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1 Introduction

This paper is a sequel to [YZ1], which lies in the fields of Arakelov geometry
and algebraic dynamics.

In [YZ1], we have proved a Hodge index theorem for adelic line bundles
over number fields, and applied it to prove a rigidity theorem of preperiodic
points of polarized algebraic dynamical systems over number fields. The

1



treatment is based on the theory of adelic line bundles over projective vari-
eties over number fields introduced in [Zh2]. In [YZ2], we have generalized
the theory of [Zh2] to a theory of adelic line bundles over quasi-projective
varieties over finitely generated fields. The goal of the current paper, based
on the theory in [YZ2], is to extend the results of [YZ1] to projective va-
rieties over finitely generated fields over Q. More precisely, we prove both
the Hodge index theorem for adelic line bundles and the rigidity theorem of
preperiodic points over finitely generated fields over Q.

As the treatment of [YZ1] over number fields is generalized to function
fields of one variable by Carney [Ca1], the treatment of the current paper is
generalized to finitely generated function fields by Carney [Ca2].

Throughout this paper, denote MQ = M ⊗Z Q for any abelian group M .
Denote XQ = X ×SpecZ SpecQ for any scheme X over Z.

1.1 Arithmetic Hodge index theorem

In [YZ1], we have proved an arithmetic Hodge index theorem for adelic line
bundles over a projective variety over a number field, which extends the
previous results of Faltings [Fal], Hriljac [Hr] and Moriwaki [Mo2]. Here we
describe the generalization to finitely generated fields.

We need the theory of adelic Q-line bundles over finitely generated fields
in [YZ2]. We refer to §2.1 for a quick review of the theory. Namely, let X
be a projective variety over a finitely generated field K over Q. Then we
have the group P̂ic(X) of isomorphism classes of adelic Q-line bundles over

X. Note that the notation P̂ic(X) in this paper is equivalent to the notation

P̂ic(X/Z)Q in [YZ2].

Moreover, we have the sub-semigroup P̂ic(X)nef of nef adelic Q-line bun-

dles in P̂ic(X), and the subgroup P̂ic(X)int of integrable adelic Q-line bundles

in P̂ic(X).
There are two intersection pairings involved in our treatment. The first

one is an absolute intersection product

P̂ic(K)d+1
int −→ R,

and the second one is a Deligne pairing

π∗ : P̂ic(X)n+1
int −→ P̂ic(K)int.
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Here assume thatK has transcendental degree d over Q, andX has dimension
n, and π : X → SpecK denotes the structure morphism.

To state our Hodge index theorem, we introduce the following further
positivity notions.

Definition 1.1. Let K be a finitely generated field over Q of transcendental
degree d. Let X be a projective variety over K. Let L,M ∈ P̂ic(X)int and

H ∈ P̂ic(K)int. We define the following notions.

(1) H � 0 if H is pseudo-effective, i.e., the top intersection number H ·
N1 · · ·Nd ≥ 0 for any N1, · · · , Nd in P̂ic(K)nef .

(2) H ≡ 0 if H is numerically trivial, i.e., the top intersection number

H ·N1 · · ·Nd = 0 for any N1, · · · , Nd in P̂ic(K)int.

(3) L � 0 if L is ample, and L − N is nef for some N ∈ P̂ic(Q) with

d̂eg(N) > 0. The adelic line bundle N is viewed as an element of

P̂ic(X)int by the natural pull-back map.

(4) M is L-bounded if there is a rational number ε > 0 such that both L+εM
and L− εM are nef.

It is conventional that each of H1 � H2 and H2 � H1 means H2−H1 � 0.
Similar conventions apply to “≡” and “�.” The main theorem of this paper
is as follows.

Theorem 1.2. Let K be a finitely generated field over Q, and π : X →
SpecK be a normal, geometrically connected, and projective variety of di-
mension n ≥ 1. Let M be an integrable adelic Q-line bundle on X, and
L1, · · · , Ln−1 be n − 1 nef adelic Q-line bundles on X where each Li is big
on X. Assume M · L1 · · ·Ln−1 = 0 on X. Then

π∗(M
2 · L1 · · ·Ln−1) � 0

in P̂ic(K)int.
Moreover, if Li � 0, and M is Li-bounded for each i, then

π∗(M
2 · L1 · · ·Ln−1) ≡ 0

in P̂ic(K)int if and only if M ∈ π∗P̂ic(K)int.
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When K is a number field, the theorem was proved in [YZ1, Theorem 3.2],
the pre-sequel of this theorem. The proof of this theorem actually follows
the line of that in [YZ1], replacing adelic line bundles of [Zh2] by those of
[YZ2].

The theorem is generated to finitely generated fields K over a base field
k by Carney [Ca1, Ca2].

1.2 Preperiodic points of algebraic dynamics

Let K be a field. A polarized algebraic dynamical system over K is a triple
(X, f, L), where X is a projective variety over K, f : X → X is a K-
morphism, and L ∈ Pic(X)Q is an ample Q-line bundle satisfying f ∗L = qL
from some rational number q > 1. We call L a polarization of f . Denote by
Prep(f) the set of preperiodic points, i.e.,

Prep(f) := {x ∈ X(K) | fm(x) = fn(x) for some m,n ∈ N, m 6= n}.

A well-known result of Fakhruddin [Fak] asserts that Prep(f) is Zariski dense
in X.

Fix a projective variety X over K. Denote by DS(X) the set of all
morphism f : X → X over K that is polarizable; i.e., there is an ample
Q-line bundle L ∈ Pic(X)Q such that (X, f, L) forms a polarized dynamical
system. Note that we do not require elements of DS(X) to be polarizable
by the same ample line bundle.

Theorem 1.3. Let X be a projective variety over a field K of characteristic
0. For any f, g ∈ DS(X), the following are equivalent:

(1) Prep(f) = Prep(g);

(2) gPrep(f) ⊂ Prep(f);

(3) Prep(f) ∩ Prep(g) is Zariski dense in X.

When X = P1, the theorem is independently proved by M. Baker and L.
DeMarco [BD] during the preparation of this paper. Their treatment for the
number field case is the same as our treatment in the earlier version, while
the method for the general case is quite different.

Similar to Theorem 1.2, the theorem is treated in [YZ1] if K is a number
field, and generalized to any field of positive characteristic by Carney [Ca1,
Ca2].
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Some consequences and questions related to the theorem can be found in
[YZ1, §4.5]. Here we only list the following one, whose proof will be given at
the end of this paper.

Theorem 1.4. Let K be either C or Cp for some prime number p. Let X be
a projective variety over K, and f, g ∈ DS(X) be two polarizable algebraic
dynamical systems. If Prep(f) ∩ Prep(g) is Zariski dense in X, then dµf =
dµg.

Here dµf denotes the equilibrium measure of (X, f) on the Berkovich
space XBer associated to X. It can be obtained from any initial “smooth”
measure on XBer by Tate’s limiting argument. By a proper interpretation, it
satisfies f ∗dµf = qdimXdµf and f∗dµf = dµf .

The proof of Theorem 1.3 follows the idea in [YZ1], obtained as a conse-
quence of Theorem 1.2. The Lefschetz principle allows us to assume that the
base field K is a finitely generated field over Q. Then the problem sits in the
framework of adelic line bundles and height theory over finitely generated
fields in [YZ2].

As in an earlier draft of our paper, one may prove Theorem 1.3 without
using the new theory of adelic line bundles over finitely generated fields in
[YZ2]. The proof combines the height theory of [Mo3, Mo4], the equidistri-
bution idea of [SUZ] and [Yu], and the results of [YZ1]. But the proof is very
tricky and very technical due to many convergence problems of integrations
and intersection numbers.
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2 Arithmetic Hodge index theorem

The goal of this section is to prove Theorem 1.2. We will start with a review
of the notion of adelic Q-line bundles in [YZ2], and then prove the theorem
following the idea of [YZ1].

2.1 Review on adelic line bundles

Let us first recall the notion of adelic divisors and adelic line bundles over
finitely generated fields over Q in [YZ2, §2.4,§2.5]. We will be concerned with
only adelic Q-line bundles (instead of integral adelic line bundles), which
is slightly simpler without treating mixed coefficients. We only need the
arithmetic case (k = Z), which also avoids the uniform terminology of [YZ2,
§1.6].

Adelic divisors over a quasi-projective arithmetic variety

Let us review the notion of adelic Q-divisors, as a slight variant of that in
[YZ2, §2.4].

By a quasi-projective arithmetic variety (resp. projective arithmetic va-
riety), we mean an integral scheme which is flat and quasi-projective (resp.
projective) over Z. For a quasi-projective arithmetic variety U , a projec-
tive model means a projective arithmetic variety X endowed with an open
immersion U → X .

Let U be a quasi-projective arithmetic variety, and X be a projective
model of U . Denote by D̂iv(X ) the group of arithmetic divisors over X , and

by P̂r(X ) the subgroup of principal arithmetic divisors over X . Here the
Green’s functions are assumed to be continuous as in [YZ2, §2.1]. Projective
models X of U form an inverse system. Using pull-back maps, define

D̂iv(U)mod,Q := lim−→
X

D̂iv(X )Q, P̂r(U)mod,Q := lim−→
X

P̂r(X )Q.

An element of D̂iv(U)mod,Q is called effective if it is the image of an

effective arithmetic divisor of some D̂iv(X )Q. For any D, E ∈ D̂iv(U)mod,Q,

we write D ≥ E or E ≤ D if D − E is effective in D̂iv(U)mod,Q. This give a

partial order in D̂iv(U)mod,Q.
Fix a boundary divisor (X0,D0) of U , i.e, a projective model X0 of U and

a strictly effective arithmetic divisor D0 over X0 such that the support of the
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finite part D0 is exactly X0 \ U . We have a boundary norm

‖ · ‖D0
: D̂iv(U)mod,Q −→ [0,∞]

by
‖E‖D0

:= inf{ε ∈ Q>0 : −εD0 ≤ E ≤ εD0}.
Here the inequalities are defined in terms of effectivity. It further induces a
boundary topology over D̂iv(U)mod, which does not depend on the choice of
(X0,D0).

Let D̂iv(U)Q be the completion of D̂iv(U)mod,Q with respect to the bound-

ary topology. By definition, an element of D̂iv(U)Q is represented by a

Cauchy sequence in D̂iv(U)mod,Q, i.e., a sequence {E i}i≥1 in D̂iv(U)mod,Q
satisfying the property that there is a sequence {εi}i≥1 of positive rational
numbers converging to 0 such that

−εiD0 ≤ E i − E i′ ≤ εiD0, i′ ≥ i ≥ 1.

The sequence {E i}i≥1 represents 0 in D̂iv(U)Q if and only if there is a sequence
{δi}i≥1 of positive rational numbers converging to 0 such that

−δiD0 ≤ E i ≤ δiD0, i ≥ 1.

An element of D̂iv(U)Q is called an adelic Q-divisor over U . Define the
class group of U to be

ĈaCl(U)Q := D̂iv(U)Q/P̂r(U)mod,Q.

Category of Q-line bundles

As a convention, categories of various line bundles (or Q-line bundles) are
defined to be groupoids; i.e., the morphisms in them are defined to be iso-
morphisms (or isometries) of the line bundles.

To illustrate the idea, take P̂ ic(X ) and P̂ ic(X )Q for a projective arith-

metic variety X for example. Then an object of P̂ ic(X ) is a hermitian line
bundle over X (with a continuous metric), and a morphism of two such ob-
jects is defined to be an isometry of hermitian line bundles. An object of
P̂ ic(X )Q is a pair (a,L) (or just written as aL) with a ∈ Q and L ∈ P̂ ic(X ),
and a morphism of two such objects is defined to be

Hom(aL, a′L′) = lim−→
m

Hom(amL, a′mL′),
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where m runs through positive integers such that am and a′m are both
integers, so that amL and a′mL′ are viewed as objects of P̂ ic(X ), and “Hom”

on the right-hand side are viewed in P̂ ic(X ).
We refer to [YZ2, §2.1,§2.2] for more details on these categories.

Adelic line bundles over a quasi-projective arithmetic variety

Now we review the notion of adelic Q-line bundles, as a slight variant of that
in [YZ2, §2.5].

Let U be a quasi-projective arithmetic variety. Let X be a projective
model of U over k. In the spirit of [YZ2, §2.2], let P̂ ic(X ) be the category

of hermitian line bundles over X , and P̂ ic(X )Q be the category of hermitian

Q-line bundles over X . In the arithmetic case (that k = Z), P̂ ic(X ) is the
category of hermitian line bundles with continuous metrics over X . In the
geometric case (that k is a field), P̂ ic(X ) means the usual P ic(X ).

Define the category of adelic Q-line bundles P̂ ic(U)Q over U as follows.

An object of P̂ ic(U)Q is a pair (L, (Xi,Li, `i)i≥1) where:

(1) L is an object of P ic(U)Q, i.e., a Q-line bundle over U ;

(2) Xi is a projective model of U over Z;

(3) Li is an object of P̂ ic(Xi)Q, i.e. a hermitian Q-line bundle over Xi;

(4) `i : L → Li|U is an isomorphism in P ic(U)Q.

The sequence is required to satisfy the Cauchy condition that the sequence
{d̂iv(`i`

−1
1 )}i≥1 is a Cauchy sequence in D̂iv(U)mod,Q under the boundary

topology.
A morphism from an object (L, (Xi,Li, `i)i≥1) of P̂ ic(U)Q to another ob-

ject (L′, (X ′i ,L
′
i, `
′
i)i≥1) of P̂ ic(U)Q is an isomorphism ι : L → L′ of Q-line

bundles over U such that the sequence {d̂iv(`′i`
′−1
1 )− d̂iv(`i`

−1
1 ) + d̂iv(ι1)}i≥1

of D̂iv(U)mod,Q converges to 0 in D̂iv(U)Q under the boundary topology. Here

ι1 : L1 99K L
′
1 denotes the rational map over U induced by ι, which induces

an element d̂iv(ι1) of D̂iv(U)mod,Q.

An object of P̂ ic(U)Q is called an adelic Q-line bundle over U . Define

P̂ic(U)Q to be the group of isomorphism classes of objects of P̂ ic(U)Q. There
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is a canonical isomorphism

ĈaCl(U)Q −→ P̂ic(U)Q.

An adelic Q-line bundle over U is called strongly nef if it is isomorphic
to a Cauchy sequence (L, (Xi,Li, `i)i≥1) such that Li is nef over Xi for all
i ≥ 1. An adelic Q-line bundle L over U is called nef if there exists a
strongly nef adelic Q-line bundle M over U such that L + εM is strongly
nef for all positive rational numbers ε. An adelic Q-line bundle over U is
called integrable if it is isometric to L1−L2 for two strongly nef adelic Q-line
bundle L1 and L2 over U .

Adelic line bundles over finitely generated fields

Let K be a finitely generated field over Q of transcendental degree d. Let X
be a quasi-projective variety over K of dimension n. By an quasi-projective
arithmetic model of X, we mean a morphism i : X → U to a quasi-projective
arithmetic variety U which is injective between the underlying spaces and
induces isomorphisms between the local rings.

Define
P̂ ic(X)Q := lim−→

U
P̂ ic(U)Q,

P̂ic(X)Q := lim−→
U

P̂ic(U)Q.

An object of P̂ ic(X)Q is called an adelic Q-line bundle over X.
There are canonical forgetful maps

P̂ic(X)Q −→ Pic(X)Q, P̂ ic(X)Q −→ P ic(X)Q.

These are induced by the forgetful map

P̂ ic(U)Q −→ P ic(U)Q, (L, (Xi,Li, `i)i≥1) 7−→ L.

As a convention, we usually write an object of P̂ ic(X)Q in the form L, where
L is understood to be the image of L in P ic(X)Q. We often refer L as the
underlying Q-line bundle of L, and refer L as an arithmetic extension of L.
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Simplified notations

As mentioned at the end of [YZ2, §2.5], the groups D̂iv(·)Q, P̂ic(·)Q and the

category P̂ ic(·)Q are the base change to Q of their integral versions.

As this paper only concerns with P̂ic(·)Q, so we will abbreviate

D̂iv(U) = D̂iv(U)Q, P̂ic(U) = P̂ic(U)Q, P̂ ic(U) = P̂ ic(U)Q,

and

D̂iv(X) = D̂iv(X)Q, P̂ic(X) = P̂ic(X)Q, P̂ ic(X) = P̂ ic(X)Q.

For convenience, we may call an (adelic) Q-line bundle simply an (adelic)
line bundle.

By the direct limit, we have notions of nef adelic Q-line bundles and inte-
grable adelic Q-line bundles over X. These gives a sub-semigroup P̂ic(X)nef
and a subgroup P̂ic(X)int of P̂ic(X).

The definitions also work forX = SpecK. We will simply write P̂ic(SpecK)

as P̂ic(K). Write P̂ic(SpecK)nef and P̂ic(SpecK)int similarly.

Intersection theory

By [YZ2, §4.1], there is an (absolute) intersection product

P̂ic(K)d+1
int −→ R, (H1, · · · , Hd+1) 7−→ H1 · · ·Hd+1,

and a relative intersection product

P̂ic(X)n+1
int −→ P̂ic(K)int, (L1, · · · , Ln+1) 7−→ π∗(L1 · · ·Ln+1).

The relative intersection product is defined as the limit of the Deligne pairing.

2.2 The inequality

We first deduce the inequality of Theorem 1.2 from that of [YZ1, Thm. 3.2].
The goal is to prove

π∗(M
2 · L1 · · ·Ln−1) � 0

in P̂ic(K)int under the assumption

M · L1 · · ·Ln−1 = 0
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over X. Here M is integrable over X, L1, · · · , Ln−1 are nef over X, and the
underlying line bundles L1, · · · , Ln−1 are big over X.

Our first step is to reduce it to the case that L1, · · · , Ln−1 are strongly
nef over X. This follows from the idea at the beginning of [YZ1, §3.3]. In

fact, let A be a nef and big line bundle over X such that L
′
i = Li + εA is

strongly nef for all rational numbers ε > 0 and for all i = 1, · · · , n − 1. Set
M
′

= M + δA with underlying line bundle M ′ = M + δA. Here δ = δ(ε) is
a number such that

M ′ · L′1 · · ·L′n−1 = (M + δA) · L′1 · · ·L′n−1 = 0.

It determines

δ = −
M · L′1 · · ·L′n−1
A · L′1 · · ·L′n−1

.

As ε→ 0, we have δ → 0 since

M · L′1 · · ·L′n−1 −→M · L1 · · ·Ln−1 = 0

and
A · L′1 · · ·L′n−1 −→ A · L1 · · ·Ln−1 > 0.

The last inequality uses the assumption that L1, · · · , Ln−1, A are big and nef
over X.

Therefore, the inequality for (M,L1, · · · , Ln−1) is implied by that for

(M
′
, L
′
1, · · · , L

′
n−1). Thus we can assume that L1, · · · , Ln−1 are strongly nef

over X in the following.
As our second step, by approximation, it suffices to prove the following

assertion.
Let π : X → B be a projective and flat morphism of projective arithmetic

varieties. Write dimB = d+1 and dimX = n+d+1. LetM be a hermitian
line bundle on X , (L1, · · · ,Ln−1) be nef hermitian line bundles on X with
big generic fibers on X, and (H1, · · · ,Hd) be nef hermitian line bundle on B.
Assume that the generic fiber Li,η is big on the generic fiber Xη of X above
the generic point η of B for every i = 1, · · · , n− 1. If

Mη · L1,η · · · Ln−1,η = 0,

then
M2 · L1 · · · Ln−1 · π∗H1 · · · π∗Hd ≤ 0.
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Our third step is to apply the above (ε, δ)-trick again to get stronger
positivity. In fact, we can assume that each Hj is ample on B since nef line
bundles are limits of ample line bundles. For simplicity, denote Ln−1+j =
π∗Hj for j = 1, · · · , d. Fix an ample hermitian line bundle A on X . Take

a small rational number ε > 0. Set M′
= M + δA and L′i = Li + εA for

i = 1, · · · d+ n− 1. Here δ = δ(ε) is a number such that

M′
Q · L′1,Q · · · L′d+n−1,Q = (MQ + δAQ) · L′1,Q · · · L′d+n−1,Q = 0.

It determines

δ = −
MQ · L′1,Q · · · L′d+n−1,Q
AQ · L′1,Q · · · L′d+n−1,Q

.

As ε→ 0, we have δ → 0 since

MQ · L′1,Q · · · L′d+n−1,Q −→MQ · L1,Q · · · Ld+n−1,Q
= (Mη · L1,η · · · Ln−1,η)(H1,Q · · ·Hd,Q) = 0

and

AQ · L′1,Q · · · L′d+n−1,Q −→ AQ · L1,Q · · · Ld+n−1,Q
= (Aη · L1,η · · · Ln−1,η)(H1,Q · · ·Hd,Q) > 0.

The last inequality uses the assumption that Li,η is big and nef for each i.
Applying [YZ1, Thm. 3.2] to the arithmetic variety X over Z, we have

M′2 · L′1 · · · L
′
d+n−1 ≤ 0.

Set ε→ 0. We have
M2 · L1 · · · Ld+n−1 ≤ 0.

It proves the result.

2.3 Equality: vertical case

An adelic line bundle L ∈ P̂ic(X)int is called vertical if the underlying line

bundle L is isomorphic to the trivial line bundle OX . Denote by P̂ic(X)vert
the group of vertical adelic line bundles on X.

Now we prove the equality part of the theorem in the vertical case. Recall
that:
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• K is a finitely generated field over Q of transcendental degree d ≥ 0;

• X is a normal projective variety of dimension n ≥ 1 over K;

• M ∈ P̂ic(X)vert is vertical;

• L1, · · · , Ln−1 ∈ P̂ic(X)int with Li � 0;

• M is Li-bounded for each i;

• The equality

π∗(M
2 · L1 · · ·Ln−1) ≡ 0

holds in P̂ic(K)int.

We need to prove M ∈ π∗P̂ic(K)int.
By [YZ2, Lem. 2.3.3], there is a quasi-projective arithmetic model U → V

of X → SpecK, i.e., a projective and flat morphism of quasi-projective
arithmetic varieties with generic fiber X → SpecK, such that

M,L1, · · · , Ln−1 ∈ P̂ic(U)int.

For any horizontal closed integral subscheme W of V of dimension e + 1,
we get a projective and flat morphism UW → W , and it defines the groups
P̂ic(UW)int and P̂ic(W)int. There are natural pull-back maps

P̂ic(U)int → P̂ic(UW)int, P̂ic(V)int → P̂ic(W)int.

We first prove the following result.

Lemma 2.1. For any H1, · · · , He ∈ P̂ic(V)int, one has

(M |UW )2 · (L1|UW ) · · · (Ln−1|UW ) · (H1|W) · · · (He|W) = 0.

Proof. By induction, we can assume that W has codimension one in V . We
need to prove

(M |UW )2 · (L1|UW ) · · · (Ln−1|UW ) · (H1|W) · · · (Hd−1|W) = 0.

By approximation, we can assume that there is a projective model X → B
of U → V such that H i ∈ P̂ic(B) for every i = 1, · · · , d− 1. Denote by C the
Zariski closure of W in B. Then XC → C is a projective model of UW →W .
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By assumption, for any Hd ∈ P̂ic(B), we have I ·Hd = 0. Here we denote

I := M
2 · L1 · · ·Ln−1 ·H1 · · ·Hd−1,

which is a formal notation to ease the burden of the notations and has con-
crete meanings when intersecting it with other line bundles (or 1-cycles).
Then the intersection of I with any vertical class of B is zero.

Now assume that the finite part Hd of Hd is ample on BQ. After replacing
Hd by a multiple if necessary, we can assume that there is a section s of Hd

vanishing on C. It follows that we can write

div(s) =
r∑
i=0

aiCi, ai ≥ 0.

Here C0 = C and a0 > 0. By definition of intersection numbers,

I ·Hd =
r∑
i=0

aiI · Ci −
∫
B(C)

log ‖s‖ωI .

Here the integral is a formal intersection of log ‖s‖ with I, which is zero
since I has zero intersection with any vertical class. Furthermore, I · Ci = 0
if Ci is vertical, and I · Ci ≤ 0 by the inequality part of Theorem 1.2. Hence,
I ·Hd = 0 forces I ·C = 0. It is exactly the equality that we need to prove.

Set dimW = 1 in the lemma. Then the function field of W is a number
field. Apply the main theorem of [YZ1], we conclude that

M |UW ∈ π∗P̂ic(W)int.

To imply M ∈ π∗P̂ic(K)int, we first re-interpret it in terms of Berkovich
spaces.

By [YZ2, Proposition 3.5.1], we have canonical injections

P̂ic(X) ↪→ P̂ic(Xr-an)Q, P̂ic(K) ↪→ P̂ic((SpecK)r-an)Q.

Here Xr-an is the disjoint union, over all places v of Q, of the Berkovich space
Xan
v associated to the scheme XQv = X ×Q Qv over the complete field Qv.

We claim thatM ∈ π∗P̂ic(K)int is equivalent toM ∈ π∗P̂ic((SpecK)r-an)Q.
In fact, assume the later. If there is a rational point s ∈ X(K), then we
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would have M = π∗M0 where M0 = s∗M lies in P̂ic(K)int. The identity

can be checked in P̂ic(Xr-an). In general, taking any x ∈ X(K), we have

M = π∗hM(x) with hM(x) ∈ P̂ic(K)int.

Hence, it suffices to prove M ∈ π∗P̂ic((SpecK)r-an)Q. Fixing an isomor-
phism from M to the trivial sheaf OX , the metric of M corresponds to a
continuous function

− log ‖1‖M : Xr-an −→ R.
It suffices to prove that log ‖1‖M is constant on the fiber of any point of
(SpecK)r-an.

Let U → V and W be as above. Then log ‖1‖M extends to U r-an. By

M |UW ∈ π∗P̂ic(W)int, we see that log ‖1‖M is constant on the fibers of U r-an →
Vr-an above wv for any closed point w of VQ and any place v of Q. Here wv
denotes the finite subset of classical points of Vr-an

v corresponding to the
finite subset of closed points VQv determined by w. By the density of {wv}w
in Vr-an

Qv
, we conclude that log ‖1‖M is constant on any fiber of U r-an → Vr-an.

Then it is constant on any fiber of Xr-an → (SpecK)r-an. It finishes the proof.

2.4 Equality: case of curves

For a curve over a finitely generated field, the most elegant Hodge index
theorem should be a direct extension of the theorem of Faltings [Fal] and
Hriljac [Hr], which gives an identity between arithmetic intersections and
Neron–Tate heights. This task is finished in [YZ2, Thm. 6.5.1]. In this
section, we will use this theorem to prove Theorem 1.2 for curves.

The following is the statement of [YZ2, Thm. 6.5.1], combined with the
Northcott theorem of [YZ2, Thm. 5.3.1].

Theorem 2.2. Let K be a finitely generated field over Q, and let π : X →
SpecK be a smooth, projective, and geometrically connected curve. Let M ∈
Pic(X)Q with degM = 0.

Then there is an adelic line bundle M0 ∈ P̂ic(X)int with underlying line

bundle M such that π∗(M0 · V ) ≡ 0 for any V ∈ P̂ic(X)vert.

Moreover, π∗(M0 ·M0) � 0 in P̂ic(K)int; the equality π∗(M0 ·M0) ≡ 0
holds if and only if M = 0 in Pic(X)Q.

It is easy to see that the theorem implies Theorem 1.2 for curves. In fact,
define N ∈ P̂ic(X)vert by

M = M0 +N.
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Note that π∗(M0 ·N) ≡ 0. We have

π∗(M ·M) ≡ π∗(M0 ·M0) + π∗(N ·N) � 0.

Here π∗(M0 ·M0) � 0 by Proposition 2.2 and π∗(N ·N) � 0 by the vertical
case of Theorem 1.2.

If the equality holds, then M = 0 by Theorem 2.2. By the vertical case
of Theorem 1.2, we conclude that M ∈ π∗P̂ic(K)int.

2.5 Equality: general case

The proof of the equality part of Theorem 1.2 is almost identical to that in
[YZ1]. We have already treated the case n = 1, so we assume n ≥ 2 in the
following.

Argument on the generic fiber

Assume the conditions in the equality part of Theorem 1.2, which particularly
includes

π∗(M
2 · L1 · · ·Ln−1) ≡ 0.

We first show that M is numerically trivial on X by the condition Ln−1 � 0.

The condition asserts that L
′
n−1 = Ln−1 −N is nef for some N ∈ P̂ic(Q)

with d̂eg(N) > 0. Then

π∗(M
2 ·L1 · · ·Ln−2 ·Ln−1) = π∗(M

2 ·L1 · · ·Ln−2 ·L
′
n−1)+(M2 ·L1 · · ·Ln−2)N.

Applying the inequality of the theorem to (M,L1, · · · , Ln−2, L
′
n−1), we have

π∗(M
2 · L1 · · ·Ln−2 · L

′
n−1) � 0.

By the Hodge index theorem on X in the geometric case, we have

M2 · L1 · · ·Ln−2 ≤ 0.

Hence,

π∗(M
2 · L1 · · ·Ln−2 · L

′
n−1) ≡ 0, M2 · L1 · · ·Ln−2 = 0.

On the variety X, we have

M · L1 · · ·Ln−2 · Ln−1 = 0, M2 · L1 · · ·Ln−2 = 0.

By the Hodge index theorem on normal algebraic varieties, we conclude that
M is numerically trivial. See [YZ1, Appendix 1].
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Numerically trivial case

We have proved that M is numerically trivial on X, and now we continue to
prove that M is a torsion line bundle. Then a multiple of M is vertical and
has already been treated. As in [YZ1], the key is still the variational method.

Lemma 2.3. Let M,L1, · · · , Ln−1 be integrable adelic line bundles on X
such that the following conditions hold:

(1) M is numerically trivial on X;

(2) M is Li-bounded for every i;

(3) π∗(M
2 · L1 · · ·Ln−1) ≡ 0.

Then for any nef adelic line bundles L
0

i on X with underlying bundle L0
i

numerically equivalent to Li, and any integrable adelic line bundle M
′

with
numerically trivial underlying line bundle M ′, the following are true:

π∗(M ·M
′ · L0

1 · · ·L
0

n−1) ≡ 0,

π∗(M
2 ·M ′ · L0

1 · · ·L
0

n−2) ≡ 0.

Proof. The proof is similar to its counterpart in [YZ1]. For example for the
first equality, it suffices to prove

M ·M ′ · L0

1 · · ·L
0

n−1 · π∗H1 · · · π∗Hd = 0

for any nef H1, · · · , Hd ∈ P̂ic(SpecK)int. For fixed H1, · · · , Hd, the inter-
section numbers still satisfy the Cauchy–Schwartz inequality. The proof can
be carried here.

Go back to the equality part of Theorem 1.2. Apply Bertini’s theorem.
Replacing Ln−1 by a positive multiple if necessary, there is a section s ∈
H0(X,Ln−1) such that Y = div(s) is an integral subvariety of X, regular in
codimension one. Then we have

π∗(M
2 · L1 · · ·Ln−2 · Ln−1) ≡ π∗(M

2 · L1 · · ·Ln−2 · Y ).

In fact, the difference of two sides is the limit of the intersection of M
2 ·

L1 · · ·Ln−2 with vertical classes, so it vanishes by the second equality of the
lemma. Hence,

π∗(M
2 · L1 · · ·Ln−2 · Y ) ≡ 0.
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By the Lefschetz hyperplane theorem, we can assume that Pic0(X)Q →
Pic0(Y )Q is injective. It reduces the problem to Y . The proof is complete
since we have already treated the case of curves.

3 Preperiodic points of algebraic dynamics

The goal of this section is to prove Theorem 1.3 on the rigidity of preperiodic
points. The idea is very similar to the number field case in [YZ1].

3.1 Review on admissible line bundles

Let us first recall the theory of admissible adelic line bundles for polariz-
able algebraic dynamical systems over finitely generated fields in [YZ2, §6.4],
which generalizes the results of [Zh2, YZ1] over number fields.

Let K be a finitely generated field over Q. Let (X, f, L) be a polarized
dynamical system over a K, i.e.,

• X is a projective variety over K;

• f : X → X is a morphism over K;

• L ∈ Pic(X)Q is an ample line bundle such that f ∗L = qL from some
q > 1.

We will further assume that X is normal, which can always achieved by
taking the normalization of X.

By [YZ2, Thm. 6.1.1], there is an adelic Q-line bundle Lf ∈ P̂ic(X)nef
extending L and with f ∗Lf = qLf . This still follows from Tate’s limiting
argument. By [YZ2, Thm. 6.1.1(2)], Lf is actually strongly nef over X.

For any closed K-subvariety Z of X, we have the canonical height

hf (Z) = hLf
(Z) :=

〈
Lf |Z̃

〉dimZ+1

(dimZ + 1) degL(Z̃)
∈ P̂ic(K)nef .

Here Z̃ is the image of Z in X. In particular, we have a height function

hf : X(K) −→ P̂ic(K)nef .

These heights can also be obtained by Tate’s limiting argument.

18



The height function hf is f -invariant. Moreover, for any point x ∈ X(K),
hf (x) = 0 if and only if x is preperiodic under f .

Fix H1, · · · , Hd ∈ P̂ic(K)nef , where d is the transcendental degree of K
over Q. For any closed K-subvariety Z of X, the Moriwaki height of Z with
respect to L and (H1, · · · , Hd) is

hH1,··· ,Hd

Lf
(Z) := hLf

(Z) ·H1 · · ·Hd =
Lf |dimZ+1

Z̃
·H1 · · ·Hd

(dimZ + 1) degL(Z̃)
.

Here the intersection numbers are taken in P̂ic(Z̃)int. It gives a real-valued
height function.

In [YZ2, Thm. 6.4.2], the notion of f -invariant adelic line bundles is
extended to f -admissible adelic line bundles. Namely, the projection

P̂ic(X) −→ Pic(X)Q

has a unique section
M 7−→M f

as f ∗-modules.
Moreover, if M ∈ Picf (X)Q is f -pure of weight 2 and ample, then M f is

nef. This generalizes the canonical height functions hLf
and hH1,··· ,Hd

Lf
to hMf

and hH1,··· ,Hd

Mf
.

Note that the projection

Pic(X)Q −→ NS(X)Q

also has a unique f ∗-equivariant section

`f : NS(X)Q −→ Pic(X)Q.

Denote by ̂̀
f : NS(X)Q −→ P̂ic(X).

the composition of the two sections.
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3.2 Preperiodic points

The goal of this section is to prove Theorem 1.3. By Lefschetz principle, we
can assume that K is finitely generated over Q. The following result refines
the theorem. The condition of X being normal can be obtained by taking a
normalization.

Theorem 3.1. Let X be a normal projective variety over a finitely generated
field K. For any f, g ∈ DS(X), the following are equivalent:

(1) Prep(f) = Prep(g);

(2) gPrep(f) ⊂ Prep(f);

(3) Prep(f) ∩ Prep(g) is Zariski dense in X;

(4) ̂̀f = ̂̀
g as maps from NS(X)Q to P̂ic(X).

As in the number field case, we prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
The proofs of the easy directions are similar to the number field case. In the
implication (2) ⇒ (3), we need the finiteness of

Prep(f, r) := {x ∈ Prep(f) | deg(x) < r}.

It is given by Northcott’s property of the Moriwaki height (cf. [YZ2, Thm.
5.3.1]). In the following, we prove the hard implication (3) ⇒ (4).

Applying the Hodge index theorem

Assume that Prep(f) ∩ Prep(g) is Zariski dense in X. As usual, write n for
the dimension of X and d for the transcendental degree of K over Q. We
need to prove ̂̀f (ξ) = ̂̀

g(ξ) for any ξ ∈ NS(X)Q. By linearity, it suffices to
assume that ξ is ample.

Denote L = `f (ξ) and M = `g(ξ). They are ample Q-line bundles on X.

Then the admissible extensions Lf = ̂̀
f (ξ) and M g = ̂̀

g(ξ) are nef by [YZ2,
Thm. 6.4.2].

Consider the sum N = Lf + M g, which is still nef. By the fundamental
inequality in [YZ2, Thm. 5.3.2],

λH1 (X,N) ≥ hH
N

(X)
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for any H ∈ P̂ic(K)nef satisfying the Moriwaki condition. Here H is said
to satisfy the Moriwaki condition if it is induced by a nef hermitian line
bundle on a projective model of K, the geometric top self-intersection number

Hd > 0, and the arithmetic top self-intersection number H
d+1

= 0.
Note that the essential minimum λH1 (X,N) = 0 since hH

N
is zero on

Prep(f) ∩ Prep(g), which is assumed to be Zariski dense in X. It forces

hH
N

(X) = 0. Write in terms of intersections, we have

(Lf +M g)
n+1 ·Hd

= 0.

Expand it by the binomial formula. Note that every term is non-negative.
It follows that

L
i

f ·M
n+1−i
g ·Hd

= 0, ∀i = 0, 1, · · · , n+ 1.

It is true for any H satisfying the Moriwaki condition. We can remove the
dependence on H by the following result.

Lemma 3.2. Let Q ∈ P̂ic(K)nef be a nef adelic line bundle such that the

intersection number Q·Hd
= 0 for any H ∈ P̂ic(K)nef satisfying the Moriwaki

condition. Then Q is numerically trivial.

We will prove the lemma later. With the lemma, we have

π∗(L
i

f ·M
n+1−i
g ) ≡ 0, ∀i = 0, 1, · · · , n+ 1.

Then the proof is similar to the number field case. In fact, we have

π∗((Lf −M g)
2 · (Lf +M g)

n−1) ≡ 0.

We still have
(L−M) · (L+M)n−1 = 0

since L−M ∈ Pic0(X)Q is numerically trivial. Apply Theorem 1.2 to

(Lf −M g, Lf +M g).

It is trivial that (Lf −M g) is (Lf + M g)-bounded. To meet the condition

Lf +M g � 0, we can take any C ∈ P̂ic(Q) with deg(C) > 0, and replace

(Lf −M g, Lf +M g)
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by
(Lf −M g, Lf +M g + π∗C).

Then all the conditions are satisfied. The theorem implies that

Lf −M g ∈ π∗P̂ic(K)int.

By evaluating at any point x in Prep(f) ∩ Prep(g), we see that

Lf −M g = 0

in P̂ic(X)int. It proves the theorem.

Local version

Now we prove Theorem 1.4. It can be viewed as a local version of Theorem
3.1. For that purpose, we first extend the notion of f -admissibility to the
local setting.

Let K be either C or Cp. Let (X, f, L) be a polarizable dynamical system
over K. Assume that X is normal of dimension n. The exact sequence

0 −→ Pic0(X)Q −→ Pic(X)Q −→ NS(X)Q −→ 0.

still has a natural splitting

`f : NS(X)Q −→ Pic(X)Q.

In fact, since NS(X) is a finitely generated Z-module, we can find a finitely
generated subfield K of K such that (X, f) and all elements of NS(X) are
defined over K. Then the lifting `f is defined, and does not depend on the
choice of K. We say that elements of Pic(X)Q in the image of `f are f -pure
of weight 2.

Denote by P̂ic(X) the group of line bundles L on X, with a continuous
K-metric on the corresponding Berkovich space XBer. Note that if K = C,
it is the usual complex analytic space. As in the finitely generated case, we
have a unique section

̂̀
f,K : NS(X)Q −→ P̂ic(X)Q/R×

extending `f . The group R× acts on P̂ic(X) by scalar multiplication on the
metrics.
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For any M ∈ Pic(X)R which is f -pure of weight 2, denote by M f the

image of the algebraic equivalence class of M under ̂̀f . If M is furthermore
ample, then the metric of M f is semipositive. In that case, the equilibrium
measure

dµf =
1

deg(M)
c1(M f )

n.

In fact, by decomposing M into f -eigencomponents. It suffices to check

(M1 ·M2 · · ·Mn)dµf = c1(M1,f ) ∧ c1(M2,f ) ∧ · · · ∧ c1(Mn,f )

for eigenvectors M1, · · · ,Mn of f ∗ in Pic(X)C. The identity is understood in
terms of linear functionals on the space of complex-value continuous functions
on XBer. It holds since both sides are f ∗-invariant, and the uniqueness of dµf
coming from Tate’s limiting method. The following theorem refines Theorem
1.4.

Theorem 3.3. Let K be either C or Cp for some prime p. Let X be a normal
projective variety over K, and let f, g ∈ DS(X) be two polarizable algebraic
dynamical system over X such that Prep(f)∩Prep(g) is Zariski dense in X.

Then ̂̀f,K = ̂̀
g,K as maps from NS(X)Q to P̂ic(X)Q/R×.

Let us see how to obtain the result from Theorem 3.1. Let K be a finitely
generated subfield of K such that (X, f, g) is defined over K; namely, (X, f, g)
is isomorphic to the base change of a triple (X0, f0, g0) from K to K. We can
further assume that NS(X) = NS(X0), which can be achieved by enlarging
K since NS(X) is finitely generated.

Consider the inclusion η : K ↪→ K. The canonical absolute value on K
induces a point ηan of (SpecK)an. By definition, the fiber Xan

0,ηan of Xan
0 above

ηan is isomorphic to XBer. For any ξ ∈ NS(X0)Q, by Theorem 3.1, we havề
f0(ξ) = ̂̀

g0(ξ) in P̂ic(X0)int in the setting of finitely generated fields. The
identity is viewed as an equality of metrics on Xan

0 . Restricted to the fiber

XBer, we have ̂̀f,K(ξ) = ̂̀
g,K(ξ). The result is proved.

Moriwaki condition

It remains to prove Lemma 3.2. It takes a few steps. Assume Q ∈ P̂ic(V)int
for some quasi-projective arithmetic model V of K.

Step 1. Replacing V by an open subscheme if necessary, we can assume that
there is a finite morphism ψ : V → V0 for some open subschemes V0 of PdZ.
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This follows from Noether’s normalization lemma. The goal of this step is
to prove that the height function hQ on V(Q) associated to Q is identically
0. Namely, for any horizontal closed integral subschemeW of dimension one
in V , the restriction Q|W ∈ P̂ic(W)int has arithmetic degree 0.

We first treat the case that W has degree 1 over Z. By automorphism
of PdZ, we can further assume that the image of WQ is exactly the rational
point W0 = (0, · · · , 0, 1) of PdZ. Denote by W0 the Zariski closure of W0 in
PdZ. Take the metrized line bundle H0 = (O(1), ‖ · ‖0) on PdZ satisfying the
dynamical property that the pull-back ofH0 by the square map is isometric to

2H0. Note that the Moriwaki condition Hd
0,Q > 0 and Hd+1

0 = 0 is satisfied.

By the coordinate sections of O(1), we see that Hd

0 is represented by the
arithmetic 1-cycle (W0, g0) for some positive current g0 on Pd(C). Then we
have

0 = Q · ψ∗Hd

0 = Q · ψ∗(W0, g0) ≥ Q · ψ∗W0 ≥ Q · W ≥ 0.

It follows that Q · W = 0. Here we used the nefness of Q, and the inequal-
ities can be justified by approximating Q by nef hermitian line bundles on
projective models.

If W has higher degree over Z, we take a base change from Z to a finite
étale extension OF to split W . Then we can arrange such that ψOK

: VOK
→

V0,OK
maps WQ to W0 = (0, · · · , 0, 1) of PdOK

. The proof still works.

Step 2. Define Q̃ to be the image of Q under the canonical map P̂ic(V)→
P̂ic(VQ/Q). See [YZ2, §2.5.5] for the definition of this map, which is obtained
applying the base change SpecQ → SpecZ to the arithmetic models of Q.
The goal of this step is to prove that Q̃ is numerically trivial in P̂ic(VQ/Q).
In other words,

Q̃ · A1 · · ·Ad−1 = 0

for any A1, · · · , Ad−1 ∈ Pic(Bm,Q) and any projective model Bm of V .
By definition, we can assume that Q is the limit of a sequence of nef

hermitian line bundles Qm on projective models Bm of V . We can further
assume that Bm dominates a projective model B of V , and there is an effective
arithmetic divisor D = (D, gD) whose finite part is supported on B \ V , such
that

−εmD ≤ Qm −Q ≤ εmD

from some sequence εm → 0. Here the inequality is understood in terms of
effectivity of divisors.
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It follows that the height function associated to εmD−Qm is positive on
V(Q). In particular, the height function is bounded below on any complete
curve in Bm,Q which intersects VQ. Then the generic fiber εmDQ − Qm,Q is
nef on such curves. This implies that εmDQ −Qm,Q is pseudo-effective.

By Bertini’s theorem, it is easy to have

(εmDQ −Qm,Q) · A1 · · ·Ad−1 ≥ 0

for any ample line bundles A1, · · · , Ad−1 on Bm,Q. Set m → ∞ and use the
nefness of Qm,Q. We have

Q̃ · A1 · · ·Ad−1 = 0.

The result follows by taking linear combinations.

Step 3. Let H be any ample hermitian line bundle on B. Recall the essential
minimum

λ1(H) = λ1(VQ,H) = sup
V ′⊂VQ

inf
x∈V ′(Q)

hH(x).

The supremum runs through all open subschemes V ′ of VQ. Apply the fun-
damental inequality in [YZ2, Thm. 5.3.3] to H +Q. We have

λ1(H +Q) ≥ 1

(d+ 1)(HQ + Q̃)d
(H +Q)d+1.

By the previous two steps, we end up with

λ1(H) ≥ 1

(d+ 1)Hd
Q

(H +Q)d+1.

Replacing Q by a positive multiple, we see that

(H + tQ)d+1

is bounded for any t > 0. It particularly implies that

Q · Hd
= 0.

Step 4. It is formal to show that Q is numerically trivial from the property

that Q · Hd
= 0 for any ample hermitian line bundle H on B.
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In fact, for any ample hermitian line bundles H1, · · · ,Hd on B, we have

Q · (t1H1 + · · ·+ tdHd)
d = 0.

It is true for all positive real numbers t1, · · · , td, which forces

Q · H1 · · ·Hd = 0.

By linear combinations, it is true for any hermitian line bundles H1, · · · ,Hd

on B. By varying B and taking limits, it is true for any H1, · · · ,Hd in
P̂ic(K)int.
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