
we have

ri ≤
1

2
di + 1.

It yields

h0(L0)−
1

4
L2
0 ≤

n∑
i=0

ai −
1

4

n∑
i=1

(di−1 − di)ai +
1

2
d0.

On the other hand, since F is sufficiently general, and the linear system
|Li| has no fixed part for i = 1, · · · , n, the line bundle Li|F is base-point-free
by construction. By Lemma 2.6, di is even. Thus

di−1 − di ≥ 2

for i = 2, · · · , n. By Lemma 2.4,

a0 +
n∑
i=0

ai − 2 ≤ L2
0

d0
.

Therefore, we have

h0(L0) ≤
1

4
L2
0 + a0 +

3

4

n∑
i=1

ai +
1

2
d0

≤ (
1

4
+

3

4d0
)L2

0 +
1

2
d0 +

3

2
.

If d0 is even, we also have

d0 − d1 ≥ 2.

Hence, we have the strong bound

h0(L0) ≤
1

4
L2
0 + a0 +

1

2

n∑
i=1

ai +
1

2
d0

≤ (
1

4
+

1

2d0
)L2

0 +
1

2
d0 + 1.

Now let us deal with the other case. From Theorem 2.5, we know

ri ≤
1

2
di, i = 0, · · · , k − 1,

13



and

ri ≤
1

2
di + 1, i = k + 1, · · · , n.

Similarly, we have

di−1 − di ≥ 1, i = 0, · · · , k,

and
di−1 − di ≥ 2, i = k + 1, · · · , n.

Thus we have

h0(L0)−
1

4
L2
0 ≤

n∑
i=k+1

ai −
1

4

n∑
i=k+1

(di−1 − di)ai +
1

2
d0

+

(
rk −

1

2
dk −

1

4
(dk−1 − dk)

)
ak

≤ 1

2

n∑
i=k+1

ai +
1

2
d0 +

(
rk −

1

2
dk −

1

4
(dk−1 − dk)

)
ak.

If dk−1 − dk ≥ 2, we have

h0(L0)−
1

4
L2
0 ≤

1

2

n∑
i=k

ai +
1

2
d0.

If dk−1 − dk = 1, we know that rk ≤ rk−1 − 1. So

rk ≤ rk−1 − 1 ≤ 1

2
dk−1 − 1 =

1

2
dk +

1

2
.

Hence we still have

h0(L0)−
1

4
L2
0 <

1

2

n∑
i=k

ai +
1

2
d0.

By Lemma 2.4 again,

h0(L0) < (
1

4
+

1

2d0
)L2

0 +
1

2
d0 + 1.
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Remark 2.7. We see from the proof that when f is hyperelliptic and d0 is
even, if the above equality holds, then

di − di+1 = 2

for 0 < i < n and

ri =
1

2
di + 1

for 0 ≤ i ≤ n.

2.4 Non-hyperelliptic case

In this case, for i = 1, · · · , n − 1, we have the following stronger Clifford’s
theorem:

ri ≤
1

2
di +

1

2
.

For i = 0 or i = n, it also holds if Li|F is neither trivial nor ωF/k.
First, we assume Ln|F is not trivial. Using the strong bound, we get

h0(L0)−
1

4
L2
0 ≤

n∑
i=0

airi −
1

2
a0d0 −

1

4

n∑
i=1

ai(di−1 + di) +
1

2
d0

≤ a0 +
1

2

n∑
i=1

ai −
1

4

n∑
i=1

ai(di−1 − di) +
1

2
d0

< a0 +
1

2

n∑
i=1

ai +
1

2
d0.

By Lemma 2.4,

a0 +
1

2

n∑
i=1

ai ≤
L2
0

2d0
+ 1.

We have

h0(L0) < (
1

4
+

1

2d0
)L2

0 +
1

2
d0 + 1.
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If Ln|F is trivial, it gives

h0(L0)−
1

4
L2
0 ≤

n∑
i=0

airi −
1

2

n∑
i=0

aidi −
1

4

n∑
i=1

ai(di−1 − di) +
1

2
d0

≤ a0 +
1

2

n−1∑
i=1

ai + an − an(dn−1 − dn) +
1

2
d0

≤ a0 +
1

2

n∑
i=1

ai +
1

2
d0.

Here the equality will not hold unless n = 1 and d0 = 1. By Lemma 2.4
again, it yields

h0(L0) ≤ (
1

4
+

1

2d0
)L2

0 +
1

2
d0 + 1.

It ends the proof of Theorem 1.1.

2.5 Proof of Theorem 1.2

Now, Theorem 1.2 becomes straightforward. Let f : X → Y be a relatively
minimal fibration. It is well-known that in this case, the relative dualizing
sheaf ωf is nef. Moveover, ωfF = 2g − 2. Applying Theorem 1.1, we can
directly get Theorem 1.2.

Now we only need to characterize the case when the equality in Theorem
1.2 holds. We can assume that f is not a trivial fibration. Suppose the
equality holds in 1.2 and f is not hyperelliptic. The only possibility is when
d0 = 1, which can not happen here because d0 = ωfF = 2g − 2 has to be
even.

3 Slope inequality

In this section, we prove Theorem 1.3. By the Riemann-Roch theorem, The-
orem 1.2 implies a slope inequality with an “error term.” To get rid of the
“error term,” we consider base change to coverings of Y , and take a limit.
The argument is straight-forward if g(Y ) ≤ 1. In general, the covering trick
only works in positive characteristics. To get the result in characteristic 0,
we use a reduction argument.
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3.1 Slope inequality for g(Y ) ≤ 1

In this section, we apply Theorem 1.2 to give a new proof of the slope in-
equality for fibered surfaces over P1 and elliptic curves. We first give the
following lemma.

Lemma 3.1. Let f : X → Y be a relatively minimal surface fibration of
genus g. Then

deg(f∗ωf ) ≤
g

4g − 4
ω2
f + gb.

Here b = g(Y ).

Proof. By Theorem 1.2, we have

h0(ωf ) ≤
g

4g − 4
ω2
f + g.

On the other hand, using the Riemann-Roch theorem on Y ,

h0(ωf ) = h0(f∗ωf ) ≥ deg(f∗ωf ) + g(1− b).

It follows that
deg(f∗ωf ) ≤

g

4g − 4
ω2
f + gb.

Theorem 3.2. Let f : X → Y be a relatively minimal surface fibration of
genus g. Assume that g(Y ) ≤ 1. Then

ω2
f ≥

4g − 4

g
deg(f∗ωf ).

Proof. If g(Y ) = 0, then the result is just Lemma 3.1.
Now, suppose that Y is an elliptic curve over k and that µ : Y → Y is

the multiplication by n such that n and char k are coprime with each other.
Denote X ′ = X ×π Y . We get a new fibration f ′ : X ′ → Y which is just the
pull-back of f by µ. Applying Lemma 3.1 to f ′, it follows that

deg(f ′∗ωf ′) ≤
g

4g − 4
ω2
f ′ + g.

On the other hand, since the base change is étale, we have the following facts:

deg(f ′∗ωf ′) = n2 deg(f∗ωf ), ω2
f ′ = n2ω2

f ,
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which gives us

n2 deg(f∗ωf ) ≤
n2g

4g − 4
ω2
f + g,

i.e.,

deg(f∗ωf ) ≤
g

4g − 4
ω2
f +

g

n2
.

We can prove our result by letting n→∞.

Remark 3.3. In the case b = g(Y ) ≥ 2, if we directly use an étale base
change π : Y ′ → Y , then g(Y ′) also increases. Therefore, we can not prove
the general slope inequality using the above argument. However, we still
want to use the base change trick and control g(Y ′) at the same time, which
motivates us to consider the reduction mod ℘ method.

3.2 Slope inequality in positive characteristic

We first prove the slope inequality when char k = p > 0. This is also crucial
for us to prove the slope inequality for char k = 0. Actually, the proof is
quite similar to the proof of Theorem 3.2.

Let f : X → Y be a semistable fibration of genus g. By Lemma 3.1 to f ,
it follows that

deg(f∗ωf ) ≤
g

4g − 4
ω2
f + gb,

where b = g(Y ).
Now let FY : Y → Y be the absolute Frobenius morphism of Y . Via this

base change, we get a new fibration

f ′ : X ′ → Y,

where X ′ is the minimal desingularization of the normal surface X ×FY
Y .

Thus f ′ is still semistable. Applying Lemma 3.1 again to f ′, it follows that

deg(f ′∗ωf ′) ≤
g

4g − 4
ω2
f ′ + gb.

Moreover, we have the following facts:

deg(f ′∗ωf ′) = p deg(f∗ωf ), ω2
f ′ = p ω2

f ,

We obtain
p deg(f∗ωf ) ≤

pg

4g − 4
ω2
f + gb,
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i.e.,

deg(f∗ωf ) ≤
g

4g − 4
ω2
f +

gb

p
.

We can prove our result by iterating this Frobenius base change.
Actually, using the same idea, we can get a more general result for line

bundles of small degree in positive characteristics, which is similar to Theo-
rem 1.3.

Theorem 3.4. Let f : X → Y be a surface fibration of genus g > 0 over a
field k of positive characteristic, and L be a nef line bundle on X. Assume
that 2 ≤ d = deg(L|F ) ≤ 2g − 2, where F is a general fiber of f . Then

L2 ≥ 4d

d+ 2 + ε
deg(f∗L).

Here, ε = 1 if F is hyperelliptic and d is odd. Otherwise, ε = 0.

Proof. The proof is the same as the proof of the slope inequality in positive
characteristic. We just sketch here.

First, by Theorem 1.1, we have

h0(L) ≤ (
1

4
+

2 + ε

4d
)L2 +

d+ 2 + ε

2
.

The Riemann-Roch theorem on Y gives us

h0(L) = h0(f∗L) ≥ deg(f∗L) + r(1− b),

where b = g(Y ) and r = h0(L|F ). Combine them together and we get

deg(f∗L) ≤ (
1

4
+

2 + ε

4d
)L2 +

d+ 2 + ε

2
+ r(b− 1).

Now we apply the Frobenius base change iteration as above. Finally, we
eliminate the constant term.

3.3 Slope inequality in characteristic 0

Now we can prove the slope inequality for char k = 0. We have the following
lemma.
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Lemma 3.5. Let X, Y, Z be integral schemes, and f : X → Y and g : Y → Z
be proper and flat morphisms of relative dimension one. Assume that f is a
local complete intersection and g is smooth. Then the numbers

deg fz∗(ωXz/Yz) and ω2
Xz/Yz

are independent of z ∈ Z. Here fz : Xz → Yz denotes the fiber of f : X → Y
over z, and ωXz/Yz denotes the relative dualizing sheaf of Xz over Yz.

Proof. The invariance of deg fz∗(ωXz/Yz) is an interpretation of the determi-
nant line bundle. Recall that for any line bundle L on X, the determinant
line bundle λf (L) is a line bundle on Y such that, for any y ∈ Y , there is a
canonical isomorphism

λf (L) ' detH∗(Xy, Ly) = detH0(Xy, Ly)⊗ detH1(Xy, Ly)
∨.

The construction is functorial.
In the setting of the lemma, consider the determinant line bundle M =

λf (ωX/Y ). Restricted to Yz, we have

M |Yz = (det fz∗ωXz/Yz)⊗ (detR1fz∗ωXz/Yz)
∨ = det fz∗ωXz/Yz .

Here we used the canonical isomorphism R1fz∗ωXz/Yz = OYz following the
duality theorem. Therefore, we simply have

deg fz∗ωXz/Yz = deg(M |Yz).

It is independent of z.
The invariance of ω2

Xz/Yz
follows from the definition of the Deligne pairing

introduced in [De]. In fact, the Deligne pairing N = 〈ωX/Y , ωX/Y 〉 is a line
bundle on Y such that

ω2
Xz/Yz = deg(N |Yz), ∀z ∈ Z

It is also independent of z.

The proof does not work for arbitrary line bundles of small degree since
we used the duality theorem above.

Go back to our setting. Suppose that f : X → Y is a semistable fibration
over of characteristic 0. By the Lefschetz principle, one can assume that k is
finitely generated over Q. Let Z be an integral scheme of finite type over Z
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with the function field k. Shrink Z by an open subset and replace it by a finite
cover if necessary. We are able to extend the composition X → Y → Spec(k)
to X → Y → Z satisfying the conditions of the lemma.

Now choose a nonzero prime ℘ ∈ Z such that f℘ : X℘ → Y℘ is a semistable
fibration over the field k/℘. By the slope inequality in positive characteristic,
we have

ω2
f℘ ≥

4g − 4

g
deg(f℘∗ωf℘).

By Lemma 3.5, the slope inequality holds for f over k.

3.4 Arakelov inequality

Now Theorem 1.4 is straightforward. Suppose that char k > 0. Let f be
a non-isotrivial semistable fibration of genus g ≥ 2 over k. Let S ⊂ Y be
the singular locus over which f degenerates. The proof of Theorem 1.4 is
just the combination of the slope inequality in positive characteristic and the
following Szpiro’s inequality (cf. [Sz, Prop. 4.2]):

ω2
f < (4g − 4)g deg ΩY (S).

Therefore,

deg(f∗ωf ) ≤
g

4g − 4
ω2
f < g2 deg ΩY (S).

4 Proof of Severi inequality

In this section, we give the proof of Theorem 1.5 using Theorem 1.2. We
start this section by first recalling some basic facts about surface fibrations.

4.1 Basic facts

Let f : X → Y be a surface fibration of g over k. Denote b = g(Y ). Then

ωf = ωX/k ⊗ f ∗ω∨Y/k,

where ωX/k (resp. ωY/k) is the canonical bundle of X (resp. Y ). We have
the following formulae between the absolute invariants of X and the relative
invariants of f :

ω2
f = ω2

X/k − 8(g − 1)(b− 1),

deg(f∗ωf ) = χ(OX)− (g − 1)(b− 1).

21



Here, by Serre duality,

χ(OX) = h0(ωX/k)− h1(OX) + 1.

4.2 Construction of fibrations

In order to apply Theorem 1.2, we need to construct certain fibrations. The
construction is essentially due to [Pa]. Here we use a slightly simpler one.
However, for the completeness of the paper, we still give the details.

Let X be a minimal surface of general type with maximal Albanese di-
mension. Denote AlbX : X → A to be the Albanese map, where A = Alb(X)
is an abelian variety of dimension m over k. We only have m ≤ h1,0(X), but
since X is of maximal Albanese dimension, it is always safe for us to use the
bound

m ≥ 2.

Let H be a very ample line bundle on A, and L be the pull-back of H on
X. Set

α = L2, β = ωX/kL.

Since X is of general type, α and β are both strictly positive.
Let µ : A → A be the multiplication by n, where n > 1 is an integer. If

char k = p > 0, we assume n and p to be coprime. We have the following
base change:

X ′
τ //

ν
��

X

AlbX
��

A
µ // A

where X ′ = X ×µ A. We have

ω2
X′/k = n2mω2

X/k, χ(OX′) = n2mχ(OX).

We also have the following numerically equivalence on A:

µ∗H ∼num n2H,

which yields
τ ∗L ∼num n2L′.

Here L′ = ν∗H. It follows that

L′2 = n2m−4α, ωX′
n/kL

′ = n2m−2β.
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Now choose C1, C2 ∈ |L′| to be two general curves which intersect each other
transversally. Here C1 and C2 might not be smooth, which could happen if
char k > 0. But since |L′| is base point free, we can assume that C1 and
C2 are both reduced, irreducible Gorenstein curves [Jo, Li2]. Moreover, we
know C1 and C2 intersect at n2m−4α points. After blowing up these points,
we get a surface fibration f : X ′′ → P1. It follows that

ω2
X′′/k = ω2

X′/k − n2m−4α = n2mω2
X/k − n2m−4α, (1)

χ(OX′′) = χ(OX′) = n2mχ(OX). (2)

It is straightforward that f is relatively minimal. In order to apply Theorem
1.2, we need to compute the genus of the fiber, which is just pa(Ci). By the
genus formula,

g = pa(Ci) = 1 +
ωX′/kL

′ + L′2

2
= 1 +

n2m−2β + n2m−4α

2
. (3)

Also note that f is a fibration over P1. We have

ωf = ωX′′/k ⊗OX′′(2F ),

where F is a general fiber of f . Hence

ω2
f = ω2

X′′/k + 8(g − 1). (4)

Moreover, it follows that

h0(ωf ) ≥ h0(ωX′′/k) = h0(ωX′/k) ≥ χ(OX′)− 1 = n2mχ(OX)− 1. (5)

In [Pa], in order to get a singular fiber and apply the slope inequality for
such a fibration, C1 and C2 were chosen from |2L′| and C1 = D1 + D2 was
singular, where D1, D2 ∈ |L′|. Here, Theorem 1.2 works for any fibration, so
we do not need this.

4.3 Proof of Theorem 1.5

Now we reach the end of the proof. Theorem 1.2 for f tells us that

ω2
f ≥ (4− 4

g
)h0(ωf ) + (4g − 4), (6)

Combine (1), (2), (3), (4), (5) and (6) together. We finally get

n2mω2
X/k −O(n2m−4) ≥ (4− 4

O(n2m−2)
)n2mχ(OX) +O(n2m−2).

Because m ≥ 2, the proof is completed by letting n→∞.
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