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1 Introduction

The goal of this paper is to prove the full geometric Bogomolov conjecture.
We first reduce it to the case that the extension of the base fields has tran-
scendence degree 1, and then we prove the later case by intersection theory in
algebraic geometry. The proof uses Yamaki’s reduction theorem on the geo-
metric Bogomolov conjecture and the Manin–Mumford conjecture proved by
Raynaud and Hrushovski.

1.1 Abelian varieties and heights

Let k be an algebraically closed field. Let K/k be a finitely generated field
extension of transcendence degree trdeg(K/k) ≥ 1.Let A be an abelian variety
over K of dimension g. Let L be a symmetric and ample line bundle over A.
To define canonical heights of subvarieties of A, we need to choose integral
models.

Integral models

A projectivemodel of K/k is a normal projective variety S over kwith function
field K . It follows that dim S = trdeg(K/k).

A polarization of K/k is a pair (S,M) consisting of a projective model S
of K/k and an ample line bundleM over S.

An integral model of (A, L) over S is a triple (A, π,L) where:

• A is a projective variety over k;
• π : A → S is a projective morphism whose generic fiber is A;
• L is a line bundle on A extending L .

We usually abbreviate (A, π,L) as (A,L).

Canonical heights

Let X be any closed subvariety of A over K . The naive height of X with
respect to the polarization (S,M) and the integral model (A,L) is defined as

hM(A,L)(X) := Ldim X+1 · (π∗M)dim S−1 · X
(1 + dim X) degL(X)

, (1.1)
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where X is the Zariski closure of X in A, the numerator is the intersection
number in A, and degL(X) = Ldim X · X is the intersection number in A.

By Tate’s limiting argument, the canonical height of X with respect to the
polarization (S,M) and the line bundle L over A is the limit

ĥML (X) := lim
n→+∞

1

n2
hM(A,L)([n]X). (1.2)

Here [n]X is the image of X under the multiplication map [n] : A → A. The
limit exists and depends on (S,M) and L , but is independent of the integral
model (A,L). Moreover, ĥML (X) ≥ 0 by choosing L to be ample in the defi-
nition. Our definition of the canonical height differs from that of Gubler [10]
(and ofYamaki [34]) by the normalizing denominator (1+dim X) degL(X), by
applying Tate’s limiting argument with [10, Theorem 3.4(e), Theorem 3.6(d),
Remark 3.7].

The definition of the heights can be easily extended to closed subvarieties
of AK = A ⊗K K . In fact, let Y be a closed subvariety of AK . Let X be the
minimal closed subvariety of A such that XK contains Y in AK , or equivalently
X is the image of the composition Y → AK → A as schemes. Thenwe simply
define

hM(A,L)(Y ) := hM(A,L)(X), ĥML (Y ) := ĥML (X). (1.3)

Remark 1.1 The definition is compatible with base change in the sense that if
K ′/K is a finite extension (contained in K ), then

hM
′

(A′,L′)(Y ) = [K ′ : K ] hM(A,L)(Y ), ĥM
′

L ′ (Y ) = [K ′ : K ] ĥML (Y ).

Here (A′, L ′) = (AK ′, LK ′), S′ → S is the normalization of Spec K ′ → S,
A′ is the Zariski closure of A′ in A ×S S′, M′ is the pull-back of M via the
finite morphism S′ → S, and L′ is the pull-back of L via the finite morphism
A′ → A. In fact, the equality for the canonical heights follows for that for the
naive heights, and the latter follows from the projection formula for the finite
morphism X ′ → X , where X ′ (resp. X ) is the Zariski closure of the image
of the composition Y → AK → AK ′ → A′ (resp. Y → AK → A → A).
Here the degree of the finite morphism X ′ → X is equal to that of the finite
morphism X ′ → X , where X ′ is the image of the composition Y → AK →
AK ′ , so it is equal to [K ′ : K ] degL ′(X ′)/ degL(X) by the projection formula
again.

Taking K ′/K to be a finite extension such that Y is defined over K ′, we see
that our definition is compatible with that of [38, (2.5.3)] up to the normalizing
denominator (1 + dim X) degL(X).
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For simplicity, we usually omit the dependence on L and (S,M) in the heights,
which are usually fixed, so we write

ĥ(X) = ĥML (X), ĥ(Y ) = ĥML (Y ).

In the special case of dim Y = 0, we get the canonical height for points

ĥ = ĥML : A(K ) → [0, +∞)

with respect to L and (S,M).

Remark 1.2 Let ĥM
′

L ′ be a height function defined by another choice

(L ′, S′,M′). Then c−1 ĥML ≤ ĥM
′

L ′ ≤ c ĥML for some rational number c > 1.
We can use a few reductions to prove this. In the process, we allow M and
M′ to be nef and big (instead of ample) over S and S′ respectively. First, we
can reduce to the case S = S′ by replacing S and S′ by an integral model of
K/k dominating both S and S′, and replacing M,M′ by their pull-back’s to
the new integral model. Second, we can reduce to the case M = M′ since
there is a positive integer a > 0 such that aM − M′ and aM′ − M are
both big over S. This follows from Siu’s inequality (cf. [19, §2.2, Theorem
2.2.15]). In this process, we use the inequality D1 . . . Dn ≥ D′

1 . . . D′
n for nef

divisors D1, . . . , Dn and D′
1, . . . , D

′
n over a projective variety Z of dimension

n such that D1 − D′
1, . . . , Dn − D′

n are effective divisors over Z . Note that
the inequality follows from the chain

D1 · D2 · · · Dn ≥ D′
1 · D2 · · · Dn ≥ D′

1 · D′
2 · D3 · · · Dn ≥ . . .

≥ D′
1 · D′

2 · · · D′
n.

Third, we can reduce to the case L = L ′ because there is a positive integer
b > 0 such that bL − L ′ and bL ′ − L are both ample over A.

In the special case of trdeg(K/k) = 1, the situation is much easier, since
the the projective model S is unique and the line bundle M is not used in the
definition of the heights.

Small points and special subvarieties

For any subvariety X of AK and any ε > 0, we set

X (ε) := {x ∈ X (K )| ĥ(x) < ε}. (1.4)

We say that X contains a dense set of small points of A/K/k if X (ε) is Zariski
dense in X for all ε > 0. This notion is actually independent of the choice of L
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and (S,M) to define the canonical height function ĥML : A(K ) → [0, +∞),
since any two such heights bound each other up to positive multiples (cf.
Remark 1.2).

Let (AK/k, tr) be the K/k-trace of AK ; it is the final object of the category
of pairs (C, f ), where C is an abelian variety over k and f is a morphism
from C ⊗k K to AK (cf. [17, §8.3] or [4, §6]). If char k = 0, tr is a closed

immersion and AK/k ⊗k K can be naturally viewed as an abelian subvariety
of AK ; if char k > 0, tr is a purely inseparable isogeny to its image.

A torsion subvariety of AK is a translate a + C of an abelian subvariety
C ⊂ AK by a torsion point a of AK . A subvariety X of AK is said to be special
if

X = tr(Y⊗k K ) + T (1.5)

for some torsion subvariety T of AK and some subvariety Y of AK/k . When
X is special, X (ε) is Zariski dense in X for all ε > 0 ( [18, Theorem 5.4,
Chapter 6]).

1.2 Geometric Bogomolov conjecture

The goal of this paper is to prove the following theorem, which is known as
the geometric Bogomolov conjecture.

Theorem 1.3 (Geometric Bogomolov conjecture) Let k be an algebraically
closed field. Let K/k be a finitely generated field extension of transcendence
degree at least 1. Let A be an abelian variety over K . Let X be a closed
subvariety of AK . If X contains a dense set of small points of A/K/k, then X
is special.

The above geometric Bogomolov conjecture was proposed by Yamaki [34,
Conjecture 0.3], but particular instances of it were studied earlier by Gubler in
[10]. It is an analog over function fields of the original Bogomolov conjecture
over number fields which was proved by Ullmo [31] and Zhang [43].

Let us give a quick historical recall on results about the Bogomolov con-
jecture and its geometric version. The original Bogomolov conjecture over
number fields was proved by Ullmo [31] and Zhang [43], where the major
technique is the equidistribution theorem of Szpiro–Ullmo–Zhang [30]. The
treatments are extended in terms of the Moriwaki height to finitely generated
fields over number fields by Moriwaki [23].

For the geometric Bogomolov conjecture, it was first proved by Gubler [10]
when A is totally degenerate at some place of K/k. Yamaki [35,38] reduced
the geometric Bogomolov conjecture to the case of abelian varieties with good
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reduction everywhere and with a trivial trace; based on this reduction theorem,
Yamaki [37] proved the conjecture for dim(X) = 1 or codim(X) = 1; he also
proved the conjecture for abelian varieties of dimension 5, good reduction
everywhere and with trivial trace in [36].

The works of Gubler [10] and Yamaki [35] are valid in arbitrary character-
istics, and extend the strategy of Ullmo and Zhang applying equidistribution
theorems. In fact, Gubler [10] considered tropical varieties of subvarieties of
abelian varieties over non-archimedean fields, extended the equidistribution
theorem of Szpiro–Ullmo–Zhang to the tropical setting, and studied the equi-
librium measure in this setting. Yamaki [35] did more careful analysis of the
situation using equidistribution over Berkovich spaces. The latter equidistribu-
tion theorem was proved by Gubler [11] and Faber [5], which generalized the
equidistribution theorems over number fields of Szpiro–Ullmo–Zhang [30],
Chambert-Loir [3], and Yuan [39].

Before Yamaki [37], various examples and partial results of the geomet-
ric Bogomolov conjecture with dim(X) = 1 were previously obtained by
[2,6,20–22,24,32,33]. In particular, Cinkir [2] proved the geometric Bogo-
molov conjecture for a curve embedded in its jacobian when char k = 0 and
trdeg(K/k) = 1, based on a height identity of Zhang [44].

In the case char k = 0, Gao–Habegger [8] proved the geometric Bogo-
molov conjecture for trdeg(K/k) = 1. Recently Cantat–Gao–Habegger–Xie
[1] proved the full geometric Bogomolov conjecture for char k = 0. These
proofs are based on the Betti map in the complex-analytic setting.

1.3 Plan of proof

Our proof of the geometric Bogomolov conjecture is based onYamaki’s reduc-
tion theorem, which reduces the conjecture to the case of good reduction and
trivial trace. We also need the Manin–Mumford conjecture (in the case of
trivial trace) proved by Raynaud and Hrushovski.

First, we reduce the conjecture to the case that K/k has transcendence
degree 1. This is the main goal of Sect. 3. The idea is to take intermediate
fields k′ of K/k, algebraically closed in K and with transcendence degree 1
over k, such that the geometricBogomolov conjecture for (A/K/k, X) follows
from those of (A/K/k′, X). For the construction, let (S,M) be a polarization
of K/k. Use M to get a pencil of hyperplane sections of S parametrized by
P
1
k . Take k′ = k(P1

k) to be the function field. There is a generic hyperplane
section H over the generic point Spec k′ of P

1
k . In particular, (H,M|H ) is a

polarization of K/k′. The process from (S,M) to (H,M|H ) does not increase
canonical heights of subvarieties of AK . Then we carry out careful analysis of
the change of special subvarieties of A under this process.
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We remark that a well-known procedure to reduce the transcendence degree
is to take a closed hyperplane section of S over k. This process reduces K/k to
K ′/k (instead of our K/k′), and thus changes X and A by the corresponding
reductions. Because of this, it is hard to track density of small points, and it is
also hard to track the change of the trace of A. Our method does not change
K and thus make everything trackable.
As a consequence, we can assume that K/k has transcendence degree 1.

Then we apply Yamaki’s reduction theorem. This reduces the problem to the
essential case that K/k has transcendence degree 1, and A has good reduction
over S and trivial K/k-trace. Here S is the unique smooth projective curve
over k with function field K . Then A → Spec K extends to an abelian scheme
π : A → S.

The second step is to prove the Bogomolov conjecture in the essential case.
Denote by X the Zariski closure of X in A. Let L be a symmetric, relatively
ample and rigidified line bundle over A. Our key property is that any torsion
multi-section T of A → S is numerically equivalent to a multiple of the
self-intersection Ldim A in the Chow group of 1-cycles inA. This is proved in
Sect. 4.

Now we come to Sect. 5, which is the core of the proof of the essential
case. To illustrate the idea, assume that there is a positive integer r such that
the summation map f : Xr → A is surjective and generically finite. This
happens, for example, if X is a curve and A is the Jacobian variety of X . We
have a morphism f : X r

/S → A over S. Note that Xr ⊂ Ar and X r
/S ⊂ Ar

/S .
Moreover, Xr has canonical height 0 in Ar , by Zhang’s fundamental inequality
and the assumption that X has a dense set of small points.

Let T be a torsion multi-section ofA. Let us first assume that T ′ = f −1(T )

is finite and flat over S, and address the technical issue later. Denote by h :
Ar

/S → A the summation morphism. For any symmetric, relatively ample and
rigidified line bundle Lr over Ar

/S , we have

[T ′] · Lr = [X r
/S] · h∗[T ] · Lr = a [X r

/S] · h∗(Ldim A) · Lr = 0.

Here a > 0 is a constant coming from the numerical equivalence mentioned
above. The last equality follows from the fact that Xr has canonical height 0
in Ar . This implies that T ′ = T ′

K has canonical height 0, and thus is a finite
set of torsion points of Ar . When varying T , we obtain a Zariski dense set of
torsion points of Xr in Ar . By the Manin-Mumford conjecture, Xr is torsion,
and thus X is torsion.

In general, we are not able to find r such that f : Xr → A is surjective and
generically finite. But we can manage to find r such that f is surjective (up
to replacing A by an abelian subvariety), and that the relative dimension e of
f is strictly smaller than dim X . If T ′ = f −1(T ) is flat over S of dimension
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e + 1, then the above process still implies that T ′ = T ′
K has canonical height

0. Then we can conclude that T ′ is a torsion subvariety in Ar by induction,
since dim T ′ < dim X . Torsion points of T ′ are also torsion points of Xr .
Varying T ′, we obtain a dense set of torsion points of Xr in Ar . Then the
Manin-Mumford conjecture implies that X is torsion.

In the above, we have made a technical assumption that T ′ = f −1(T ) is
flat over S of dimension e+ 1. To remove this caveat, we will have to treat the
case that T ′ = f −1(T ) has irreducible components of dimension bigger than
the expected dimension. Note that it is easy to choose T so that the Zariski
closure T ∗ of T ′ = T ′

K in T ′ has the correct dimension. Then we prove that
the difference [X r

/S] · h∗[T ]− [T ∗] is linearly equivalent to an effective Chow
cycle of the correct dimension. It remedies the above argument. This is the
content of Sect. 2, and was inspired by a result of Jia–Shibata–Xie–Zhang.

The idea of converting the Bogomolov conjecture to the Manin–Mumford
conjecturewas originally used byZhang [40,41] in his proof of theBogomolov
conjecture for powers of Gm . In particular, [41, Lemma 6.6] produced enough
torsion hypersurfaces of X , and thus enough torsion points of X by induction.
On the other hand, our situation is more complicated due to lack of torsion
hypersufaces in A, and our solution is based on the crucial numerical identity
between T andLdim A. As these cycles are not of codimension 1, it also brings
issues of non-proper intersection discussed above.

1.4 Notation and terminology

• For any field F , denote by F an algebraic closure.
• For a field extension K/k, denote by trdeg(K/k) the transcendence degree.
• A variety is an integral separated scheme of finite type over a field.
• For a Cartier divisor H on a scheme X , denote by |H | the linear system
associated to H.

• For an integral scheme X , denote by ηX its generic point.
• For a scheme X over a field, denote by X sm its smooth locus.
• A subvariety of a variety is a closed integral subscheme.
• By a line bundle over a scheme, we mean an invertible sheaf over the
scheme. We often write or mention tensor products of line bundles addi-
tively, so aL−bM means L⊗a⊗M⊗(−b) for line bundles L , M and integers
a, b.

2 Non-proper intersections

Let B be a smooth projective variety of dimension d over an algebraically
closed field k. For a closed subvariety Z of B with dim Z = i , denote by [Z ]
its class in the Chow group CHi (B). For α ∈ CHi (B), write α ≥ 0 if α can
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be represented by an effective i-cycle. The goal of this section is to prove the
following technical result.

Proposition 2.1 Let g : B → Y be a flatmorphism between smooth projective
varieties. Let X be a closed subvariety of B such that f = g|X : X → Y
is surjective. Denote e = dim X − dim Y . Let V be a closed subvariety of Y
which is not contained in

Ye+1 = {y ∈ Y | dim f −1(y) ≥ e + 1}.
Let Z1, . . . , Zn be all irreducible components of f −1(V ) satisfying f (Zi ) =
V . Then dim Zi = dim V + e for i = 1, . . . , n.

Assume furthermore that V ∩ Ye+1 is finite and contained in V sm. Then we
have

n∑

i=1

mi [Zi ] ≤ g∗[V ] · [X ]

in CHdim V+e(B). Here mi is the multiplicity of Zi in the scheme theoretical
preimage f −1(V ).

Note that if X is smooth, then the last inequality can be simplified as the
inequality

n∑

i=1

mi [Zi ] ≤ f ∗[V ]

in CHdim V+e(X).
The proposition will be used in Sect. 5. The remaining part of this section is

to prove the proposition. Readers might skip the proof temporarily and move
to the next section at the first time of reading this paper.

The idea to prove the proposition is to use complete intersections of hyper-
plane sections to bound the proper part of the intersection. See Proposition 2.4
for the result on complete intersection. In the following, we will start with a
Bertini type of result to choose suitable hyperplane sections.

2.1 A Bertini type of result

Proposition 2.2 Let Y be a projective variety over an algebraically closed
field k. Let V be a closed subvariety of Y of codimension r ≥ 1 such that Y is
smooth at ηV . Let Z1, . . . , Zm be irreducible subvarieties of Y . Assume that

• (∪m
i=1Zi ) ∩ V is finite;
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• (∪m
i=1Zi ) ∩ V ⊆ Y sm ∩ V sm.

Let H be a Cartier divisor on Y such thatOY (H)⊗ IV is generated by global
sections, where IV ⊂ OY is the ideal sheaf associated to V . Every non-zero
section s ∈ H0(OY (H) ⊗ IV ) defines a divisor Hs ∈ |H | via the inclusion
H0(OY (H) ⊗ IV ) ↪→ H0(OY (H)). Then for general elements

(s1, . . . , sr ) ∈ H0(OY (H) ⊗ IV )r ,

the following holds:

(i) Hs1 ∩ · · · ∩ Hsr is a proper intersection in Y ;
(ii) Hs1 · · · Hsr = V +W where W is an effective (dim Y − r)-cycle such that

V � SuppW, and W ∩ Zi is a proper intersection for every i = 1, . . . ,m.

Proof Set Hi := Hsi for i = 1, . . . , r. Because OY (H) ⊗ IV is generated by
global sections and s1, . . . , sr are general in H0(OY (H)⊗ IV ), (H1\V )∩· · ·∩
(Hr\V ) is a proper intersection in Y\V , and (H1\V )∩· · ·∩(Hr\V )∩(Zi\V )

is proper intersection in Y\V for every i = 1, . . . ,m.
As V ⊆ Hi , the intersection

H1 ∩ · · · ∩ Hr = V ∪ ((H1\V ) ∩ · · · ∩ (Hr\V ))

is of pure codimension r in Y . So H1 ∩ · · ·∩ Hr is a proper intersection. Write
H1 · · · Hr = V + W where W is an effective (dim Y − r)-cycle.
We fix a point xV ∈ Y sm(k) ∩ V sm(k) before we choose the general

sections s1, . . . , sr and set B := (V ∩ (∪m
i=1Zi )) ∪ {xV }. It is a finite

subset of Y sm(k) ∩ V sm(k). For every point x ∈ B, fix an isomorphism
φx : (OY (H) ⊗ IV )x → IV,x . Because x ∈ (V sm ∩ Y sm)(k), by the Jacobi
criterion for smoothness, IV,x/IV,x Ix is a k-vector space of dimension r.
Because OY (H) ⊗ IV is generated by global sections and s1, . . . , sr are gen-
eral in H0(OY (H)⊗ IV ), φx (s1), . . . , φx (sr ) is a k-basis of IV,x/IV,x Ix . Then
φx (s1), . . . , φx (sr ) generate IV,x . This implies that at every point x ∈ B, there
is an open neighborhood Ux of x such that H1 ∩ · · · ∩ Hr ∩ Ux = V ∩ Ux
in the sense of schemes. Hence (V + W )|Ux = (H1 · · · Hr )|Ux = V |Ux . It
follows that W ∩ Ux = ∅. Hence V � SuppW , and W ∩ B = ∅. Because
V ∩ (∪m

i=1Zi ) ⊆ B for every i = 1, . . . ,m, the intersection
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W ∩ Zi = W ∩ (Zi\V ) = (H1\V ) ∩ · · · ∩ (Hr\V ) ∩ (Zi\V )

is a proper intersection. ��

2.2 Proper part of an intersection

Lemma 2.3 Let B be a smooth projective variety of dimension d over an
algebraically closed field k. Let H be a Cartier divisor on B such thatOB(H)

is globally generated. Then for α ∈ CHi (B) with α ≥ 0, α · [H ] ≥ 0.

Proof Wemaywriteα = [Z ] for an effective i-cycle Z .We can further assume
that Z is an integral subvariety of B. Because OB(H) is globally generated,
after replacing H by a general element in |H |, we may assume that H ∩ Z is
a proper intersection. Then α · [H ] = [Z ] · [H ] ≥ 0. ��

Let B be a smooth projective variety of dimension d over an algebraically
closed field k. Let H1, . . . , Hm be effective Cartier divisors of B. Let X be a
subvariety of B.A proper component Z of H1∩· · ·∩Hm ∩ X is an irreducible
component of the underlying topological space of H1 ∩ · · · ∩ Hm ∩ X of
dimension dim X − m. Write m(Z , H1 ∩ · · · ∩ Hm ∩ X) for the multiplicity
of Z in H1 ∩ · · · ∩ Hm ∩ X , as defined by Serre using the tor-functor. Define

(H1 · · · Hm · X)prop :=
∑

m(Z , H1 ∩ · · · ∩ Hm ∩ X)[Z ],

where the sum is taken over all proper components Z of H1 ∩ · · · ∩ Hm ∩ X .
The following result is a generalization of [16, Lemma 3.3] with a similar

proof.

Proposition 2.4 Let H1, . . . , Hr be effective Cartier divisors on B such that
OB(H1), . . . ,OB(Hr ) are generated by global sections. Let X be a subvariety
of B. Then we have

(H1 · · · Hr · X)prop ≤ H1 · · · Hr · [X ].

Proof Let V1, . . . , Vs be the proper components of H1 ∩ · · · ∩ Hr ∩ X with
multiplicities m1, . . . ,ms . For i = 1, . . . , s, set ηi := ηVi . Then H1 ∩ · · · ∩
Hr ∩ X has proper intersection at η1, . . . , ηs .
Let X1, . . . , Xl be all irreducible components of H1∩· · ·∩Hr−1∩X passing

through η1, . . . , ηs . For j = 1, . . . , l, the variety X j has dimension dim X −
r+1 and X j � Hr .Assume that X j hasmultiplicity n j in H1∩· · ·∩Hr−1∩X .
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If r = 1, by Lemma 2.3, this proposition is trivial. Now assume that r ≥ 2.
By induction,

l∑

j=1

n j [X j ] ≤ H1 · · · Hr−1 · [X ].

The previous paragraph shows that (
∑l

j=1 n j X j )∩Hr is a proper intersection

and mi is the multiplicity of Vi in (
∑l

i=1 n j X j ) ∩ Hr . By Lemma 2.3, we
have

(H1 · · · Hr · X)prop =
s∑

i=1

miVi ≤
⎛

⎝
l∑

j=1

n j [X j ]
⎞

⎠ · Hr

≤ H1 · · · Hr−1 · [X ] · Hr .

��

2.3 Strict transform

Let f : X → Y be a surjective morphism of projective varieties over an
algebraically closed field k. Set e := dim X − dim Y .

For every integer l ≥ e,

Yl := {y ∈ Y | dim f −1(y) ≥ l}

is a closed subset of Y . We have Yl+1 ⊆ Yl . We note that Ye = Y and for
l ≥ e + 1, dim Yl + l ≤ dim X − 1. In particular, for l ≥ dim X , Yl = ∅.

Lemma 2.5 Let W be a subvariety of Y . Assume that W ∩ Yl is a proper
intersection for every l ≥ e + 1. Then

dim f −1(W ) = dimW + e.

Moreover, for every irreducible component Z of f −1(W ) with dim Z =
dim f −1(W ), we have f (Z) = W.

Proof Write W = �e≤l≤dim XW ∩ (Yl\Yl+1). For every l ≥ e + 1, if W ∩
(Yl\Yl+1) �= ∅,

dimW ∩ (Yl\Yl+1) ≤ dimW ∩ Yl = dimW + dim Yl − dim Y

≤ dimW + dim X − l − 1 − dim Y = dimW + e − l − 1.
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So for l ≥ e + 1, if W ∩ (Yl\Yl+1) �= ∅,

dim f −1(W ∩ (Yl\Yl+1)) ≤ dimW + e − 1.

Because W ∩ Ye+1 is a proper intersection, we have W\Ye+1 �= ∅. Then

dim f −1(W\Ye+1) = dimW + e.

So we have

dim f −1(W ) = dimW + e.

Let Z be an irreducible component of f −1(W ) of dim Z = dim f −1(W ) =
dimW + e. Then dim f (Z) ≥ dim Z − e = dimW. So f (Z) = W. ��
Proof of Proposition 2.1 Set r := dim Y − dim V . If r = 0, then V = Y
and f −1(V ) = X . In this case Proposition 2.1 trivially holds. Now assume
that r ≥ 1. For every i = 1, . . . , n, since f (Zi ) = V and Zi is irreducible,
dim Zi = dim(Zi\ f −1(Ye+1)). Since f −1(V \Ye+1) is of pure dimension
e + dim V , dim Zi = e + dim V .

By Proposition 2.2, there are effective and very ample divisors H1, . . . , Hr
on Y such that H1 ∩ · · · ∩ Hr is a proper intersection and

H1 · · · Hr = V + W

where W is an effective (dim Y − r)-cycle such that V � SuppW , and such
that W ∩ Yl is a proper intersection for l ≥ e + 1. We have

g∗[V ] + g∗[W ] = [g∗H1 · · · g∗Hr ].
By Lemma 2.5, dim f −1(W ) = dim V + e. Then f −1(W ) = g−1(W ) ∩ X

is a proper intersection. Since B is smooth, f −1(W ) is equidimensional. By
Lemma 2.5 again, for every irreducible component R of f −1W , the image
f (R) is an irreducible component of W.

We claim that [ f −1W ] = g∗[W ] · [X ] as algebraic cycles over B. In fact, it
suffices to prove the restriction of the equality toU = B\g−1(V ). Over Y\V ,
W is the proper intersection H1 ∩ · · · ∩ Hr . Then the result follows by the
fact that the intersection multiplicities are given by length of the local rings.
This can be obtained by the vanishing of the higher tor-functors in Serre’s
intersection formula, or as an example of [7, Proposition 7.1 (b)].

Similarly, we have the Zariski closure

[ f −1(V ) ∩ f −1(Y\Ye+1)] =
n∑

i=1

mi [Zi ]
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as algebraic cycles over B. The sum gives

[ f −1(H1 ∩ · · · ∩ Hr ) ∩ f −1(Y\Ye+1)] =
n∑

i=1

mi [Zi ] + g∗[W ] · [X ].

Note that every irreducible component of f −1(H1∩· · ·∩Hr )∩ f −1(Y\Ye+1)

has dimension dim V + e. So we have

[ f −1(H1 ∩ · · · ∩ Hr ) ∩ f −1(Y\Ye+1)] ≤ (g∗H1 · · · g∗Hr · X)prop

in CHdim V+e(B).
Finally, by Proposition 2.4, sinceOB(g∗Hi ) for i = 1, . . . , r are generated

by global sections, we get

(g∗H1 · · · g∗Hr · X)prop ≤ g∗H1 · · · g∗Hr · [X ].

It follows that

n∑

i=1

mi [Zi ] + g∗[W ] · [X ] ≤ g∗H1 · · · g∗Hr · [X ]

= g∗[V ] · X + g∗[W ] · [X ].

This concludes the proof. ��

3 Lowering the transcendence degree

The geometric Bogomolov conjecture concerns a finitely generated extension
K/k. The goal of this section is to lower trdeg(K/k) to 1 in the conjecture.
The main result of this section is as follows.

Proposition 3.1 Let k be an algebraically closed field. Let K/k be a finitely
generated field extension of transcendence degree at least 2. Let A be an
abelian variety over K . Then there are two intermediate fields k1, k2 of
K/k, algebraically closed in K and of transcendence degree 1 over k, such
that for any closed subvariety X of AK , the geometric Bogomolov conjec-
ture holds for (A/K/k, X) if the geometric Bogomolov conjecture holds for
(AKk1

/Kk1/k1, X) and (AKk2
/Kk2/k2, X).

Note that the intermediate fields k1, k2 do not depend on the subvariety
X . Applying the theorem repeatedly, we reduce the geometric Bogomolov
conjecture to the case trdeg(K/k) = 1.

123



Geometric Bogomolov conjecture

3.1 Field of definition

For two abelian schemes A1, A2 over a base scheme, denote A1 ∼ A2 if A1 is
isogenous to A2. For an abelian variety over a field K and a subfield k of K ,
we say A is defined over k up to isogeny if there is an abelian variety A′ over
k such that A ∼ A′ ⊗k K .

Proposition 3.2 Let k be an algebraically closed field. Let K be a field
extension of k with trdeg(K/k) < ∞. Let k1, k2 be algebraically closed inter-
mediate fields of K/k with k1 ∩ k2 = k. Let A1, A2 be abelian varieties over
k1, k2 respectively. If A1 ⊗k1 K ∼ A2 ⊗k2 K, then there is an abelian variety
A over k, such that A1 ∼ A ⊗k k1 and A2 ∼ A ⊗k k2. Moreover, the abelian
variety A is unique up to isogeny.

For the uniqueness in the proposition, we have the following result.

Lemma 3.3 Let A1, A2 be two abelian varieties over an algebraically closed
field k. Let K be any field extension of k. If A1⊗k K ∼ A2⊗k K , then A1 ∼ A2.

Proof There is an isogeny � : A1 ⊗k K → A2 ⊗k K over K . There is a
subfield K ′ of K , finitely generated over k, such that� is defined over K ′. After
replacing K by K ′, we may assume that K is a finitely generated extension
over k. There is a k-variety S such that K = k(S). After shrinking S, we may
assume that there is an isogeny �S : A1 ×k S → A2 ×k S over S such that �
is the generic fiber of �S (cf. [25, Theorem 3.2.1]) Pick a point b ∈ S(k). The
restriction of �S to the fiber at b induces an isogeny �b : A1 → A2, which
concludes the proof. ��
Proof of Proposition 3.2 We have noted that Lemma 3.3 implies the unique-
ness of A. For the existence, we only need to show that both A1 and A2 are
defined over k up to isogeny. Indeed, if A1 ∼ A′

1 ⊗k k1 and A2 ∼ A′
2 ⊗k k2

for abelian varieties A′
1, A

′
2 over k, then A′

1 ⊗k K ∼ A′
2 ⊗k K , which implies

A′
1 ∼ A′

2 by Lemma 3.3 again.
Now we prove that A1 and A2 are defined over k up to isogeny. By Lemma

3.3, there is an isogeny A1 ⊗k1 K ∼ A2 ⊗k2 K defined over the algebraic
closure of k1k2. Thus we may assume that K = k1k2.

For i = 1, 2, there is a k-variety Si , an abelian scheme π : Ai → Si
such that k(Si ) = ki and Ai → Spec ki is the geometric generic fiber of
π : Ai → Si .

Because A1 ⊗k1 K ∼ A2 ⊗k2 K and K = k(S1)k(S2), there is k-varietyU ,
a flat and quasi-finite morphism ψ : U → S1 × S2, and an isogeny

�U : A1,U = A1 ×S1 U −→ A2,U = A2 ×S2 U.
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Pick a point s = (s1, s2) ∈ ψ(U )(k) ⊆ S1 × S2. Consider S1 × s2 ⊆ S1 × S2.
Pick an irreducible component V of ψ−1(S1 × s2) ⊆ U. Then �U induces an
isogeny

�V = �U ×U V : A1,U ×U V −→ A2,U ×U V .

The isomorphism S1 � S1 × s2 induces an isomorphism

A1,U ×U V � A1 ×S1 V . (3.1)

On the other hand,

A2,U ×U V � A2,s2 × V, (3.2)

where A2,s2 := A2 ×S2 s2 is an abelian variety over k. Because k(V )/k(S1)
is finite, taking the geometric generic fibers in (3.1) and (3.2), we get

A1 ∼ As2 ⊗k k1.

Thus A1 is defined over k up to isogeny. By symmetry, A2 is defined over k
up to isogeny. This concludes the proof. ��
Lemma 3.4 Let k1, k2 be two intermediate fields of a field extension K/k such
that k1 ∩ k2 = k. Let Y be a variety over k. Let X be a closed subvariety of
YK = Y ⊗k K over K . Assume that as a subvariety of YK , X is defined over
k1 and also defined over k2. Then X is defined over k.

Proof By taking an open affine cover of Y , it suffices to treat the case that
Y = Spec R0 is affine. Denote by I the ideal of R0,K = R0 ⊗k K associated
to X . We only need to show I = I0 ⊗k K for I0 := I ∩ R0. Here we identify
R0 with its image in R0,K = R0 ⊗k K .

This converts to a basic result in linear algebra. Namely, let K , k, k1, k2 be
as before, let V0 be a vector space over k, and let V = V0 ⊗k K be the vector
space over K . LetW be a K -subspace of V . Assume thatW can be descended
to ki for i = 1, 2; i.e., W = Wi ⊗ki K for a ki -subspace Wi of V0 ⊗k ki . Then
W can be descended to k.

If V0 is finite-dimensional, the result is an easy consequence of the existence
of theGrassmannian variety, but we give an elementary proof as follows.Write
n = dimk V0 and m = dimK W . Take a k-basis of V0, and use it to identify
V0 = kn and V = Kn . Then W is represented by a m × n matrix with
coefficients in K . In fact, take a basis ofW , each element of which gives a row
of the matrix. By row operations, we can convert the matrix to a reduced row
echelon form E over K . We can also get a reduced row echelon form Ei over
ki for Wi ⊂ kni . By the uniqueness of the reduced row echelon from, we have
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E = E1 = E2. Then the coefficients of E are in k1 ∩ k2 = k. It follows that
W can be descended to k.

If V0 is infinite-dimensional, let V ′
0 be a finite-dimensional subspace over k

and write V ′ = V ′
0 ⊗k K . Apply the above results to the subspace W ∩ V ′ of

V ′. We see thatW ∩V ′ can be descended to k. Vary V ′
0. Note that any vector of

W is contained in some V ′. It follows that W is contained in the K -subspace
of V spanned by W ∩ V0. Then W can be descended to k. This concludes the
proof. ��
Corollary 3.5 Let K/k be an extension of algebraically closed fields.

(i) Let A be an abelian variety over K . Then there is a unique algebraically
closed intermediate field kA of K/k, such that for every algebraically
closed intermediate field k′ of K/k, A is defined over k′ up to isogeny if
and only if kA ⊆ k′. Moreover, we have trdeg(kA/k) < ∞.

(ii) Let Y be a variety over k. Let X be a subvariety of YK = Y ⊗k K . Then
there is a unique algebraically closed intermediate field kX⊆YK of K/k,
such that for every algebraically closed intermediate field k′ of K/k,
X ⊆ YK is defined over k′ if and only if kX⊆YK ⊆ k′. Moreover, we have
trdeg(kX⊆YK /k) < ∞.

Proof Weonly prove (i). The proof for (ii) is almost the same, except replacing
Proposition 3.2 by Lemma 3.4.

Let I be the set of algebraically closed intermediate fields k′ of K/k such
that A is defined over k′ up to isogeny. Because A is of finite type, for every
k′ ∈ I , there is k′′ ∈ I contained in k′ and satisfying trdeg(k′′/k) < ∞.

So there is kA ∈ I , such that trdeg(kA/k) is the smallest. It is clear that for
every algebraically closed intermediate field k′ of K/k, if kA ⊆ k′, k′ ∈ I.
So we only need to show that for every k′ ∈ I , kA ⊆ k′. One may assume
that trdeg(k′/k) < ∞. By Proposition 3.2, k′ ∩ kA ∈ I. This proves kA ⊆ k′
because trdeg(kA/k) is the smallest. ��

3.2 Special subvarieties of abelian varieties

Let K/k be a field extension such that k is algebraically closed in K . Denote
by I (K/k) the set of intermediate fields k′ of K/k which are algebraically
closed in K . If trdeg(K/k) > 1, then I (K/k) is infinite.

Let A be an abelian variety over K . Recall that a subvariety X of AK is said
to be special in A/K/k if

X = tr(Y⊗k K ) + T (3.3)

for some torsion subvariety T of AK and some subvariety Y of AK/k .
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Proposition 3.6 Let K/k be a field extension such that k is algebraically
closed in K . Let A be an abelian variety over K . Let X be a subvariety of AK .

Then there is kA,X ∈ I (K/k) such that for every k′ ∈ I (K/k), X is special
for A/K/k′ if and only if kA,X ⊆ k′.

Proof There is a bijection φ : I (K/k) → I (K/k) sending k′ to k′ ∩ K .

Because φ preserves the ordering and for k′ ∈ I (K/k), X is special for
AK /K/k′ if and only if X is special for A/K/φ(k′), we may assume that
k and K are algebraically closed.

Let Stab0(X) be the identity component of the closed subgroup scheme

Stab(X) := {g ∈ A| g + X = X}.

We note that, for every k′ ∈ I (K/k), X is special for A/K/k′ if and only
if X/Stab0(X) is special for (A/Stab0(X))/K/k′, where X/Stab0(X) is the
image of X under the quotient morphism A → A/Stab0(X). After replacing
(A, X) by (A/Stab0(X), X/Stab0(X)), we may assume that Stab0(X) = 0.

Let TX be the minimal torsion subvariety of A containing X. Let a be a
torsion point in TX , so that TX − a is an abelian subvariety of A. Then for
every k′ ∈ I (K/k), X is special for A/K/k′ if and only if X −a is special for
(TX − a)/K/k′. After replacing (A, X) by (TX − a, X − a), we may assume
that TX = A.

By Corollary 3.5(i), there is kA ∈ I (K/k) such that for any k′ ∈ I (K/k),
tr(AK/k′

)K = A if and only if kA ⊆ k′. Since Stab0(X) = 0 and TX = A, if
X is special for A/K/k′ then kA ⊆ k′.
After replacing k by kA, we may assume that tr(AK/k)K = A. Pick an

isogeny � : A → (AK/k)K . Then for every k′ ∈ I (K/k), X is special for
A/K/k′ if and only if�(X) is special for (AK/k′

)K /K/k′.Moreover, we still
have Stab0(�(X)) = 0 and T�(X) = (AK/k)K . After replacing (A, X) by
((AK/k)K , �(X)), we may assume that A is defined over k. In this case, for
any k′ ∈ I (K/k), X is special in A/K/k′ if and only if X as a subvariety of A
is defined over k′.By Corollary 3.5(ii), there is kA,X := kX⊆A ∈ I (K/k) such
that for every k′ ∈ I (K/k), X is special in A/K/k′ if and only if kA,X ⊆ k′.

��

3.3 Proof of Proposition 3.1

We start with the following general result.

Lemma 3.7 Let k be an algebraically closed field. Let K/k be a finitely gen-
erated extension of transcendence degree trdeg(K/k) > 1. Let (S,M) be a
polarization of K/k. Assume that M is very ample over S.
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Then there are infinitely many intermediate fields k′ of K/k, algebraically
closed in K and of transcendence degree 1 over k, together with a geomet-
rically integral subvariety H in Sk′ of codimension 1 satisfying the following
properties:

(1) the divisor H of Sk′ is linearly equivalent to Mk′;
(2) the composition H → Sk′ → S induces an isomorphism between the

function fields of H and S.

As a consequence of (1) and (2), the pair (k′, H) satisfies the following
property. Let A be any abelian variety over K , and let L be any symmetric
and ample line bundle over A. Then under the polarization (S,M) of K/k
and the polarization of (H,Mk′ |H ) of K/k′, we have the inequality

ĥML (X) ≥ ĥ
Mk′ |H
L (X)

of canonical heights for any subvariety X of AK .

Proof By a Bertini type of theorem (cf. [15, Theorem 6.10]), for a general
section s0 ∈ 
(S,M), H0 = div(s0) is geometrically integral. Set H1 =
div(s1) for some s1 ∈ 
(S,M) which is not a multiple of s0. Then s0 and
s1 determine a plane in 
(S,M), and thus a pencil in S with base locus
H0 ∩ H1. This gives a rational map S ��� P

1
k sending x to (s0(x), s1(x)). Let

π : S̃ → S be the blowing-up along H0 ∩ H1. Then the rational map becomes
a flat morphism ψ : S̃ → P

1
k as in [13, II, Example 7.17.3].

For any point (a0, a1) ∈ P
1
k(k), the fiber ψ−1(a0, a1) ⊂ S̃ is isomorphic

to the hyperplane section div(a0s1 − a1s0) of S. In fact, ψ−1(a0, a1) ⊂ S̃
is the strict transform of div(a0s1 − a1s0) in S̃, and thus isomorphic to the
blowing-up of div(a0s1 − a1s0) along H0 ∩ H1. Note that H0 ∩ H1 is a Cartier
divisor in div(a0s1−a1s0), by H0∩H1 = div(a0s1−a1s0)∩div(s0) if a0 �= 0
and H0 ∩ H1 = div(a0s1 − a1s0) ∩ div(s1) if a1 �= 0. Then the blowing-up of
div(a0s1 − a1s0) along H0 ∩ H1 does not change div(a0s1 − a1s0).

As a consequence, H0 and H1 are closed fibers ofψ . As H0 is geometrically
integral, the generic fiber H ′ → Spec k′ of ψ : S̃ → P

1
k is geometrically

integral, which follows from a general property in [9, 3, Theorem 12.2.4(viii)].
Here k′ = k(P1

k) is set to be the function field of P
1
k , and identified with a

subfield of K via ψ . Because H ′ → Spec k′ is geometrically integral, k′ is
algebraically closed in K .

The field k′ above depends on the choice of sections s0, s1 in the following
way. For another choice of sections s0,1, s1,1, let k′

1 be the field associated to
them. Then k′ �= k′

1 if V = ks0 + ks1 and V1 = ks0,1 + ks1,1 are different
subspaces of 
(S,M). Because k is algebraically closed, there are infinitely
many choices of sections s0,n, s1,n, n ≥ 1 such that the spaces Vn = ks0,n +
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ks1,n, n ≥ 1 of 
(S,M) are pairwise distinct. Hence we get infinitely many
choices of k′.

Let H be the image of H ′ under the morphism π × ψ : S̃ → S × P
1
k . Let

π1 : S × P
1
k → S be the projection to the first factor and π2 : S × P

1
k → P

1
k

be the projection to the second factor. Then H ⊆ π−1
2 (Spec k′) = Sk′ . The

generic point of H is also the generic point of Sk′ , so H satisfies condition (2).
Now we check that H satisfies condition (1). As above, for any field exten-

sion F/k and any point t ∈ P
1
k(F) = P

1
F (F), the fiber ψ−1(t) ⊂ S̃F is

isomorphic to a hyperplane section of SF corresponding toMF . Take F = k′
and take t ∈ P

1
k(F) to be the generic point Spec k′ → P

1
k . This implies that

H ′ is isomorphic to a hyperplane section of Sk′ . The same result holds for H ,
since it is the image of the composition H ′ → Sk′ → S × P

1
k .

It remains to check the height inequality. We can assume that X is a closed
subvariety of A. Let(A,L) be an integralmodel of (A, L) over Swith structure
morphism π : A → S. We can further assume that L is ample, which can
be achieved by passing to a tensor power of L (cf. [1, Section 1.2.1]). Denote
by X the Zariski closure of X in A. It suffices to prove the inequality for the
relevant naive heights, which becomes the inequality

Ldim X+1 · (π∗M)dim S−1 · X ≥ (LH )dim X+1 · (π∗
HMH )dim S−2 · X ∗

H .

Here the right-hand side is an intersection in AH = A ×S H , and
πH ,LH ,MH ,XH denote the base change of π,L,M,X via the morphism
H → S. Moreover, X ∗

H denotes the Zariski closure of X in AH .
Denote by πk′ : Ak′ → Sk′,Lk′,Mk′,Xk′ the base change of π : A →

S,L,M,X via the morphism Spec k′ → Spec k. By base change, the left-
hand side of the inequality is equal to

Ldim X+1
k′ · (π∗

k′Mk′)dim S−1 · Xk′,

which is an intersection in Ak′ . Note that Mk′ is linearly equivalent to the
hyperplane section H of Sk′ . The intersection number is further equal to

(LH )dim X+1 · (π∗
HMH )dim S−2 · (Xk′)H .

Here (Xk′)H = Xk′ ∩ π−1
k′ (H) is a proper intersection in Ak′ , so it is equi-

dimensional.
The Zariski closure X ∗

H of X inAH is an irreducible component of (Xk′)H .
Then we have (Xk′)H −X ∗

H is an effective cycle. As L andM are ample, we
have
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(LH )dim X+1 · (π∗
HMH )dim S−2 · (Xk′)H

≥ (LH )dim X+1 · (π∗
HMH )dim S−2 · X ∗

H .

This proves the inequality. ��
Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1 Let A/K/k be as in the proposition. Let L be an
ample and symmetric line bundle over A, and let (S,M) be a polarization of
K/k. We can assume that M is very ample by passing to a positive tensor
power.

Choose (H1, k1), (H2, k2) as in Lemma 3.7 such that k1 �= k2. For i =
1, 2, denote by Mi the pull-back of M via (Hi )ki → S. Note that Kki =
ki ((Hi )ki ). For any x ∈ A(K ), we have the height inequality

ĥML (x) ≥ ĥMi
L (x).

Let X be a subvariety of AK which contains a dense set of small points
of A/K/k. Then X contains a dense set of small points of AKki

/Kki/ki for
i = 1, 2 by the height inequality. By assumption, the geometric Bogomolov
conjecture holds for (AKki

/Kki/ki , X), so X is special in A/K/ki for both
i = 1, 2.

If X is not special for A/K/k, let kA,X as in Proposition 3.6. We have
kA,X �= k. By trdeg(ki/k) = 1, we have kA,X � ki for at least one i ∈ {1, 2}.
Then X is not special for A/K/ki for that i . This is a contradiction. ��

4 Line bundles over abelian schemes

In this section, we introduce some preliminary results for abelian schemes
over curve, which will be used in the proof the geometric Bogomolov con-
jecture in Sect. 5. These results are well-known, but we collect them here for
convenience.

4.1 Rigidified line bundles

Let S be a smooth projective curve over a field k. Let π : A → S be an abelian
scheme over S. Let K be the function field of S and A be the generic fiber of
π. This will be the basic setup of this section.

For any m ∈ Z, denote by [m] : A → A the homomorphism of multiplica-
tion by m, and denote by A[m] the kernel of this homomorphism.

By a multi-section of π : A → S, we mean a closed integral subscheme
T of A such that the induced morphism T → S is finite and flat. The multi-
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section T is called torsion if its corresponding element in the abelian group
AT (T ) is torsion. The order of the torsion multi-section T is defined to be
the order of the corresponding element in AT (T ).

Any torsion multi-section T is necessarily the Zariski closure of a torsion
point of A(K )tor in A. If the order of T is m, then T is an open and closed
subscheme of A[m]. If furthermore m is not divisible by char(k), then A[m]
is finite and étale over S, and thus T is also finite and étale over S. In this case,
T is actually smooth over k.

Let L be a line bundle over A. We say that L is symmetric if [−1]∗L � L.
We say that L is anti-symmetric if [−1]∗L � L∨. We say that L is rigidified
if it is endowed with an isomorphism e∗L � OS via the identity section
e : S → A. The isomorphism is called a rigidification. The following results
are well-known to experts, but we sketch proofs for convenience of readers.

Lemma 4.1 LetL be a rigidified line bundle overA. Then the following hold.

(1) If L is symmetric, then [m]∗L � m2L for any m ∈ Z; if L is anti-
symmetric, then [m]∗L � mL for any m ∈ Z.

(2) For any torsion multi-section T ⊂ A, the line bundle L|T is torsion in
Pic(T ).

(3) If L is symmetric and π -ample, then L is nef over A.
(4) IfL is symmetric andπ -ample, andL′ is another symmetric and rigidified

line bundle overA, then there is a positive integer a such that aL−L′ is
nef over A.

Proof For (1), we only consider the symmetric case as the anti-symmetric case
is similar. Note that [m]∗L − m2L is trivial over every fiber of π : A → S,
so it lies in π∗Pic(S). Consider the pull-back by the identity section. Then
[m]∗L − m2L is trivial by the rigidification.

For (2), by 2L = (L + [−1]∗L) + (L − [−1]∗L), we can assume that L
is either symmetric or anti-symmetric. Let m be the order of T . It suffices
to prove that L|A[m] is torsion. Note that A[m] → S is the base change of
[m] : A → A by the identity section. It follows that ([m]∗L)|A[m] is trivial
over A[m] by the rigidification. Then L|A[m] is torsion over A[m] by (1).

For (3), since L is π -ample, there is an ample line bundle L′ over S such
thatL+π∗L′ is ample overA. Then [m]∗(L+π∗L′) � m2L+π∗L′ is ample
over A. The Q-line bundle L + m−2π∗L′ is ample over A, and thus its limit
L is nef over A.

For (4), note that aL − L′ is π -ample for sufficiently large a. Apply (3). ��

4.2 Numerical classes of torsion multi-sections

The following actually holds for rational equivalence and for high dimensional
base S (cf. [12, Theorem 2.1]). We will be content to numerical equivalence
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for dim S = 1, which has the following quick proof and is sufficient for our
application.

Proposition 4.2 Let S be a smooth projective curve over a field k. Let π :
A → S be an abelian scheme over S of relative dimension g ≥ 1. Let L be a
symmetric and rigidified line bundle over A. Let T be a torsion multi-section
of A over S. Then there is a numerical equivalence

[L]g ≡ deg(Lη)

deg(T /S)
[T ]

of 1-cycles over A with rational coefficients. Here η is the generic point of S,
and deg(Lη) is the degree of Lη over the abelian variety Aη.

Proof It suffices to prove that

Lg · M = deg(Lη)

deg(T /S)
T · M

for any line bundle M over A.
We first prove that if M is rigidified, then both sides are 0. The right-

hand side is 0 by Lemma 4.1(2). For the left-hand side, by the decomposition
2M = (M + [−1]∗M) + (M − [−1]∗M) again, we can assume thatM is
either symmetric or anti-symmetric. Then [m]∗M � miM for i = 1, 2. By
the projection formula,

([m]∗L)g · ([m]∗M) = deg([m])Lg · M.

This is just

m2g+i Lg · M = m2g Lg · M.

It follows that Lg · M = 0.
To prove the identity for generalM, writeM = (M−π∗e∗M)+π∗e∗M.

Note that M − π∗e∗M is canonically rigidified. It is reduced to prove the
result forM = π∗N for line bundlesN over S. This follows from the simple
equalities

Lg · π∗N = deg(Lη) deg(N ), T · π∗N = deg(T /S) deg(N ).

This finishes the proof. ��

123



J. Xie, X. Yuan

4.3 Canonical height

Let S be a smooth projective curve over a field k. Let K = k(S) be the function
field. Let A be an abelian variety over K , and L a symmetric and ample line
bundle over A. Let X be a closed subvariety of A. As in (1.2) of Sect. 1.1, we
have the canonical height ĥL(X) associated to L .

Assume that A has everywhere good reduction over S. In this case, we have
the following well-known easy interpretation of the canonical height of closed
subvarieties of A.

In fact, let π : A → S be the unique abelian scheme with generic fiber
A → Spec K . LetLbe a symmetric and rigidified line bundle overA extending
L .
For the existence of L, we first take any line bundle L′ over A extending

L , which can be obtained by passing to divisors and taking Zariski closures.
By replacing L′ by L′ − π∗e∗L′, we can assume that L′ is rigidified. Here
e : S → A is the identity section. Then L is automatically symmetric. In fact,
L−[−1]∗L is trivial over A, so it is isomorphic to π∗M for some line bundle
M over S. The rigidification implies thatM is trivial.

Denote by X the Zariski closure of X in A. By Lemma 4.1(1) and the
projection formula, the naive height

hL(X) = Ldim X+1 · X
(dim X + 1) degL(X)

already satisfies hL([n]X) = n2 hL(X). As a consequence, hL(X) is exactly
equal to the canonical height ĥL(X) associated to L .

5 Proof of the geometric Bogomolov conjecture

The goal of this section is to prove Theorem 1.3. Let A/K/k be as in the
theorem. By Proposition 3.1, we can assume the following condition.

(a) the transcendence degree of K over k is 1.

Let S be the unique (normal) projective model of K/k. We can further make
the following assumptions.

(b) S is a smooth projective curve over k;
(c) A has semi-stable reduction over S.

The second condition is a consequence of the semistable reduction theorem.
Our next step is to apply Yamaki’s result to make the following further

assumption:

(d) A has trivial K/k-trace and good reduction over S.
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Denote by A′ the maximal abelian subvariety of A that has everywhere good
reduction over S. Yamaki [38, Theorem 1.5] asserts that the geometric Bogo-
molov conjecture holds for A if and only if it holds for A′/tr(AK/k ⊗k K ).
This gives the condition.

The major contribution of this section is to prove the geometric Bogomolov
conjecture under (a)–(d), based on the Manin–Mumford conjecture in this
case.

Recall that the Manin–Mumford conjecture was proved by Raynaud [28,
29] over number fields, and proved by Hrushovski [14] over arbitrary fields.
Hrushovski’s proof relies on the model theory of difference fields. Inspired
by Hrushovski’s proof, Pink–Rössler [26,27] gave a new proof using classical
algebraic geometry. We will only need the conjecture under assumption (a)-
(d). For convenience, we state it in the following case of trivial K/k-trace (cf.
[27, Theorem 3.6]).

Theorem 5.1 (Manin–Mumford conjecture)Let K be afinitely generated field
over an algebraically closed field k. Let A be an abelian variety over K of
trivial K/k-trace. Let X be a closed subvariety of AK . Assume that X (K ) ∩
A(K )tor is Zariski dense in X. Then X is a torsion subvariety of AK .

We also need the followingwell-known consequence of Zhang’s fundamen-
tal inequality.

Lemma 5.2 Let K/k be a finitely generated field extension of transcendence
degree 1. Let A be an abelian variety over K . Let L be a symmetric and ample
line bundle over A. Let X be a closed subvariety of AK . Then X contains a
dense set of small points of A/K/k if and only if ĥL(X) = 0.

Proof It is a direct consequence of the fundamental inequalities for successive
minima, which asserts that

(dim X + 1)hL(X) ≥ sup
U⊂X

inf
x∈U (K )

ĥL(x) ≥ ĥL(X).

Here the supremum goes through all non-empty open subvarieties U of X .
The fundamental inequality was proved over number fields by Zhang [42,
Theorem 1.10], based on his previous works [40,41] and as a part of his
theorem of successive minima. It was transferred to function fields by Gubler
[10, Lemma 4.1 and Proposition 4.3]. ��

5.1 Subvarieties generated by addition

With these preparations, we are ready to prove Theorem 1.3. Let A/K/k and
X be as in the theorem. By the above reduction, we can assume that conditions
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(a)-(d) hold. By extending K if necessary, we can assume that X = X∗ ⊗K K
for a subvariety X∗ of A over K . By abuse of notations, we will write X = X∗,
viewed as a subvariety of A.

In this step, we consider the sum X with itself in A. The key assumption we
are going to use is that A has a trivial K/k-trace.

For any integer m ≥ 1, denote by Xm the image of the addition morphism

fm : Xm −→ A, (x1, · · · , xm) �−→ x1 + · · · + xm .

Set X0 = 0 to be the identity point of A. Since Xm is the image of the addition
morphism Xm−1 × X → A, we have

dim Xm−1 ≤ dim Xm ≤ dim Xm−1 + dim X, m ≥ 1.

Lemma 5.3 There is a unique integer r ≥ 1 such that dim Xr−1 < dim Xr
and Xr is a torsion subvariety of A.

Proof Fix a point x0 ∈ X (K ), which exists by replacing K by a finite exten-
sion. Denote by X ′

m = Xm − mx0 the translation of Xm by −mx0 in A. Note
that X ′

m is an (irreducible) subvariety of A, and that the sequence {X ′
m}m is

increasing. As a consequence, there is r ≥ 1 such that X ′
m � X ′

r for allm < r
and X ′

m = X ′
r for all m ≥ r .

It follows that there is amorphism σ : X ′
r ×X ′

r → X ′
2r = X ′

r induced by the
addition morphism of A. This is sufficient to imply that B = X ′

r is an abelian
subvariety of A. In fact, the relative dimension of σ is equal to dim B. By semi-
continuity, the dimension of the fiber σ−1(0) := {(x, y) ∈ B2 : x + y = 0} is
at least dim B. On the other hand, the first projection σ−1(0) → B is injective
on K -points, and thus bijective on K -points by comparing dimensions. This
implies that for any x ∈ B(K ), y = −x ∈ B(K ). Thuswe have that the inverse
morphism satisfies [−1]B ⊂ B. It follows that B is an abelian subvariety of
A. As a consequence, Xr = B + t for the abelian subvariety B of A and the
point t = r x0 ∈ A(K ).

By assumption, X contains a dense set of small points of A/K/k. Since the
canonical height is quadratic and positive definite up to torsion, we have

ĥ(x1 + · · · + xm) ≤ m(ĥ(x1) + · · · + ĥ(xm)), xi ∈ A(K ).

Then “small points” of Xr transfer to “small points” of Xr . As a consequence,
Xr contains a dense set of small points of A/K/k.
By [36, Lemma 2.4], Xr is torsion. The assumption that the K/k-trace of

A is trivial is missing in [36, Lemma 2.4], but such an assumption is satisfied
in our situation. We may also prove it as follows. Denote C = A/B, which is
an abelian variety over K . It suffices to prove that the image t ′ of t in C(K )
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is a torsion point. There is a surjective homomorphism A → B such that the
composition B → A → B is an isogeny. This induces an isogeny A → A′
with A′ = B × C . Since Xr contains a dense set of small points of A/K/k,
its image X ′ = B + t ′ in A′ contains a dense set of small points of A′/K/k.

Take symmetric and ample line bundles L1 over B and L2 over C . Choose
L = p∗

1L1 + p∗
2L2, which is a symmetric and ample line bundle over A′,

where p1 : B × C → B and p2 : B × C → C are the projections. For any
point x ∈ B(K ), we have the heights

ĥL(x + t ′) = ĥL1(x) + ĥL2(t
′) ≥ ĥL2(t

′) ≥ 0.

This forces ĥL2(t
′) = 0 as B + t ′ contains a dense set of small points of

A′/K/k.
By assumption, A has a trivial K/k-trace, so B and C have trivial K/k-

traces (cf. [37, Lemma 5.6]). Then ĥL2(t
′) = 0 implies that t ′ ∈ C(K )tor.

This follows from the Northcott property (cf. [4, Theorem 9.15]). It finishes
the proof. ��

By the lemma, Xr is a torsion subvariety of A. Replacing X by a translation
by a suitable torsion point, we can assume that Xr is an abelian subvariety of
A. In this process, to make X to be defined over K , we may need to replace
K by a finite extension again. To summarize, we can furthermore make the
following assumption.

(e) A′ = Xr is an abelian subvariety of A and dim Xr−1 < dim Xr .

5.2 Fibers of the addition map

By assumption (e), the image of the summation map fr : Xr → A is an
abelian subvariety A′ of A. This induces a surjective summation morphism

f : Xr−1 × X −→ A′.

Denote by

e = dim Xr−1 + dim X − dim A′

the relative dimension of this morphism. By assumption (e), we have

e < dim X.

Denote

A′
e+1 = {y ∈ A′ : dim f −1(y) ≥ e + 1}.
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Then A′
e+1 is a closed subset of A

′ of codimension at least 2.Note that Xr−1×X
is a natural subvariety of the abelian variety A2 = A × A. The goal of this
step is to prove the following result.

Proposition 5.4 For any t ∈ A′(K )tor\A′
e+1(K ) with order of t non-divisible

by char K, every irreducible component of the fiber f −1(t) ⊂ (Xr−1 × X)K
has canonical height 0 in (A × A)K .

Proof Denote by B the preimage of A′ under the summationmap A× A → A.
Since the preimage of 0 under A× A → A is geometrically integral, B is also
geometrically integral, and thus an abelian subvariety of A × A over K . We
have the following commutative diagram.

Xr−1 × X
f

B

h

A × A

A′ A

Let S/k with K = k(S) be as in assumption (b). Denote by π : A → S
the unique abelian scheme extending the abelian variety A → Spec K , which
exists by assumption (d). Then A ×S A → S is the unique abelian scheme
extending A × A → Spec K . Denote by X the Zariski closure of X in A.
Denote by A′ (resp. B) the Zariski closure of A′ in A (resp. B in A ×S A).
BothA′ and B are abelian schemes over S. Denote by Y is the Zariski closure
of Y = Xr−1 × X in A ×S A. This gives an integral version of the above
diagram.

f −1(T ) Y
f

B

h

A ×S A

T A′ A

LetT be a torsionmulti-section ofA′ → S of order non-divisible by char K .
Then T → S is finite and étale, and T is a smooth projective curve over k.
Assume that T = TK is not contained in A′

e+1. Apply Proposition 2.1 to the
triangle of the second diagram. We obtain that

n∑

i=1

mi [Zi ] ≤ h∗[T ] · [Y]

in CHe+1(B). Here Z1, . . . ,Zn are the irreducible components of f −1(T )

satisfying f (Zi ) = T , and mi is the multiplicity of Zi in f −1(T ).
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Let LA′ (resp. LB) be a symmetric, relatively ample and rigidified line
bundle overA′ (resp. B). By Proposition 4.2, there is a numerical equivalence

[T ] ≡ a [LA′ ]dim A′

in CH1(A′)Q for some a > 0.
By these two results, we have

n∑

i=1

mi [Zi ] · [LB]e+1 ≤ h∗[T ] · [Y] · [LB]e+1

= a [h∗LA′ ]dim A′ · [LB]e+1 · [Y].
By Lemma 4.1(4), there is a constant b > 0 such that bLB − h∗LA′ is a nef
line bundle over B. As a consequence,

[h∗LA′ ]dim A′ · [LB]e+1 · [Y] ≤ bdim A′ [LB]dimY · [Y].
As in the proof of Lemma 5.3, “small points” of X transfer to “small points”

of Y = Xr−1 × X . Then Y has a dense set of small points in B. This also
follows from [34, Lemma 2.1 and Lemma 2.4]. By Lemma 5.2, the height
hLB(Y ) = 0. Then we have [Y] · [LB]dimY = 0. This forces [Zi ] · [LB]e+1,
and thus hLB(Zi ) = 0. Here Zi = Zi,K for i = 1, . . . , n are exactly the
irreducible components of f −1(TK ). This finishes the proof. ��

5.3 Lowering the dimension

Nowwe prove that X is torsion by induction on dim X . If dim X = 0, we must
have ĥ(X) = 0, and then X is a torsion point of A by the Northcott theorem
(cf. [4, Theorem 9.15]).

If dim X > 0, consider the morphism f : Xr−1 × X → A′ obtained in
assumption (e). By Proposition 5.4, for any t ∈ A′(K )tor\A′

e+1(K ), every
irreducible component of the fiber f −1(t) ⊂ (Xr−1 × X)K has canonical
height 0 in A × A. Note that every irreducible component of f −1(t) has
dimension e < dim X . By induction, it is torsion in A× A. Therefore, f −1(t)
contains a Zariski dense set of torsion points of A× A. As A′(K )tor\A′

e+1(K )

is Zariski dense in A′, Xr−1 × X contains a Zariski dense set of torsion points
of A × A.

By theManin–Mumford conjecture (cf. Theorem 5.1), Xr−1×X is a torsion
subvariety of A× A. Then X is a torsion subvariety of A, since it is the image
of the composition of Xr−1 × X → A × A with p2 : A × A → A. This
finishes the proof of Theorem 1.3.

123



J. Xie, X. Yuan

Acknowledgements The authors would like to thank the support of the China-Russia Math-
ematics Center during the preparation of this paper. The second-named author would also like
to thank the hospitality of Shandong University, Qingdao for a workshop in July 2021. The
authors are particularly thankful to Kazuhiko Yamaki for his careful readings of a first version
of this work. The authors are grateful to the anonymous referee for tremendous efforts to make
the exposition more accessible to a broad range of readers.

References

1. Cantat, S., Gao, Z., Habegger, P., Xie, J.: The geometric Bogomolov conjecture. Duke
Math. J. 170(2), 247–277 (2021)

2. Cinkir, Z.: Zhang’s conjecture and the effective Bogomolov conjecture over function fields.
Invent. Math. 183(3), 517–562 (2011)

3. Chambert-Loir, A.: Mesures et équidistribution sur les espaces de Berkovich. J. Reine
Angew. Math. 595, 215–235 (2006)

4. Conrad, B.: Chow’s K/k-image and K/k-trace, and the Lang-Néron theorem. Enseign.
Math. (2) 52(1–2), 37–108 (2006)

5. Faber, X.: Equidistribution of dynamically small subvarieties over the function field of a
curve. Acta Arith. 137(4), 345–389 (2009)

6. Faber, X.: The geometric Bogomolov conjecture for curves of small genus. Exp. Math.
18(3), 347–367 (2009)

7. Fulton, W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3)
[Results in Mathematics and Related Areas (3)], vol. 2. Springer, Berlin (1984)

8. Gao, Z., Habegger, P.: Heights in families of abelian varieties and the geometric Bogomolov
conjecture. Ann. Math. (2) 189(2), 527–604 (2019)

9. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. (32), 361 (1967)

10. Gubler, W.: The Bogomolov conjecture for totally degenerate abelian varieties. Invent.
Math. 169(2), 377–400 (2007)

11. Gubler, W.: Equidistribution over function fields. Manuscr. Math. 127(4), 485–510 (2008)
12. Grushevsky, S., Zakharov, D.: The zero section of the universal semiabelian variety and

the double ramification cycle. Duke Math. J. 163(5), 953–982 (2014)
13. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer,

New York (1977)
14. Hrushovski, E.: The Manin-Mumford conjecture and the model theory of difference fields.

Ann. Pure Appl. Logic 112(1), 43–115 (2001)
15. Jouanolou, J.-P.: Théorèmes de Bertini et applications. Progress in Mathematics, vol. 42.

Birkhäuser Boston Inc, Boston (1983)
16. Jia, J., Shibata, T., Xie, J., Zhang, D.-Q.: Endomorphisms of quasi-projective varieties—

towards Zariski dense orbit and Kawaguchi-Silverman conjectures. arXiv:2104.05339
(2021)

17. Lang, S.: Abelian Varieties. Springer, New York (1983). Reprint of the 1959 original
18. Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983)
19. Lazarsfeld, R.: Positivity in algebraic geometry. I, volume 48 of Ergebnisse derMathematik

und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].
Springer, Berlin (2004). Classical setting: line bundles and linear series

20. Moriwaki, A.: Bogomolov conjecture for curves of genus 2 over function fields. J. Math.
Kyoto Univ. 36(4), 687–695 (1996)

21. Moriwaki, A.: Bogomolov conjecture over function fields for stable curves with only irre-
ducible fibers. Compos. Math. 105(2), 125–140 (1997)

123

http://arxiv.org/abs/2104.05339


Geometric Bogomolov conjecture

22. Moriwaki, A.: Relative Bogomolov’s inequality and the cone of positive divisors on the
moduli space of stable curves. J. Am. Math. Soc. 11(3), 569–600 (1998)

23. Moriwaki, A.: Arithmetic height functions over finitely generated fields. Invent. Math.
140(1), 101–142 (2000)

24. Paršin, A.N.: Algebraic curves over function fields, I. Izv. Akad. Nauk SSSR Ser. Mat. 32,
1191–1219 (1968)

25. Poonen, B.: Rational Points onVarieties. Graduate Studies inMathematics, vol. 186. Amer-
ican Mathematical Society, Providence (2017)

26. Pink, R., Roessler, D.: On Hrushovski’s proof of the Manin-Mumford conjecture. In:
Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pp.
539–546. Higher Ed. Press, Beijing (2002)

27. Pink, R., Roessler, D.: On ψ-invariant subvarieties of semiabelian varieties and the Manin-
Mumford conjecture. J. Algebraic Geom. 13(4), 771–798 (2004)

28. Raynaud, M.: Courbes sur une variété abélienne et points de torsion. Invent. Math. 71(1),
207–233 (1983)

29. Raynaud, M.: Sous-variétés d’une variété abélienne et points de torsion. In: Arithmetic and
Geometry, Volume I of Progr. Math., pp. 327–352. Birkhäuser Boston, Boston (1983)

30. Szpiro, L., Ullmo, E., Zhang, S.-W.: Équirépartition des petits points. Invent. Math. 127(2),
337–347 (1997)

31. Ullmo, E.: Positivité et discrètion des points algébriques des courbes. Ann. Math. 2(147),
167–179 (1998)

32. Yamaki, K.: Geometric Bogomolov’s conjecture for curves of genus 3 over function fields.
J. Math. Kyoto Univ. 42(1), 57–81 (2002)

33. Yamaki, K.: Effective calculation of the geometric height and the Bogomolov conjecture
for hyperelliptic curves over function fields. J. Math. Kyoto Univ. 48(2), 401–443 (2008)

34. Yamaki, K.: Geometric Bogomolov conjecture for abelian varieties and some results for
those with some degeneration (with an appendix byWalter Gubler: the minimal dimension
of a canonical measure). Manuscr. Math. 142(3–4), 273–306 (2013)

35. Yamaki, K.: Strict supports of canonical measures and applications to the geometric Bogo-
molov conjecture. Compos. Math. 152(5), 997–1040 (2016)

36. Yamaki, K.: Geometric Bogomolov conjecture for nowhere degenerate abelian varieties of
dimension 5 with trivial trace. Math. Res. Lett. 24(5), 1555–1563 (2017)

37. Yamaki, K.: Non-density of small points on divisors on abelian varieties and theBogomolov
conjecture. J. Am. Math. Soc. 30(4), 1133–1163 (2017)

38. Yamaki, K.: Trace of abelian varieties over function fields and the geometric Bogomolov
conjecture. J. Reine Angew. Math. 741, 133–159 (2018)

39. Yuan, X.: Big line bundles over arithmetic varieties. Invent. Math. 173(3), 603–649 (2008)
40. Zhang, S.-W.: Positive line bundles on arithmetic surfaces. Ann.Math. (2) 136(3), 569–587

(1992)
41. Zhang, S.-W.: Positive line bundles on arithmetic varieties. J. Am.Math. Soc. 8(1), 187–221

(1995)
42. Zhang, S.-W.: Small points and adelic metrics. J. Algebraic Geom. 4(2), 281–300 (1995)
43. Shou-Wu, Z.: Equidistribution of small points on abelian varieties. Ann. Math. (2), 147

(1998) 147, 159–165 (1998)
44. Zhang, S.-W.: Gross-Schoen cycles and dualising sheaves. Invent. Math. 179(1), 1–73

(2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123


	Geometric Bogomolov conjecture in arbitrary characteristics
	1 Introduction
	1.1 Abelian varieties and heights
	Integral models
	Canonical heights
	Small points and special subvarieties

	1.2 Geometric Bogomolov conjecture
	1.3 Plan of proof
	1.4 Notation and terminology

	2 Non-proper intersections
	2.1 A Bertini type of result
	2.2 Proper part of an intersection
	2.3 Strict transform

	3 Lowering the transcendence degree
	3.1 Field of definition
	3.2 Special subvarieties of abelian varieties
	3.3 Proof of Proposition 3.1

	4 Line bundles over abelian schemes
	4.1 Rigidified line bundles
	4.2 Numerical classes of torsion multi-sections
	4.3 Canonical height

	5 Proof of the geometric Bogomolov conjecture
	5.1 Subvarieties generated by addition
	5.2 Fibers of the addition map
	5.3 Lowering the dimension

	Acknowledgements
	References




