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Abstract

The main result of this paper concerns the positivity of the Hodge bundles of abelian
varieties over global function fields. As applications, we obtain some partial results on
the Tate–Shafarevich group and the Tate conjecture of surfaces over finite fields.

1. Introduction

Given an abelian variety A over the rational function field K = k(t) of a finite field k, we prove
the following results:

(1) the abelian variety A is isogenous to the product of a constant abelian variety over K and
an abelian variety over K whose Néron model over P1

k has an ample Hodge bundle;

(2) finite generation of the abelian group A(Kper) if A has semi-abelian reduction over P1
k, as

part of the “full” Mordell–Lang conjecture for A over K;

(3) finiteness of the abelian group X(A)[F∞], the subgroup of elements of the Tate–Shafarevich
group X(A) annihilated by iterations of the relative Frobenius homomorphisms, if A has
semi-abelian reduction over P1

k;

(4) the Tate conjecture for all projective and smooth surfacesX over finite fields withH1(X,OX) =
0 implies the Tate conjecture for all projective and smooth surfaces over finite fields.

Result (1) is the main theorem of this paper, which implies the other results listed above. Results
(2) and (3) are inspired by the paper [Ros1] of Damian Rössler; our proof of result (1) uses a
quotient construction which is independently introduced by Damian Rössler in his more recent
paper [Ros2].

1.1 Positivity of Hodge bundle

Let S be a projective and smooth curve over a field k, and K = k(S) be the function field of S.
Let A be an abelian variety over K, and A be the Néron model of A over S (cf. [BLR, §1.2, Def.
1]). The Hodge bundle of A over K (or more precisely, of A over S) is defined to be the locally
free OS-module

ΩA = ΩA/S = e∗Ω1
A/S ,

where Ω1
A/S the relative differential sheaf, and e : S → A denotes the identity section of A.

The height h(A) of A, defined to be deg(ΩA), has significant applications in Diophantine
geometry. In fact, it was used by Parshin and Zarhin to treat the Mordell conjecture over function
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fields and the Tate conjecture for abelian varieties over function fields. The number field analogue,
called the Faltings height, was introduced by Faltings and plays a major role in his proof of these
conjectures over number fields.

By results of Moret-Bailly, we have h(A) ≥ 0, or equivalently the determinant line bundle
det(ΩA) is nef over S. Moreover, the equality h(A) = 0 holds if and only if A is isotrivial over
S; see Theorem 2.6 of the current paper. However, as we will see, the positivity of the whole
vector bundle ΩA is more delicate (especially in positive characteristics). The goal of this paper
is to study this positivity, and gives some arithmetic applications of it. We follow Hartshorne’s
notion of ample vector bundles and nef vector bundles, as in [Har1] and [Laz, Chap. 6]. Namely,
a vector bundle E over a scheme is ample (resp. nef ) if the tautological bundle O(1) over the
projective space bundle P(E) is an ample (resp. nef) line bundle.

If k has characteristic 0, it is well-known that ΩA is nef over S. This is a consequence of an
analytic result of Griffiths; see also Bost [Bos, Cor. 2.7] for an algebraic proof of this fact.

If k has a positive characteristic, ΩA can easily fail to be nef, as shown by the example of
Moret-Bailly [MB1, Prop. 3.1]. The example is obtained as the quotient of (E1 ×k E2)K by a
local subgroup scheme over K, where E1 and E2 are supersingular elliptic curves over k. The
quotient abelian surface has a proper Néron model over S.

To ensure the ampleness or nefness of the Hodge bundle, one needs to impose some strong
conditions. In this direction, Rössler [Ros1, Thm. 1.2] proved that ΩA is nef if A is an ordinary
abelian variety over K, and that ΩA is ample if moreover there is a place of K at which A has
good reduction with p-rank 0.

In another direction, we look for positivity by varying the abelian variety in its isogeny class.
The main theorem of this paper is as follows.

Theorem 1.1 Denote K = k(t) for a finite field k, and let A be an abelian variety over K.
Then there is an isogeny A→ B×K CK over K, where C is an abelian variety over k, and B is
an abelian variety over K whose Hodge bundle is ample over P1

k.

To understand the theorem, we can take advantage of the simplicity of the theory of vector
bundles on the projective line. By the Birkhoff–Grothendieck theorem (cf. [HL, Thm. 1.3.1]),
any nonzero vector bundle E on S = P1

k (for any base field k) can be decomposed as

E ' O(d1)⊕O(d2)⊕ · · · ⊕ O(dr),

with uniquely determined integers d1 ≥ d2 ≥ · · · ≥ dr. Under this decomposition, E is ample if
and only if dr > 0; E is nef if and only if dr ≥ 0.

Let us return to Theorem 1.1. It explains that by passing to isogenous abelian varieties, the
Hodge bundle becomes nef, and the non-ample part of the nef Hodge bundle actually comes from
a constant abelian variety.

In §3.3, we discuss the possibility of generalizing Theorem 1.1 to more general K/k. First, we
conjecture that the theorem holds for K = k(t) with k being any field of positive characteristic.
At least, in this case, our proof implies that A has a purely inseparable isogeny to an abelian
variety over K with a nef Hodge bundle; see Proposition 2.5. Second, we construct an abelian
variety of p-rank 0 that proves that the theorem fails if K/k is an arbitrary global function field.
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1.2 Purely inseparable points

For a field K of characteristic p > 0, the perfect closure of K is the union

Kper = ∪nK1/pn

in the algebraic closure of K. The first consequence of our main theorem is the following result.

Theorem 1.2 Denote K = k(t) for a finite field k. Let A be an abelian variety over K with
everywhere semi-abelian reduction over P1

k. Then A(Kper) is a finitely generated abelian group.

By the Lang–Néron theorem, which is the function field analogue of the Mordell–Weil theo-
rem, the theorem is equivalent to the equality A(Kper) = A(K1/pn) for sufficiently large n.

For a general global function field K, the theorem is proved by Ghioca [Ghi] for non-isotrivial
elliptic curves, and by Rössler [Ros1, Thm. 1.1] assuming that the Hodge bundle ΩA is ample.
By Rössler’s result, Theorem 1.2 is a consequence of Theorem 1.1. In fact, it suffices to note the
fact that any k-morphism from P1

k to an abelian variety C over k is constant; i.e., its image is a
single k-point of C.

Finally, we remark that Theorem 1.2 is related to the so-called full Mordell–Lang conjec-
ture in positive characteristic. Recall that the Mordell–Lang conjecture, which concerns rational
points of subvarieties of abelian varieties, was proved by Faltings over number fields. A positive
characteristic analogue was obtained by Hrushovski. However, including consideration of the p-
part, the full Mordell–Lang conjecture in positive characteristics, formulated by Abramovich and
Voloch, requires an extra result like Theorem 1.2. We refer to [Sca, GM] for more details. We
also refer to Rössler [Ros2] for some more recent works on this subject.

1.3 Partial finiteness of Tate–Shafarevich group

Let A be an abelian variety over a global function field K of characteristic p. Recall that the
Tate–Shafarevich group of A is defined by

X(A) = ker

(
H1(K,A) −→

∏
v

H1(Kv, A)

)
,

where the product is over all places v of K. The prestigious Tate–Shafarevich conjecture asserts
that X(A) is finite. By the works of Artin–Tate [Tat3], Milne [Mil3], Schneider [Sch], Bauer
[Bau] and Kato–Trihan [KT], the Birch and Swinnerton-Dyer conjecture for A is equivalent to
the finiteness of X(A)[`∞] for some prime ` (which is allowed to be p).

Denote by Fn : A→ A(pn) the relative pn-Frobenius morphism over K. Define

X(A)[Fn] = ker(X(Fn) : X(A)→X(A(pn)))

and

X(A)[F∞] =
⋃
n≥1

X(A)[Fn].

Both are subgroups of X(A). Note that Fn : A → A(pn) is a factor of the multiplication [pn] :
A → A, so X(A)[F∞] is a subgroup of X(A)[p∞]. These definitions generalize to the function
field K of a curve over any field k of characteristic p > 0.

Theorem 1.3 Let S be a projective and smooth curve over a perfect field k of characteristic
p > 0, and K be the function field of S. Let A be an abelian variety over K. Then the following
are true:
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(1) If S = P1
k, the abelian variety A has everywhere good reduction over S, and the Hodge

bundle of A is nef over S, then X(A)[F∞] = 0.

(2) If A has everywhere semi-abelian reduction over S and the Hodge bundle of A is ample over
S, then X(A)[F∞] = X(A)[Fn0 ] for some positive integer n0.

Similar to Theorem 1.2, the proof of Theorem 1.3 is also inspired by that of Rössler [Ros1,
Thm. 1.1]. One consequence of Theorem 1.1 and Theorem 1.3 is the following result.

Corollary 1.4 Let S be a projective and smooth curve over a finite field k of characteristic
p > 0, and K be the function field of S. Let A be an abelian variety over K. Then X(A)[F∞] is
finite in each of the following cases:

(1) A is an elliptic curve over K;

(2) S = P1
k and A has everywhere semi-abelian reduction over P1

k;

(3) A is an ordinary abelian variety over K, and there is a place of K at which A has good
reduction with p-rank 0.

In case (1), after a finite base change, A has semi-abelian reduction, and the line bundle ΩA

is ample unless A is isotrivial. In case (2), by Theorem 1.1, it is reduced to two finiteness results
corresponding to the two cases of Theorem 1.3 exactly. In case (3), after a finite base change,
A has semi-abelian reduction, and the line bundle ΩA is ample by Rössler [Ros1, Thm. 1.2]. A
detailed proof of the corollary will be given in §3.2.

We remark that case (2) of the corollary naturally arises when taking the Jacobian variety
of the generic fiber of a Lefschetz fibration of a projective and smooth surface over k. This
standard construction was initiated by Artin–Tate [Tat3] to treat the equivalence between the
Tate conjecture (for the surface) and the Birch and Swinnerton-Dyer conjecture (for the Jacobian
variety). We refer to Theorem 4.3 for a quick review of the equivalence.

Toward the BSD conjecture, we come to the question of how far X(A)[F∞] is from the whole
group X(A)[p∞]. This is a very difficult question in general. However, if A is an abelian variety
of p-rank 0, then we actually have X(A)[F∞] = X(A)[p∞]; see Proposition 3.10.

1.4 Variation of the Tate conjecture

One version of the prestigious Tate conjecture for divisors is as follows.

Conjecture 1.5 (Conjecture T 1(X)) Let X be a projective and smooth variety over a finite
field k of characteristic p. Then for any prime ` 6= p, the cycle class map

Pic(X)⊗Z Q` −→ H2(Xk̄,Q`(1))Gal(k̄/k)

is surjective.

The Tate conjecture is confirmed in many cases. It is proved by Tate [Tat1] for arbitrary
products of curves and abelian varieties. If X is a K3 surface and p > 2, the conjecture is proved
by the works of Nygaard [Nyg], Nygaard–Ogus [NO], Artin–Swinnerton-Dyer [ASD], Maulik
[Mau], Charles [Char] and Madapusi-Pera [MP]. Moreover, by the recent work of Morrow [Mor],
Conjecture T 1(X) for all projective and smooth surfaces X over k implies Conjecture T 1(X) for
all projective and smooth varieties X over k.

In this section, we have the following reduction of the Tate conjecture.
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Theorem 1.6 Let k be a fixed finite field. Conjecture T 1(X) for all projective and smooth sur-
faces X over k satisfying H1(X,OX) = 0 implies conjecture T 1(X) for all projective and smooth
surfaces X over k.

For a projective and smooth surface X over a field k of any characteristic, the condition
H1(X,OX) = 0 implies the following properties:

(1) H1(Xk̄,Q`) = 0;

(2) the identity component Pic0
X/k of the Picard functor PicX/k is trivial;

(3) the cycle class map Pic(X)⊗Z Q` → H2(Xk̄,Q`(1)) is injective.

In fact, (2) holds since H1(X,OX) is the tangent space of PicX/k. Property (3) holds since the

kernel of the cycle class map is Pic0
X/k(k)⊗Z Q`. Property (1) holds since X has the same first

Betti number as Pic0
X/k.

1.5 Idea of proofs

Here we explain our proofs of the theorems.

Positivity of Hodge bundle Theorem 1.1 is the main theorem, and its proof takes up the
whole §2. The proof consists of three major steps.

The first step is to construct an infinite chain of abelian varieties. Namely, if the Hodge bundle
ΩA = ΩA/S of A is not ample, then the dual Lie(A/S) has a nonzero maximal nef subbundle
Lie(A/S)nef . We prove that it is always a p-Lie algebra. Applying the Lie theory of finite and
flat group schemes developed in [SGA3], we can lift Lie(A/S)nef to a finite and flat subgroup
scheme A[F ]nef of A of height one. Then we form the quotient A′1 = A/A[F ]nef , and let A1 be
the Néron model of the generic fiber of A′1. If the Hodge bundle of A1 is still not ample, repeat
the construction to get A′2 and A2. Keep repeating the process, we get an infinite sequence

A, A′1, A1, A′2, A2, A′3, A3, · · · .

The second step is to use heights to force the sequence to be stationary in some sense. In fact,
the height of the sequence is decreasing, which is a key property proved by the construction. As
mentioned above, the heights are non-negative integers, so the sequence of the heights is eventu-
ally constant. This implies in particular that there is n0 such that for any n ≥ n0, Lie(An/S)nef

is the base change of a p-Lie algebra from the base k, and An[F ]nef is eventually the base change
of a group scheme from the base k. We say such group schemes over S are of constant type. As
a consequence, the kernels of An0 → An as n varies give a direct systems of group schemes over
S of constant type. With some argument, we can convert this direct system into a p-divisible
subgroup H∞ of An0 [p∞] of constant type. For simplicity of notations, we assume An0 is just A
in the following.

The third step is to “lift” the p-divisible subgroup H∞ of A[p∞] to an abelian subscheme of
A of constant type. By passing to a finite extension of k, we can find a point s ∈ S(k) such that
the fiber C = As is an abelian variety over k. Since H∞ is of constant type, it is also a p-divisible
subgroup of CS [p∞]. It follows that A and CS “share” the same p-divisible subgroupH∞. This
would eventually imply that A has a non-trivial (K/k)-trace by some fundamental theorems. In
fact, C[p∞] is semisimple (up to isogeny) as the p-adic version of Tate’s isogeny theorem, and thus
H∞,K is a direct summand of C[p∞] up to isogeny. This implies that Hom(CK [p∞], A[p∞]) 6= 0.
By a theorem of de Jong [Jon], this implies that Hom(CK , A) 6= 0. Then A has a non-trivial
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(K/k)-trace. The proof is finished by applying the same process to the quotient of A by the
image of the (K/k)-trace map.

Note that the proof is in spirit similar to that of [Bos, Thm. 2.6, Cor. 2.7], but the current
situation is more difficult due to the fact that in characteristic p > 0, integrating a p-Lie algebra
only gives a radicial group scheme (of relative dimension 0), instead of a smooth group scheme
(of the expected relative dimension). The idea above is to form a p-divisible group by integrating
infinitely many times, and algebraize it by the theorems of Tate and de Jong.

Partial finiteness Theorem 1.2 is an easy consequence of Theorem 1.1 and Rössler [Ros1,
Thm. 1.1], as mentioned above. Theorem 1.3 will be proved in §3. The proof is inspired by that
of Rössler [Ros1, Thm. 1.1], which is in turn derived from an idea of Kim [Kim].

To illustrate the idea, we first assume that A is an elliptic curve with semi-abelian reduction
over S. Take an element X ∈ X(A)[F∞], viewed as an A-torsor over K. Take a closed point
P ∈ X which is purely inseparable over K. It exists because X is annihilated by a power of the
relative Frobenius. Denote by pn the degree of the structure map ψK : P → SpecK. Assume
that n ≥ 1. It suffices to bound n in terms of A.

Consider the canonical composition

ψ∗KΩA −→ Ω1
X/K |P −→ Ω1

P/K −→ Ω1
P/k.

The first map is induced by the torsor isomorphism X×KP → A×KP , and it is an isomorphism.
The second map is surjective. The third map is bijective since P is purely inseparable of degree
pn over K. We are going to extend the maps to integral models.

Denote by P the unique projective and smooth curve over k with generic point P , and
ψ : P → S be the natural map derived from ψK . Abstractly P is isomorphic to S since ψ is
purely inseparable. By considering the minimal regular projective models of X and A over S,
one can prove that the above composition extends to a morphism

ψ∗ΩA/S −→ Ω1
P/k(E).

Here A is the Néron model of A over S, E is the reduced structure of ψ−1(E0), and E0 is the
set of closed points of S at which A has bad reduction. The morphism is a nonzero morphism of
line bundles over P, so it is necessarily injective. The degrees on P give

pn · deg(ΩA/S) = deg(ψ∗ΩA/S) ≤ deg(Ω1
P/k(E)) = deg(E0) + 2g − 2.

Here g is the genus of S. If deg(ΩA/S) > 0, then n is bounded. It proves the theorem in this case.

The proof for general dimensions is based on the above strategy with two new ingredients.
First, there is no minimal regular model for A. The solution is to use the compactification of
Faltings–Chai [FC]. This is the major technical part of the proof. Second, the Hodge bundle is a
vector bundle, and we require the ampleness of the whole vector bundle.

Variation of Tate conjecture Theorem 1.6 will be proved in §4. One key idea is to repeatedly
apply the Artin–Tate theorem, which asserts that for a reasonable fibered surface π : X → S,
the Tate conjecture T 1(X) is equivalent to the BSD conjecture for the Jacobian variety J of
the generic fiber of π. By this, we can switch between projective and smooth surfaces over finite
fields and abelian varieties over global function fields.

As we can see from §4.2, the major part of the proof consists of 4 steps. We describe them
briefly in the following.
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Step 1: Make a fibration. Take a Lefschetz pencil over X, whose existence (over a finite base
field) is proved by Nguyen [Ngu]. By blowing-up X, we get a Lefschetz fibration π : X ′ → S with
S = P1

k. Denote by J the Jacobian variety of the generic fiber of π : X ′ → S, which is an abelian
variety over K = k(t) with everywhere semi-abelian reduction over S. In particular, T 1(X) is
equivalent to T 1(X ′), and T 1(X ′) is equivalent to BSD(J).

Step 2: Make the Hodge bundle positive. Apply Theorem 1.1 to J . Then J is isogenous to
A ×K CK , where C is an abelian variety over k, and A is an abelian variety over K with an
ample Hodge bundle over S. It is easy to check that BSD(CK) holds unconditionally. Therefore,
BSD(J) is equivalent to BSD(A).

Step 3: Take a projective regular model. We need nice projective integral models of abelian
varieties over global function fields. This is solved by the powerful theory of Mumford [Mum1] and
Faltings–Chai [FC] with some refinement by Künnemann [Kun]. As a result, there is a projective,
flat and regular integral model ψ : P → S of A∨ → SpecK with a canonical isomorphism
R1ψ∗OP → Ω

∨
A. This forces H0(S,R1ψ∗OP) = 0 by the ampleness of ΩA. By the Leray spectral

sequence, we have H1(P,OP) = 0. This is the very reason why the positivity of the Hodge bundle
is related to the vanishing of H1.

Step 4: Take a surface in the regular model. By successively applying the Bertini-type theorem
of Poonen [Poo], we can find a projective and smooth k-surface Y in P satisfying the following
conditions:

(1) H1(Y,OY) = 0.

(2) The canonical map H1(Pη,OPη)→ H1(Yη,OYη) is injective.

(3) The generic fiber Yη of Y → S is smooth.

Here η = SpecK denotes the generic point of S. Denote by B the Jacobian variety of Yη over η.
Consider the homomorphism A→ B induced by the natural homomorphism PicPη/η → PicYη/η.
The kernel of A → B is finite by (2). It follows that BSD(A) is implied by BSD(B). By the
Artin–Tate theorem again, BSD(B) is equivalent to T 1(Y). Note that H1(Y,OY) = 0. This
finishes the proof of Theorem 1.6.

1.6 Notation and terminology

For any field k, denote by ks (resp. k̄) the algebraic closure (resp. separable closure).

By a variety over a field, we mean a scheme that is geometrically integral, separated and of
finite type over the field. By a surface (resp. curve), we mean a variety of dimension two (resp.
one).

We use the following basic notation:

– k denotes a field of characteristic p.

– S usually denotes a projective, smooth and geometrically integral curve over k, which is
often P1

k.

– K = k(S) usually denotes the function field of S, which is often k(t).

– η = SpecK denotes the generic point of S.

Occasionally we allow K and S to be more general.
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Frobenius morphisms Let X be a scheme over Fp. Denote by FnX : X → X the absolute
Frobenius morphism whose induced map on the structure sheaves is given by a 7→ ap

n
. To avoid

confusion, we often write FnX : X → X as FnX : Xn → X, so Xn is just a notation for X. We also
write Fn = FnX if no confusion will result.

Let π : X → S be a morphism of schemes over Fp. Denote by

X(pn) = X ×S S = (X,π)×S (S, FnS ),

the fiber product of π : X → S with the absolute Frobenius morphism FnS : S → S. Then X(pn)

is viewed as a scheme over S by the projection to the second factor, and the universal property
of fiber products gives an S-morphism

Fn/S = FnX/S : X −→ X(pn),

which is the relative pn-Frobenius morphism of X over S. See the following diagram.

X

π

((

Fn
X/S ((

FnX

''
X(pn)

��

// X

π
��

S
FnS

// S

We sometimes also write Fn for FnX/S if there is no confusion.

Relative Tate–Shafarevich group Let K be a global function field, let f : A → B be a
homomorphism of abelian varieties over K. Denote

X(A)[f ] = ker(X(f) : X(A)→X(B)).

In the case of the relative Frobenius morphism,

X(A)[Fn] = ker(X(Fn) : X(A)→X(A(pn))).

Denote

X(A)[F∞] =
⋃
n≥1

X(A)[Fn]

as a subgroup of X(A).

In the setting of f : A→ B, we also denote

A[f ] = ker(f : A→ B),

viewed as a group scheme over K. It is often non-reduced in this paper.

Radicial morphisms By [EGA, I, §3.5], a morphism f : X → Y of schemes is called radicial
if one of the following equivalent conditions holds:

(1) the induced map X(L)→ Y (L) is injective for any field L.

(2) f is universally injective; i.e., any base change of f is injective on the underlying topological
spaces.

(3) f is injective on the underlying topological spaces, and for any x ∈ X, the induced extension
k(x)/k(f(x)) of the residue fields is purely inseparable.
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Such properties are stable under compositions, products and base changes.

Vector bundles By a vector bundle on a scheme, we mean a locally free sheaf of finite rank.
By a line bundle on a scheme, we mean a locally free sheaf of rank one.

Cohomology Most cohomologies in this paper are étale cohomology, if there are no specific
explanations. We may move between different cohomology theories, and the situation will be
explained from time to time.

2. Positivity of Hodge bundle

The goal of this section is to prove Theorem 1.1. As sketched in §1.5, the proof consists of
three major steps. Each of these steps takes a subsection in §2.2, §2.3 and §2.4. Before them, we
introduce some basic results about group schemes of constant types in §2.1.

2.1 Group schemes of constant type

Here we collect some basic results about group schemes to be used later.

p-Lie algebras and group schemes Here we recall the infinitesimal Lie theory of [SGA3, VIIA].
For simplicity, we only restrict to the commutative case here. Let S be a noetherian scheme over
Fp. Recall that a commutative p-Lie algebra over S is a coherent sheaf g on S, endowed with an
additive morphism

g −→ g, δ 7−→ δ[p]

which is p-linear in the sense that

(aδ)[p] = apδ[p], a ∈ OS , δ ∈ g.

The additive morphism is called the p-th power map on g. We say that g is locally free if it is
locally free as an OS-module.

We can interpret the p-th power map on g as an OS-linear map as follows. Recall the absolute
Frobenius morphism FS : S → S. The pull-back F ∗Sg is still a vector bundle on S. The additive
map

F ∗S : g −→ F ∗Sg

is p-linear in that F ∗S(aδ) = apF ∗Sδ. It follows that we have a well-defined OS-linear map given
by

F ∗Sg −→ g, F ∗Sδ 7−→ δ[p].

For a commutative group scheme G over S, the OS-module Lie(G/S) of invariant derivations
on G is a natural commutative p-Lie algebra over S. By [SGA3, VIIA, Thm. 7.2, Thm. 7.4, Rem.
7.5], the functor G 7→ Lie(G/S) is an equivalence between the following two categories:

(1) the category of finite and flat commutative group schemes of height one over S,

(2) the category of locally free commutative p-Lie algebras over S.

Here a group scheme G over S is of height one if the relative Frobenius morphism FG/S : G → G(p)

is zero. Furthermore, if G is in the first category, then ΩG/S = e∗ΩG/S and Lie(G/S) are locally
free and canonically dual to each other. Here e : S → G is the identity section. See [SGA3, VIIA,
Prop. 5.5.3].
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For some treatments in special cases, see [Mum2, §15] for the case that S is the spectrum of
an algebraically closed field, and [CGP, §A.7] for the case that S is affine.

Group schemes of constant type The results below, except Lemma 2.1(1), also hold in char-
acteristic zero. We restrict to positive characteristics for simplicity.

Let S be a scheme over a field k of characteristic p > 0. A group scheme (resp. scheme,
coherent sheaf, p-Lie algebra, p-divisible group) G over S is called of constant type over S if it
is isomorphic to the base change (resp. base change, pull-back, pull-back, base change) GS by
S → Spec k of some group scheme (resp. scheme, coherent sheaf, p-Lie algebra, p-divisible group)
G over k. Note that a finite flat group scheme of height one over S is of constant type if and only
if its p-Lie algebra is of constant type.

It is also reasonable to use the term “constant” instead of “of constant type” in the above
definition. However, a “constant group scheme” usually means a group scheme associated to an
abelian group in the literature, so we choose the current terminology to avoid confusion.

Lemma 2.1 Let S be a Noetherian scheme over a field k of characteristic p > 0 with Γ(S,OS) =
k.

(1) Let π : G → S be a finite and flat commutative group scheme of height one over S. If the
p-Lie algebra of G is of constant type as a coherent sheaf over S, then G is of constant type
as a group scheme over S.

(2) Let π : G → S be a finite and flat commutative group scheme over S. If π∗OG is of constant
type as a coherent sheaf over S, then G is of constant type as a group scheme over S.

(3) Let π1 : G1 → S and π2 : G2 → S be finite and flat commutative group schemes of constant
type over S. Then any S-homomorphism between G1 and G2 is of constant type, i.e., equal
to the base change of a unique k-homomorphism between the corresponding group schemes
over k.

Proof. We first prove (1). Denote g = Lie(G/S) and g0 = Γ(S, g). By assumption, the canonical
morphism

g0 ⊗k OS −→ g

is an isomorphism of OS-modules. It suffices to prove that the p-th power map of g comes from a
p-th power map of g0. Note that g0 has a canonical p-th power map coming from global sections
of g, but we do not need this fact.

Note that the p-th power map of g is equivalent to an OS-linear map F ∗Sg → g. It is an
element of

HomOS (F ∗Sg, g) = Γ(S, F ∗S(g∨)⊗OS g)

= Γ(S, (F ∗k (g∨0 )⊗k g0)⊗k OS) = F ∗k (g∨0 )⊗k g0 = Homk(F
∗
k g0, g0).

In other words, it is the base change of a p-th power map of g0. This proves (1).

The proof of (2) is similar. In fact, denote F = π∗OG and F0 = Γ(S, π∗OG). The canonical
morphism

F0 ⊗k OS −→ F
is an isomorphism of OS-modules. Note that the structure of G as a group scheme over S is
equivalent to a structure of F as a Hopf OS-algebra. For these, the extra data on F consist of
an identity map OS → F , a multiplication map F ⊗OS F → F , a co-identity map F → OS , a

10
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co-multiplication map F → F⊗OS F , and an inverse map F → F . There are many compatibility
conditions on these maps. All these maps are OS-linear. We claim that all these maps are coming
from similar maps on F0. For example, the co-multiplication map is an element of

HomOS (F ,F ⊗OS F) = Γ(S,F∨ ⊗OS F ⊗OS F)

= Γ(S, (F∨0 ⊗k F0 ⊗k F0)⊗k OS) = F∨0 ⊗k F0 ⊗k F0 = Homk(F0,F0 ⊗k F0).

This makes F0 a Hopf k-algebra, since the compatibility conditions hold by F0 = Γ(S,F). Finally,
the Hopf algebra F is the base change of the Hopf algebra F0. Then the group scheme G is the
base change of the group scheme corresponding to the Hopf algebra F0.

The proof of (3) is similar by looking at HomOS ((π2)∗OG2 , (π1)∗OG1) with compatibility con-
ditions.

The following result will be used for several times.

Lemma 2.2 Denote S = P1
k for any field k of characteristic p > 0. Let

0 −→ G1 −→ G −→ G2 −→ 0

be an exact sequence of finite and flat commutative group schemes over S. If G1 and G2 are of
constant type, then G is of constant type.

Proof. By Lemma 2.1(2), it suffices to prove that π∗OG is of constant type as a coherent OS-
module. Here π : G → S is the structure morphism. We can assume that k is algebraically closed.
In fact, the property that the canonical map

Γ(S, π∗OG)⊗k OS −→ π∗OG
is an isomorphism can be descended from the algebraic closure of k to k.

Once k is algebraically closed, any finite group scheme over k is a successive extension of
group schemes in the following list:

Z/`Z, Z/pZ, µp, αp.

Here ` 6= p is any prime, and Z/`Z is isomorphic to µ`.

For i = 1, 2, write Gi = Gi ×k S for a finite group scheme Gi over k. By induction, we can
assume that G1 is one of the four group schemes over k in the list. View G as a G1-torsor over
G2. Then G corresponds to a cohomology class in the fppf cohomology group H1

fppf(G2, G1). We
first claim that the natural map

H1
fppf(G2, G1) −→ H1

fppf(G2, G1)

is an isomorphism. If this holds, then G is a trivial torsor, and thus isomorphic to G1 ×k G2 as a
G2-scheme. In particular, it is a scheme of constant type over S.

It remains to prove the claim that the natural map

H1
fppf(G2, G1) −→ H1

fppf(G2, G1)

is an isomorphism. Note the basic exact sequences

0 −→ αp −→ Ga
F−→ Ga −→ 0,

0 −→ Z/pZ −→ Ga
1−F−→ Ga −→ 0,

0 −→ µ` −→ Gm
[`]−→ Gm −→ 0.

11



Xinyi Yuan

In the last one, ` = p is allowed. Then the claim is a consequence of explicit expressions on the
relevant cohomology groups of Ga and Gm over G2 and G2.

Now we compute the cohomology groups of Ga and Gm over G2 and G2. Write R =
Γ(G2,OG2). We first have

H i
fppf(G2,Ga) = H i

Zar(G2,OG2) = H i
Zar(S,R×k OS) = R×k H i

Zar(S,OS).

This gives

H0
fppf(G2,Ga) = R, H1

fppf(G2,Ga) = 0, H0
fppf(G2,Gm) = R×.

To compute H1
fppf(G2,Gm) = H1

et(G2,Gm), denote by I = ker(R → Rred) the nilradical ideal of
R, and by I = ker(OG2 → O(G2)red) the the nilradical ideal sheaf of G2. We have I = I ⊗k OS .
There is an exact sequence of étale sheaves over G2 by

0 −→ 1 + I −→ Gm,G2 −→ Gm,(G2)red −→ 0.

Moreover, 1 + I has a filtration

1 + I ⊃ 1 + I2 ⊃ 1 + I3 ⊃ · · · ,

whose m-th quotient admits an isomorphism given by

(1 + Im)/(1 + Im+1) −→ Im/Im+1, 1 + t 7−→ t.

Those quotients are coherent sheaves over G2. Then we have

H i
et(G2, Im/Im+1) = H i

Zar(G2, Im/Im+1)

= H i
Zar(G2, (I

m/Im+1)⊗k OS) = (Im/Im+1)⊗k H i
Zar(S,OS).

This vanishes for i > 0. As a consequence, H i
et(G2, 1 + I) = 0 for i > 0. Therefore,

H1(G2,Gm) = H1(G2,Gm,(G2)red) = Pic((G2)red) ' Zr,

where r is the number of connected components of G2. For the cohomology over G2, similar
computations give

H0
fppf(G2,Ga) = R, H1

fppf(G2,Ga) = 0, H0
fppf(G2,Gm) = R×, H1

fppf(G2,Gm) = 0.

By these, it is easy to verify the claim.

2.2 The quotient process

The key to the proof of Theorem 1.1 is a quotient process. This quotient process is also introduced
by Rössler [Ros2].

Roughly speaking, if the Hodge bundle ΩA of A is not ample, then we take the maximal nef
subbundle of Lie(A/S) = Ω

∨
A, “lift” it to a local subgroup scheme of A, and take the quotient A1

of A by this subgroup scheme. If the Hodge bundle ΩA1 of A1 is still not ample, then we perform
the quotient process on A1. Repeat this process. We obtain a sequence A,A1, A2, · · · of abelian
varieties over K. The goal here is to introduce this quotient process. We start with some basic
notions of vector bundles, Hodge bundles and Lie algebras.

Vector bundles over a curve Here we review some basic terminologies about stability and
positivity of vector bundles over curves. We will first introduce them for general curves, and then
consider the case of the projective line. A basic reference is [Laz, §6.4].
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Let S be a projective and smooth curve over a field k. Let E be a vector bundle over S, i.e.,
a locally free sheaf of finite rank. The slope of E is defined as

µ(E) =
deg(E)

rank(E)
=

deg(det E)

rank(E)
.

Let F be a coherent subsheaf of E , which is automatically a vector bundle on S. We say that
F is saturated in E if the quotient E/F is torsion-free. Then E/F is also a vector bundle on
S. (In the literature, a saturated subsheaf is also called a subbundle.) Denote by η the generic
point of S. The functor F 7→ Fη is an equivalence of categories from the category of saturated
subsheaves of E to the category of linear subspaces of Eη. The inverse of the functor is F 7→ F ∩E ,
an intersection taken in Eη.

We say that E is stable (resp. semistable) if for any coherent subsheaf of F ⊂ E , one has
µ(F) < µ(E) (resp. µ(F) ≤ µ(E)).

The Harder–Narasimhan filtration of E is the unique filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

of saturated subsheaves of E such that each quotient Ei/Ei−1 is semistable and

µ(E1/E0) > µ(E2/E1) > · · · > µ(Em/Em−1).

The maximal slope and the minimal slope of E are defined as

µmax(E) = µ(E1/E0), µmin(E) = µ(Em/Em−1).

As in [Har1] and [Laz, Chap. 6], the vector bundle E over S is said to be ample (resp. nef ) if
the tautological bundle O(1) over the projective space bundle P(E) is an ample (resp. nef) line
bundle.

If k has characteristic 0, then E is ample (resp. nef) if and only if µmin(E) > 0 (resp.
µmin(E) ≥ 0). This is essentially Hartshorne [Har2, Thm. 2.4]; see also [Laz, Thm. 6.4.15].

If k has characteristic p > 0, this property fails but can be remedied as follows. Define

µ̄max(E) = lim
n→∞

p−nµmax((Fn)∗E),

µ̄min(E) = lim
n→∞

p−nµmin((Fn)∗E).

Here Fn : S → S(pn) is the relative Frobenius morphism. Note that (Fn)∗ may not preserve
the Harder–Narasimhan filtration, but the sequences in both limits are eventually constant by
Langer [Lan, Th. 2.7, p. 259].

We say that E is strongly stable (resp. strongly semistable) if for any coherent subsheaf of
F ⊂ E , one has µ̄(F) < µ̄(E) (resp. µ̄(F) ≤ µ̄(E)).

Finally, by Barton [Bar, Thm. 2.1], the vector bundle E is ample (resp. nef ) if and only if
µ̄min(E) > 0 (resp. µ̄min(E) ≥ 0).

Vector bundles on P1 Now we consider the above terminologies over P1, which turns out
to be very concrete. By the Birkhoff–Grothendieck theorem (cf. [HL, Thm. 1.3.1]), any nonzero
vector bundle E on S = P1 (over any base field k) can be decomposed as

E ' O(d1)⊕O(d2)⊕ · · · ⊕ O(dr),

with uniquely determined integers d1 ≥ d2 ≥ · · · ≥ dr.
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The slope of E is defined as

µ(E) =
deg(E)

rank(E)
=

1

r
(d1 + · · ·+ dr).

We also have the maximal slope and the minimal slope

µmax(E) = d1, µmin(E) = dr.

The bundle E is semistable if µmax(E) = µmin(E).

We easily see that µ̄max = µmax and µ̄min = µmin if k has a positive characteristic.

Under the decomposition, E is ample if and only if dr > 0; E is nef if and only if dr ≥ 0.
Since we are mainly concerned with vector bundles on P1, these can be served as our definitions
of ampleness and nefness.

For any nonzero vector bundle E on S = P1, define the maximal nef subbundle (or just the
nef part) of E to be

Enef = Im(Γ(S, E)⊗k OS → E).

In terms of the above decomposition, we simply have

Enef = ⊕di≥0O(di).

Note that Enef = 0 if and only µmax(E) < 0.

Hodge bundles Let G be a group scheme over a scheme S. The Hodge bundle of G over S is
the OS-module

ΩG = ΩG/S = e∗Ω1
G/S ,

where Ω1
G/S the relative differential sheaf, and e : S → G denotes the identity section of G.

Recall that if G is a finite and flat commutative group scheme of height one over S, then ΩG
and Lie(G/S) are locally free and canonically dual to each other; see [SGA3, VIIA, Prop. 5.5.3].

The definition particularly applies to Néron models of abelian varieties. Let S be a connected
Dedekind scheme, and K be its function field. Let A be an abelian variety over K. Then we write

ΩA = ΩA = ΩA/S .

Here A is the Néron model of A over S.

For Hodge bundles of smooth integral models of abelian varieties, we have the following well-
known interpretation as the sheaf of global differentials. We sketch the idea for lack of a complete
reference.

Lemma 2.3 Let S be an integral scheme. Let π : A → S be a smooth connected group scheme
whose generic fiber is an abelian variety. There are canonical isomorphisms

π∗ΩA/S −→ Ω1
A/S , ΩA/S −→ π∗Ω

1
A/S .

Proof. The first isomorphism follows from [BLR, §4.2, Proposition 2]. For the second map, it is
well-defined using the first isomorphism. To see that it is an isomorphism, it suffices to note the
following three facts:

(1) It is an isomorphism at the generic point of S;

(2) Both ΩA/S and π∗Ω
1
A/S are torsion-free sheaves over S;
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(3) The map is a direct summand, where a projection π∗Ω
1
A/S → ΩA/S is given by applying π∗

to the natural map Ω1
A/S → e∗ΩA/S .

Maximal nef subalgebra The following result gives the notion of a maximal nef p-Lie subal-
gebra of a locally free commutative p-Lie algebra. It is a special case of [Ros2, Lem. 4.4], which
works for general projective and smooth curves S in the stability setting.

Lemma 2.4 Let S = P1
k for a field k of characteristic p > 0. Let g be a locally free commutative

p-Lie algebra over S. Then the maximal nef subbundle gnef of g is closed under the p-th power
map of the Lie algebra g.

Proof. Recall that the p-th power map on g corresponds to an OS-linear map F ∗Sg→ g. Denote
by N the image of F ∗S(gnef) under this map, which gives an OS-linear surjection F ∗S(gnef)→ N .
By definition, gnef is globally generated, so N is also globally generated. We have N ⊂ gnef by
the maximality of gnef . Then we have a well-defined OS-linear map F ∗S(gnef)→ gnef . This finishes
the proof.

Quotient by subgroup scheme Here we describe the quotient construction in the proof of
Theorem 1.1.

Go back to the setting to Theorem 1.1. Namely, k is a finite field of characteristic p, and A
is an abelian variety over K = k(t). The p-Lie algebra Lie(A/S) of the Néron model A of A
is a vector bundle over S, canonically dual to the Hodge bundle ΩA/S . We also have a natural
identity

Lie(A[F ]/S) = Lie(A/S),

where A[F ] = ker(F : A → A(p)) is the kernel of the relative Frobenius morphism.

For the sake of Theorem 1.1, assume that ΩA/S is not ample, or equivalently µmax(Lie(A/S)) ≥
0. Then the maximal nef subbundle Lie(A/S)nef of Lie(A/S) is a nonzero p-Lie subalgebra of
Lie(A/S) by Lemma 2.4. By the correspondence between p-Lie algebras and group schemes,
Lie(A/S)nef corresponds to a finite and flat group scheme A[F ]nef of height one over S, which
is a closed subgroup scheme of A[F ] with p-Lie algebra isomorphic to Lie(A/S)nef . Form the
quotient

A′1 = A/(A[F ]nef),

which is a smooth group scheme of finite type over S. We will have a description of this quotient
process in Theorem 2.8.

Denote by A1 and A[F ]nef the generic fibers of A1 and A[F ]nef . It follows that

A1 = A/(A[F ]nef)

is an abelian variety over K. In general, A′1 may fail to be the Néron model of A1, or even fail
to be an open subgroup scheme of the Néron model. Therefore, take A1 to be the Néron model
of A1 over S.

We will see that there is a natural exact sequence

0 −→ Lie(A/S)nef −→ Lie(A/S) −→ Lie(A′1/S).

It follows that the nef part of Lie(A/S) becomes zero in Lie(A′1/S) and Lie(A1/S). However,
Lie(A1/S) may obtain some new nef part. Thus the quotient process does not solve Theorem 1.1
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immediately. Our idea is that if Lie(A1/S)nef 6= 0, then we can further form the quotient

A′2 = A1/(A1[F ]nef)

and let A2 be the Néron model of the generic fiber of A′2. Repeat the process, we obtain a
sequence

A = A0, A′1, A1, A′2, A2, A′3, A3, · · ·
of smooth group schemes of finite type over S, whose generic fibers are abelian varieties isogenous
to A.

To get more information from the sequence, the key is to consider the height of the above
sequence. We will see that the height sequence is decreasing. Since each term is a non-negative
integer, the height sequence is eventually constant, and thus Lie(An/S)nef is eventually a direct
sum of the trivial bundle OS .

An intermediate result that the quotient process will give us is as follows. The proof will be
given in the next subsection.

Proposition 2.5 Denote K = k(t) and S = P1
k for a field k of characteristic p > 0. Let A be

an abelian variety over K. Then there is an abelian variety B over K, with a purely inseparable
isogeny A→ B, satisfying one of the following two conditions:

(1) The Hodge bundle ΩB is ample.

(2) The Hodge bundle ΩB is nef. Moreover, there is an infinite sequence {Gn}n≥1 of closed
subgroup schemes of the Néron model B of B satisfying the following conditions:

[(a)] for any n ≥ 1, Gn is a finite and radicial group scheme of constant type over S;
[(b)] for any n ≥ 1, Gn is a closed subgroup scheme of Gn+1;
[(c)] the order of Gn over S goes to infinity.

The proposition is philosophically very similar to [Ros2, Prop. 2.6]. These two results are
proved independently, but their proofs use similar ideas. For example, the “maximal nef subal-
gebra” appears in [Ros2, Lem. 4.8], the “quotient process” is used in the proof of [Ros2, Prop.
2.6] in p. 1145-1146 of the paper, and the “control by height”, to be introduced below by us, is
also used in the proof.

2.3 Control by heights

In this subsection, we prove Proposition 2.5. The main tool is the height of a group scheme over
a projective curve.

Heights of smooth group schemes Let S be a projective and smooth curve over a field k,
and let K be the function field of S. Let G be a smooth group scheme of finite type over S. The
height of G is defined to be

h(G) = deg(ΩG/S) = deg(det ΩG/S).

Here the Hodge bundle ΩG/S is the pull-back of the relative differential sheaf Ω1
G/S to the identity

section of G as before.

Let A be an abelian variety over K, and let A be the Néron model of A over S. The height
of A is defined to be

h(A) = deg(ΩA) = deg(ΩA/S) = deg(det ΩA/S).
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If k is finite, this definition was originally used by Parshin and Zarhin to prove the Tate conjecture
of abelian varieties over global function fields. A number field analogue, introduced by Faltings
[Fal] and called the Faltings height, was a key ingredient in his proof of the Mordell conjecture.

Theorem 2.6 Let S be the projective and smooth curve over a field k. Let G be a smooth group
scheme of finite type over S whose generic fiber A is an abelian variety. Then h(G) ≥ h(A) ≥ 0.
Moreover, the following hold:

(1) h(G) = h(A) if and only if G is an open subgroup of the Néron model of A over S.

(2) h(G) = 0 if and only if G is isotrivial over S, i.e., for some finite étale morphism S′ → S,
the base change G ×S S′ is constant over S′.

Proof. We first treat the inequality h(G) ≥ h(A). Denote by A the Néron model of A over S. By
the Néron mapping property, there is a homomorphism τ : G → A which is the identity map on
the generic fiber. It induces morphisms ΩA/S → ΩG/S and det(ΩA/S)→ det(ΩG/S) of locally free
OS-modules. The morphisms are isomorphisms at the generic point of S, and thus are injective
over S. Taking degrees, we have h(A) ≤ h(G).

If h(A) = h(G), then det(ΩA/S) → det(ΩG/S) is an isomorphism, and thus ΩA/S → ΩG/S is
also an isomorphism. By Lemma 2.3, the natural map τ∗ΩA/S → ΩG/S is also an isomorphism.
Consequently, τ : G → A is étale. Then it is an open immersion since it is an isomorphism
between the generic fibers.

Part (2) is essentially due to Moret-Bailly. We first check h(A) ≥ 0. If A is semi-abelian, then
h(A) ≥ 0 by [MB2, IX, Thm. 2.1] or [FC, §V.2, Prop. 2.2]. In general, by the semistable reduction
theorem, there is a finite extension K ′ of K = k(S) such that AK′ has everywhere semi-abelian
reduction over the normalization S′ of S in K ′. It follows that h(AS′) ≥ h(AK′) ≥ 0, and thus
h(A) ≥ 0.

If h(G) = 0, the above arguments already imply that G is an open subgroup scheme of the
Néron model of A, and A has everywhere semi-abelian reduction. Now the result follows from
[MB2, XI, Thm. 4.5] or [FC, §V.2, Prop. 2.2]. This finishes the proof.

Remark 2.7 If k is finite, then there is a Northcott property for the height of abelian varieties,
as an analogue of [FC, Chap. V, Prop. 4.6] over global function fields. This is the crucial property
which makes the height a powerful tool in Diophantine geometry, but we do not use this property
here.

Height under purely inseparable isogenies Here we prove a formula on the change of height
under purely inseparable isogenies of smooth group schemes. We start with the following result
about a general quotient process.

Theorem 2.8 Let G be a smooth group scheme of finite type over a Dedekind scheme S, and let
H be a closed subgroup scheme of G which is flat over S. Then the fppf quotient G′ = G/H is a
smooth group scheme of finite type over S, and the quotient morphism G → G′ is faithfully flat.

Proof. The essential part follows from [Ana, Thm. 4.C], which implies that the quotient G′ is
a group scheme over S. It is easy to check that G′ is flat over S. In fact, since G is flat over
S, the sheaf OG contains no OS-torsion. Since G → G′ is an epimorphism, OG′ injects into OG,
and thus contains no OS-torsion either. Then G′ is flat over S. To check that G′ is smooth over
S, it suffices to check that for any geometric point s of S, the fiber G′s is smooth. Since Gs is
reduced and Gs → G′s is an epimorphism, G′s is reduced. Then G′s is smooth since it is a reduced

17



Xinyi Yuan

group scheme over an algebraically closed field. This checks that G′ is smooth over S. Moreover,
Gs → G′s is flat as Gs is an Hs-torsor over G′s. It follows that G → G′ is flat by [EGA, IV-3, Thm.
11.3.10]. This finishes the proof.

Now we introduce a theorem to track the change of heights of abelian varieties under the
quotient process. The result is similar to [Ros2, Lem. 4.12].

Theorem 2.9 Let S be a Dedekind scheme over Fp for a prime p. Let A be a smooth group
scheme of finite type over S. Let G be a closed subgroup scheme of A[F ] which is flat over S,
and denote by B = A/G the quotient group scheme over S. Then the following hold:

(1) There is a canonical exact sequence

0 −→ Lie(G/S) −→ Lie(A/S) −→ Lie(B/S) −→ F ∗SLie(G/S) −→ 0

of coherent sheaves over S. Here FS : S → S is the absolute Frobenius morphism.

(2) If S is a projective and smooth curve over a field k of characteristic p > 0, then

h(B) = h(A)− (p− 1) deg(Lie(G/S)).

Proof. Part (2) is a direct consequence of part (1) by ΩA/S = Lie(A/S)∨. The major problem is
to prove part (1). Consider the commutative diagram:

0 // G //

F
��

A //

F
��

B

F
��

// 0

0 // G(p) // A(p) // B(p) // 0

Both rows are exact. The relative Frobenius F : G → G(p) is zero as G has height one. By the
snake lemma, we have an exact sequence

0 −→ G −→ A[F ] −→ B[F ] −→ G(p) −→ 0.

The Lie algebra of this sequence is exactly the sequence of the theorem.

It suffices to check the general fact that the Lie functor from the category of finite and flat
commutative group schemes of height one over S to the category of p-Lie algebras is exact. In
fact, if

0 −→ H1 −→ H −→ H2 −→ 0

is an exact sequence in the first category, then we first get a complex

0 −→ Lie(H1/S) −→ Lie(H/S)−→Lie(H2/S) −→ 0

of locally free sheaves over S. By the canonical duality between the Lie algebra and the Hodge
bundle, the Lie functor commutes with base change. For any point s ∈ S, consider the fiber of
the complex of Lie algebras above s. It is exact by counting dimensions, since dim Lie(Hs/s)
equals the order of Hs and the order is additive under short exact sequences. This shows that
the complex is fiber-wise exact. Then the complex is exact. This finishes the proof.

Stationary height Now we prove Proposition 2.5. Let A = A0 be as in the proposition. By
the quotient process, we obtain a sequence

A0, A′1, A1, A′2, A2, · · ·
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of abelian varieties over K. Here for any n ≥ 0,

A′n+1 = An/An[F ]nef

and An+1 is the Néron model of the generic fiber of A′n+1. We know that A′n is a smooth group
scheme of finite type over S by Theorem 2.8.

By Theorem 2.6, h(An) ≤ h(A′n). By Theorem 2.9(2),

h(A′n+1) = h(An)− (p− 1) deg(Lie(An/S)nef) ≤ h(An).

It follows that the sequence

h(A0), h(A′1), h(A1), h(A′2), h(A2), · · ·

is decreasing. Note that each term of the sequence is a non-negative integer by Theorem 2.6.
Therefore, there is an integer n0 ≥ 0 such that

h(A′n) = h(An) = h(An0), ∀ n ≥ n0.

It follows that for any n ≥ n0, A′n is an open subgroup scheme of An and

deg(Lie(An/S)nef) = deg(Lie(A′n/S)nef) = 0.

As a consequence, for any n ≥ n0, Lie(An/S)nef is a direct sum of copies of the trivial bundle
OS , and ΩAn/S = Lie(An/S)∨ is nef. Moreover, ΩAn/S is ample if and only if An → An+1 is an
isomorphism.

For Proposition 2.5, if none of ΩAn/S is ample, take B = An0 . The group scheme ker(An0 →
An) has a degree going to infinity. It is of constant type over S, as an easy consequence of Lemma
2.1(1) and Lemma 2.2. This proves Proposition 2.5.

2.4 Lifting p-divisible groups

In this subsection, we prove Theorem 1.1. Note that we have already proved Proposition 2.5. To
finish the proof, it suffices to prove the following result:

Proposition 2.10 Denote K = k(t) and S = P1
k for a finite field k of characteristic p. Let A

be a smooth group scheme of finite type over S whose generic fiber A is an abelian variety over
K. Assume that there is an infinite sequence {Gn}n≥1 of closed subgroup schemes of A satisfying
the following conditions:

(a) for any n ≥ 1, Gn is a finite group scheme of constant type over S;

(b) for any n ≥ 1, Gn is a subgroup scheme of Gn+1;

(c) the order of Gn over S is a power of p and goes to infinity.

Then the (K/k)-trace of A is non-trivial.

We refer to Conrad [Con] for Chow’s theory of (K/k)-traces. Before proving Proposition
2.10, let us see how Proposition 2.5 and Proposition 2.10 imply Theorem 1.1. Let A be as in
Theorem 1.1. Apply Proposition 2.5 to A, which gives an abelian variety B over K with a purely
inseparable isogeny A → B. If B satisfies Proposition 2.5(1), the result already holds. If B
satisfies Proposition 2.5(2), apply Proposition 2.10 to the Néron model B of B. Then B has a
non-trivial (K/k)-trace, and thus A also has a non-trivial (K/k)-trace A0, which is an abelian
variety over k with a homomorphism A0,K → A. By [Con, Theorem 6.4], the homomorphism
A0,K → A is an isogeny to its image A′. Note that A is isogenous to A0,K ×K (A/A′). Apply the
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same process to the abelian variety A/A′ over K. Note that the dimension of A/A′ is strictly
smaller than that of A. The process eventually terminates. This proves Theorem 1.1.

The p-divisible group To prove Proposition 2.10, the first step is to change the direct system
{Gn}n to a nonzero p-divisible group. For the basics of p-divisible groups, we refer to Tate [Tat2].

Let S be any scheme. A direct system {Gn}n≥1 of flat group schemes over S is called an
increasing system if the transition homomorphisms are closed immersions. A subsystem of the
increasing system {Gn}n≥1 is an increasing system {Hn}n≥1 over S endowed with an injection
lim−→Hn → lim−→Gn as fppf sheaves over S.

There is a description of subsystem in terms of group schemes without going to the limit
sheaves. In fact, an injection lim−→Hn → lim−→Gn as fppf sheaves over S is equivalent to a sequence
{φn : Hn → Gτ(n)}n≥1 of injections, compatible with the transition maps Hn → Hn+1 and
Gτ(n) → Gτ(n+1) for each n ≥ 1, where {τ(n)}n≥1 is an increasing sequence of positive integers.
For each n ≥ 1, to find τ(n), it suffices to note that the identity map in : Hn → Hn is an element
of Hn(Hn) ⊂ H∞(Hn) ⊂ G∞(Hn), and thus it is contained in some Gτ(n)(Hn). This gives a
morphism Hn → Gτ(n).

We have the following basic result.

Lemma 2.11 Let k be any field of characteristic p > 0. Let {Gn}n≥1 be an increasing system of
finite commutative group schemes of p-power order over k. Assume that the order of Gn goes to
infinity as n→∞, but the order of Gn[p] is bounded as n→∞. Then {Gn}n≥1 has a subsystem
{Hn}n≥1 which is a nonzero p-divisible group over k.

Proof. The idea can be easily illustrated in terms of abelian groups. Assume for the moment
that {Gn}n≥1 is an increasing system of abelian groups satisfying similar conditions. Let G∞ be
the direct limit of {Gn}n≥1. By definition, G∞ is an infinite torsion group whose element has p-
power orders, but G∞[p] is finite. A structure theorem asserts that G∞ ' (Qp/Zp)

r⊕F for some
positive integer r and some finite group F . Then H∞ = (Qp/Zp)

r is the subgroup of G∞ that
gives us a p-divisible group. This subgroup consists of exactly the infinitely divisible elements of
G∞, and thus can be extracted as H∞ = ∩a≥1p

aG∞. Then Hm = H∞[pm] = ∩a≥1(paG∞)[pm]
for any m ≥ 1.

Go back to the group schemes Gn in the lemma. By assumption, the order of Gn[p] is bounded
by some integer pr. For any m, the order of Gn[pm] is bounded by pmr, which can be checked by
induction using the exact sequence

0 −→ Gn[p] −→ Gn[pm+1]
[p]−→ Gn[pm].

Since the order of Gn goes to infinity, the exact exponent of Gn, which is the smallest positive
integer Nn such that the multiplication [Nn] : Gn → Gn is the zero map, also goes to infinity.

Now we construct the p-divisible group. Denote G∞ = lim−→Gn as an fppf sheaf over Spec(k).
Denote H∞ = ∩a≥1p

aG∞ as a subsheaf of G∞. Denote Hm = H∞[pm] as a subsheaf of H∞ for
any m ≥ 1. We claim that the system {Hm}m≥1, where the transition maps are injections as
subsheaves of H∞, is a nonzero p-divisible group over k.

First, every Hm is representable by a finite group scheme over k. In fact, Hm is the inter-
section of the decreasing sequence {(paG∞)[pm]}a≥1. Since the order of {Gn[pm]}n is bounded,
the increasing sequence {(paGn)[pm]}n of finite group schemes is eventually stationary. This sta-
tionary term is exactly (paG∞)[pm]. The sequence {(paG∞)[pm]}a≥1 of finite group schemes is
decreasing, and thus eventually stationary. This stationary term is exactly Hm.
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Second, H1 6= 0. Otherwise, (paG∞)[p] = 0 for some a ≥ 1. Then paG∞ = 0 and thus
paGn = 0 for all n. This contradicts to the fact that the exponent of Gn goes to infinity. Thus
H1 6= 0.

By definition, the map [pm] : H∞ → H∞ is surjective with kernel Hm. It follows that the
morphism [pm] : Hm+1 → Hm+1 has kernel Hm and image H1. This implies that {Hm}m≥1 is a
p-divisible group. This finishes the proof.

Remark 2.12 If k is perfect, one can prove the lemma by Dieudonné modules. In fact, take the
covariant Dieudonné module of the sequence {Gn}n≥1, apply the above construction of abelian
groups to the Dieudonné modules, and transfer the result back to get a p-divisible group by the
equivalence between finite group schemes and Dieudonné modules.

Algebraicity Now we prove Proposition 2.10. Recall that we have an increasing system {Gn}n
of finite and flat closed subgroup schemes of A of constant type. The transition maps are neces-
sarily of constant type by Lemma 2.1(3). Thus {Gn}n is the base change of an increasing system
{Gn}n of finite group schemes over k. By Lemma 2.11, the system {Gn}n has a subsystem
H∞ = {Hn}n, which is a nonzero p-divisible group over k. Denote by H∞ = {Hn}n the base
change of {Hn}n to S, which is a p-divisible group over S, and also a subsystem of {Gn}n. Then
H∞ = {Hn}n is a subsystem of A[p∞] = {A[pn]}n. We are going to “lift” H∞ = {Hn}n to an
abelian scheme over S of constant type.

By [Con, Thm. 6.6], the (K/k)-trace of AK is nonzero if and only if the (Kk′/k′)-trace of
AK′ is nonzero for any extension k′/k. Therefore, in the proposition, we can replace k by any
finite extension. In particular, we can assume that there is a point s ∈ S(k) such that A has
good reduction at s. The fiber C = As is an abelian variety over k, and the p-divisible group
C[p∞] has a p-divisible subgroup H∞,s, which is canonically isomorphic to H∞. We will prove
that Hom(CK , A) 6= 0 from the fact that they share the same p-divisible subgroup H∞,K .

To proceed, we need two fundamental theorems on p-divisible groups of abelian varieties over
finitely generated fields.

Theorem 2.13 Let K be a finitely generated field over a finite field Fp. Let A and B be abelian
varieties over K. Then the canonical map

Hom(A,B)⊗Z Zp −→ Hom(A[p∞], B[p∞])

is an isomorphism.

Theorem 2.14 Let A be an abelian variety over a finite field k of characteristic p > 0. Then
the p-divisible group A[p∞] is semi-simple, i.e., isogenous to a direct sum of simple p-divisible
groups over k.

The more classical `-adic analogues of theorems are the Tate conjectures and the semi-
simplicity conjecture proved by Tate and Zarhin. For the current p-adic version, Theorem 2.13 for
a finite field K and Theorem 2.14 can be proved by an easy modification of the `-adic argument
of Tate [Tat1]. For general K, Theorem 2.13 is proved by de Jong [Jon]. For convenience readers,
we sketch a proof of Theorem 2.14 later.

Return to the proof of Proposition 2.10. By Theorem 2.14, the injection H∞ → C[p∞] im-
plies the existence of a surjection C[p∞] → H∞. Take a base change to K and compose with
H∞,K → A[p∞]. We have a nonzero element of Hom(CK [p∞], A[p∞]). By Theorem 2.13, we have
Hom(CK , A) 6= 0. This proves the proposition.
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Now we sketch a proof of Theorem 2.14. We refer to [Mil6, IV, Thm. 2.5] for a modern
treatment of the `-adic version, which we will modify to the current p-adic version.

Proof of Theorem 2.14. The key is still the fact that there are only finitely abelian varieties
(up to isomorphism) of a fixed dimension over a fixed finite field. This essentially follows from
Zarhin’s trick. See [Mil6, I, Cor. 3.13] for example.

Let G be a p-divisible subgroup of A[p∞], and we are going to prove that G has a complement
in A[p∞] up to isogeny. Denote An = A/G[pn], and denote by fn : A→ An the quotient map. By
the finiteness, there is an abelian variety B over k and an infinite set Σ of positive integers such
that An is isomorphic to B for any n ∈ Σ. By the isomorphism, we obtain an isogeny fn : A→ B
with ker(fn) = G[pn] for any n ∈ Σ.

By compactness, replacing Σ by an infinite subset if necessary, we can assume that fn con-
verges to f ∈ Hom(A,B) ⊗Z Zp for n ∈ Σ. By definition, the kernel of f [p∞] : A[p∞] → B[p∞]
is exactly G. This result corresponds to [Mil6, IV, Lem. 2.4].

The rest of the proof is similar to [Mil6, IV, Thm. 2.5(a)]. In fact, composed with an isogeny
B → A, the element f gives an element g ∈ End(A) ⊗Z Zp. The algebra R = End(A) ⊗Z Qp is
semisimple over Qp, so the left ideal Rg is generated by an idempotent e ∈ R. Then ker(e[p∞])
is isogenous to G. Now we have a decomposition

A[p∞] = ker(e[p∞])⊕ ker((1− e)[p∞]),

which is understood up to isogeny. This finishes the proof.

Alternative proof In the following, we sketch an alternative proof of a weaker result of
Proposition 2.10, which is kindly suggested by an anonymous referee.

The weaker result is obtained from Proposition 2.10 by adding the extra assumptions that
A is simple over K and that A is semi-abelian over S. The weaker result implies Theorem 1.1
under the extra assumption that A has semi-abelian reduction over S, but this is sufficient for
the applications to the other theorems listed in the introduction.

Denote by Gn = (Gn)K the generic fiber over K in the following.

First, the sequence h(A/Gn) is constant by Theorem 2.9. Then the Northcott’s theorem
described in Remark 2.7 implies that A/Gn is isomorphic to an abelian scheme A′ over K
for infinitely many n. Assume that this holds for all n ≥ 1 by taking a subsequence. Denote
G′n = Gn/G1. Then A′/G′n is isomorphic to A′ for all n.

Replacing (A,Gn) by (A′, G′n), we can assume that A/Gn is isomorphic to A for all n.

Second, we claim that the result holds if the order of (Gn)red is not bounded as n → ∞. In
fact, since k is perfect, the reduced structure of a group scheme over k is again a group scheme;
see [Mil5, p. 157, Thm. 10.25]. As Gn is of constant type, we have a closed subgroup scheme
(Gn)red of Gn, which is the maximal étale subgroup scheme of Gn over S. If the order of (Gn)red

is not bounded, then there are infinitely many Kk̄-points of A. This implies the (K/k)-trace of
A is non-trivial by the Lang–Néron theorem (cf. [Con, Thm. 2.1]).

Third, if the order of (G∨n )red is not bounded as n→∞, then the result also holds. In fact, it
suffices to note that G∨n is a closed subgroup scheme of A∨. Apply the above argument to A∨.

By these two steps, we can assume that both the orders of (Gn)red and (G∨n )red are bounded.
Then we can further assume that both (Gn)red and (G∨n )red are trivial by taking subgroup schemes.
In other words, Gn is of local-local type in the sense that both Gn and G∨n are supported at the
identity sections.
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Fourth, we prove that A is an abelian scheme over S. Otherwise, let s ∈ S be a closed point
such that As is not proper over s. By assumption, A is semi-abelian over S, so As contains a
non-trivial maximal torus T over k(s). Denote by φ : A → A an endomorphism with kernel
Gn, and assume that Gn is non-trivial. As Gn is of local-local type, the induced endomorphism
φT : T → T is injective, and thus an isomorphism. Denote by P (t) the characteristic polynomial
of φ|T over the character group Homk̄(s)(T,Gm), which is a free Z-module of finite rank. Then
P (0) = ±1 and P (φ|T ) = 0. Consider the endomorphism P (φ) : A → A. Take a prime ` 6= p.
There is a canonical injection T [`n](k̄(s))→ A[`n](Ks). The image of this injection is annihilated
by P (φ). Thus P (φ) : A → A annihilates infinitely many points of A(Ks). By assumption, A is
simple, and thus P (φ) = 0. By P (0) = ±1, we see that φ is invertible. This is a contradiction,
since ker(φ) is non-trivial.

The above step is the core of the argument, which appears in the proof of [Ros2, Thm. 2.10].

Fifth, A has a nontrivial (K/k)-trace. Take a prime ` 6= p as above. The scheme A[`n] is
étale over S, since A is an abelian scheme over S. Since Sk̄ = P1

k̄
has no non-trivial finite étale

coverings, A[`n]k̄ is a disjoint union of finitely many P1
k̄
. Each copy of P1

k̄
gives a Kk̄-point of

A. There are infinitely many such points by varying n. This implies the (K/k)-trace of A is
non-trivial by the Lang–Néron theorem again.

3. Purely inseparable points on torsors

The goal of this section is to prove Theorem 1.3. In §3.1, we review some basic results on torsors.
In §3.2, we prove Theorem 1.3. In §3.3, we discuss about the possibility to generalize Theorem
1.1 to more general base field K.

3.1 Preliminary results on torsors

Néron model of locally trivial torsor Let S be a Dedekind scheme and K be its function
field. Let X be a smooth and separated scheme of finite type over K. Recall from [BLR, §1.2,
Def. 1] that a Néron model X of X is a smooth and separated S-scheme of finite type with a
K-isomorphism X → XK satisfying the Néron mapping property that, for any smooth S-scheme
Y and any K-morphism YK → X, there is a unique S-morphism Y → X extending the morphism
YK → X. It is immediate that a Néron model is unique if it exists.

The main goal of [BLR] is a complete and modern proof of the statement that any abelian
variety over K admits a Néron model. Implicitly, the book contains the following result for locally
trivial torsors of abelian varieties.

Theorem 3.1 Let A be an abelian variety over K and X be an A-torsor over K. Assume that X
is trivial over the completion Kv of K with respect to the discrete valuation induced by any closed
point v ∈ S. Then X (resp. A) admits a unique Néron model X (resp. A) over S. Moreover, the
torsor structure A ×K X → X extends uniquely to an S-morphism A×S X → X , which makes
X an A-torsor.

Proof. We sketch a proof for the X -part in the following.

(1) The local Néron model exists. Namely, for any closed point v ∈ S, the Néron model XOS,v
of X over the local ring OS,v exists. Moreover, XOS,v is a natural AOS,v -torsor over OS,v. It
is a consequence of [BLR, §6.5, Rem. 5] by taking R = OS,v and R′ to be the completion of
OS,v.
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(2) The global Néron model X over S exists by patching the local ones. This follows from [BLR,
§1.4, Prop. 1].

(3) The torsor structure extends to (A,X ). By the Néron mapping property, the torsor structure
map A ×K X → X extends uniquely to a morphism A ×S X → X . To see the later gives
a torsor structure, we need to verify that the induced map A ×S X → X ×S X is an
isomorphism. This is true because it is true over OS,v for every v.

We can also define Hodge bundles of Néron models of torsors. In fact, in the setting of
Theorem 3.1, define the Hodge bundle associated to X to be

ΩX = ΩX/S = π′∗Ω
1
X/S .

Here π′ : X → S is the structure morphism. If X = A, this agrees with the definition of Hodge
bundles of abelian varieties in §2.2 by viewing A as an abelian variety by Lemma 2.3.

Similar to Lemma 2.3, the natural morphism

π′∗ΩX/S −→ Ω1
X/S

is an isomorphism. In fact, take a faithfully flat base change S′ → S trivializing X . Then the
map becomes an isomorphism after the base change, and it is an isomorphism before the base
change by the flat descent.

The following result asserts that ΩX is a vector bundle on S which has very similar numerical
property as ΩA.

Lemma 3.2 Let ψ : S′ → S be a morphism such that the S-torsor X is trivial over S′. Then
there is a natural isomorphism

ψ∗ΩX/S −→ ψ∗ΩA/S

of OS′-modules, depending on the choice of an S-morphism S′ → X .

Proof. Take the base change ψ : S′ → S which trivializes X . Denote

X ′ = X ×S S′, A′ = A×S S′.

The base change gives a canonical section S′ ↪→ X ′ lifting S′ → X . Using this section, we can
view the A′-torsor X ′ as a group scheme over S′. It follows that

ψ∗ΩX/S = (Ω1
X/S)|S′ ' (Ω1

X ′/S′)|S′ ' (Ω1
A′/S′)|S′ ' ψ

∗ΩA/S .

The result follows.

Functoriality and base change We first present a basic result on the relative Frobenius
morphism of abelian varieties. Let A be an abelian variety over a field K of characteristic p.
Consider the following two maps:

(1) (Functoriality map) The map

H1(Fn) : H1(K,A) −→ H1(K,A(pn))

induced by the relative Frobenius morphism Fn : A → A(pn) via functoriality. It sends an
A-torsor X to the A(pn)-torsor X/(A[Fn]), where A[Fn] is the kernel of Fn : A→ A(pn).
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(2) (Base change map) The map

(FnK)∗ : H1(K,A) −→ H1(K,A(pn))

induced by the morphism FnK : SpecK → SpecK of schemes, where A(pn) is viewed as
the pull-back of the étale sheaf A via FnK . It sends an A-torsor X to the A(pn)-torsor
X(pn) = X ×K (K,FnK).

Lemma 3.3 The above maps H1(Fn) and (FnK)∗ are equal.

Proof. We first present a geometric interpretation, which can be turned to a rigorous proof.
Recall the relative Frobenius morphism X → X(pn). The action of A on X induces an action of
A[Fn] on X. The quotient map of the latter action is exactly X → X(pn).

We can also prove the result in terms of cocycles for Galois cohomology. In fact, for any torsor
X ∈ H1(K,A), take a point P ∈ X(Ksep). By definition, X is represented by the cocycle

Gal(Ksep/K) −→ A(Ksep), σ 7−→ P σ − P.

Then Fn(P ) is a point in X(pn). This point gives a cocycle representing X(pn) by

σ 7−→ Fn(P )σ − Fn(P ) = Fn(P σ − P ) ∈ A(pn)(Ksep),

which is exactly the image of H1(Fn). This proves that the maps are equal.

3.2 Purely inseparable points

In this subsection, we prove Theorem 1.3 and Corollary 1.4. For convenience, we duplicate The-
orem 1.3 in the following.

Theorem 3.4 (Theorem 1.3) Let S be a projective and smooth curve over a perfect field k of
characteristic p > 0, and K be the function field of S. Let A be an abelian variety over K. Then
the following are true:

(1) If S = P1
k, A has everywhere good reduction over S, and the Hodge bundle of A is nef over

S, then X(A)[F∞] = 0.

(2) If A has everywhere semi-abelian reduction over S and the Hodge bundle of A is ample over
S, then X(A)[F∞] = X(A)[Fn0 ] for some positive integer n0.

The corollary Now we deduce Corollary 1.4 from Theorem 1.1 and Theorem 1.3, which is
duplicated below.

Corollary 3.5 (Corollary 1.4) Let S be a projective and smooth curve over a finite field k,
and K be the function field of S. Let A be an abelian variety over K. Then X(A)[F∞] is finite
in each of the following cases:

(1) A is an elliptic curve over K;

(2) S = P1
k and A has everywhere semi-abelian reduction over P1

k;

(3) A is an ordinary abelian variety over K, and there is a place of K at which A has good
reduction with p-rank 0.

We first prove (1). Let K ′ be a finite Galois extension of K. By the inflation-restriction exact
sequence, we see that the kernel of X(A) → X(AK′) is annihilated by [K ′ : K]. This kernel is
actually finite by Milne [Mil2]. Consequently, we can replace K by any finite Galois extension,
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and we can particularly assume that A has everywhere semi-abelian reduction over S. Note that
ΩA is a line bundle over S. The height h(A) = deg(ΩA) ≥ 0, where the equality holds only if A
is isotrivial. This is a classical fact for elliptic curves, but we also refer to [FC, §V.2, Prop. 2.2]
(and Theorem 2.6 below) for the case of abelian varieties. If h(A) ≥ 0, we can apply Theorem
1.3 to finish the proof. If h(A) = 0, then A is isotrivial, and we can assume that A is constant
by a finite extension. Then the whole X(A) is finite by Milne [Mil1].

For (3), by the above argument, we can assume that A has everywhere semi-abelian reduction
over S. Then the Hodge bundle ΩA is ample by Rössler [Ros1, Thm. 1.2].

Now we prove (2). Let A be as in Corollary 1.4. The goal is to prove that X(A)[F∞] is finite.
By Theorem 1.1, there is an isogeny f : A → A′ with A′ = B ×K CK , where C is an abelian
variety over k, and B is an abelian variety over K with an ample Hodge bundle over P1

k.

By Theorem 1.3, X(CK)[F∞] = 0 and X(B)[F∞] has a finite exponent. Then X(A′)[F∞]
is annihilated by pn0 for some n0. Taking Galois cohomology on the exact sequence

0 −→ ker(f)[Ks] −→ A(Ks) −→ A′(Ks) −→ 0,

we see that the kernel of X(A)[F∞]→X(A′)[F∞] is annihilated by deg(f). Thus X(A)[F∞] is
annihilated by pn0 deg(f). It is finite by Milne [Mil2] again. This proves Corollary 1.4.

Map of differentials In the following, we prove Theorem 1.3. Our proof is inspired by an
idea of Rössler [Ros1], which in turn comes from an idea of Kim [Kim]. We refer back to §1.5 for
a quick idea of our proof.

We first introduce some common notations for part (1) and (2). Fix an elementX ∈X(A)[F∞].

Then X ∈X(A)[Fn] for some n ≥ 1. We need to bound n to some extent. Denote Kn = K
1
pn ,

viewed as an extension of K. By Lemma 3.3, the base change XKn is a trivial AKn-torsor.
Therefore, the set X(Kn) is non-empty.

Take a point of X(Kn), which gives a closed point P of X. Denote by X the Néron model
of X over S. Let P0 be the Zariski closure of P in X . Let P be the normalization of P0. By
definition, P and P0 are integral curves over k, endowed with quasi-finite morphisms to S.

If X is non-trivial in X(A), then P is not a rational point over K. It follows that the
morphism ψ : P → S is a non-trivial purely inseparable quasi-finite morphism over k. We are
going to bound the degree of this morphism.

Start with the canonical surjection

τ0 : (Ω1
X/S)|P0 −→ Ω1

P0/S
.

As P0 is purely inseparable over S, we have a canonical isomorphism

Ω1
P0/k

−→ Ω1
P0/S

.

Then we rewrite τ0 as

τ0 : (Ω1
X/S)|P0 −→ Ω1

P0/k
.

By pull-back to the normalization P → P0, we obtain a nonzero morphism

τ : (Ω1
X/S)|P −→ Ω1

P/k.

Here the restrictions to P really mean pull-backs, since P → X may not be an immersion but a
quasi-finite morphism.
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Denote by ψ : P → S the natural morphism. By Lemma 3.2, we have a canonical isomorphism

(Ω1
X/S)|P −→ ψ∗ΩA/S .

Therefore, the nonzero map τ becomes

τ : ψ∗ΩA/S −→ Ω1
P/k.

It is a morphism of vector bundles on P.

Proof of part (1) With the above map τ , it is very easy to prove part (1).

In fact, by the assumption in (1), A is an abelian scheme over S, so X is proper and smooth
over S. Then P0 and P are proper curves over k. In particular, P is a proper and regular curve
over (the perfect field) k with a finite, flat and radicial morphism ψ to S = P1

k. Thus P is
isomorphic to P1

k, under which ψ becomes a relative Frobenius morphism.

The nonzero map τ gives

µmin

(
ψ∗ΩA/S

)
≤ deg

(
Ω1
P/k

)
= −2.

By assumption, ΩA/S is nef, so the left-hand side is non-negative. This is a contradiction, which
is originally caused by the assumption that X is non-trivial. Part (1) is proved.

Proof of part (2) For part (2) of Theorem 1.3, we do not have the assumption that A → S
is proper, and thus we lose the properness of P0 and its normalization P. To resolve the problem,
we use a result of Rössler [Ros1] to “compactify” τ , which is in turn a consequence of the
degeneration theory of Faltings–Chai [FC].

Resume the above notations. We still have a nonzero map

τ : ψ∗ΩA/S −→ Ω1
P/k.

Here P is still a smooth curve over k. Denote by Pc the unique smooth compactification of P over
k. We obtain a finite, flat and radicial morphism ψc : Pc → S. This is still a relative Frobenius
morphism.

Denote by E0 the reduced closed subscheme of S consisting of v ∈ S such that A is not proper
above v. Denote by E the reduced structure of the preimage of E0 under the map Pc → S. We
have the following extension.

Proposition 3.6 The map τ : ψ∗ΩA/S −→ Ω1
P/k extends uniquely to a nonzero map

τ c : (ψc)∗ΩA/S −→ Ω1
Pc/k(E).

It is easy to see how the proposition finishes proving part (2) of Theorem 1.3. Since S is not
assumed to be P1, we need to use µ̄min replacing µmin for the ampleness. See the beginning of
§2.2 for a quick review of the terminology.

The proof is still similar to [Ros1]. In fact, the existence of the map τ c gives

µ̄min

(
(ψc)∗ΩA/S

)
≤ deg

(
Ω1
Pc/k(E)

)
.

This is just

deg(ψc) · µ̄min(ΩA/S) ≤ 2g − 2 + deg(E0)− 2.
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Here g is the genus of S. Note that deg(ψc) = [K(P ) : K]. It follows that K(P ) is contained in
Kn0 , where n0 is the largest integer satisfying

pn0 · µ̄min(ΩA/S) ≤ 2g − 2 + deg(E0)− 2.

By Barton [Bar, Thm. 2.1], µ̄min(ΩA/S) > 0 since ΩA/S is ample. This gives an upper bound of
n0. This gives (2) of the theorem.

Proof of the extension Now we prove Proposition 3.6. The uniqueness is trivial. For the
existence, note that the map can be extended as

(ψc)∗ΩA/S −→ Ω1
Pc/k(mE)

for sufficiently large integers m. The multiplicity m represents the order of poles allowed along
E, and the case m = 1 is exactly the case of log-differentials. Our proof takes a lot of steps of
reductions.

To control the poles, it suffices to verify the result locally; i.e., we can replace S by its
completion at a point in E, and replace everything else in the maps by its corresponding base
change. To avoid overwhelming notations, we will still use the original notations, but note that
we will be in the local situation. As a consequence (of assuming this local situation), X is a trivial
torsor, so we assume that X = A and X = A. Since we have the trivial torsor, our situation is
very similar to the situation of Rössler [Ros1].

Lemma 3.7 (Rössler) Assume further that A has a principal polarization and A(K)[n] ⊂
A(K) for some n > 2 coprime to p. Then the map γ extends to a map

γc : (ψc)∗ΩA −→ Ω1
Pc/k(E).

Proof. This is essentially [Ros1, Lem. 2.1], except that we are in the local case, but it does not
make any essential difference in the proof. The extension is obtained by applying the compacti-
fication result of [FC]. For convenience of readers, we sketch the proof here.

Denote U = S−E0. Then A is proper over U . Since S is the spectrum of a complete discrete
valuation ring by our assumption, the essential case is that E0 is the closed point of S and U is
the generic point of S. The key is that the abelian scheme πU : AU → U has a compactification
over S, which consists of a regular integral scheme V containing AU as an open subscheme and a
proper morphism π̄ : V → S extending πU : AU → U . The complement D = V −AU is a divisor
with normal crossings with respect to k. Moreover, the log-differential sheaf

Ω1
V/S(logD/E0) := Ω1

V/k(logD)/π̄∗Ω1
S/k(logE0)

is locally free on V and satisfies

Ω1
V/S(logD/E0) = π̄∗ΩA, π̄∗Ω

1
V/S(logD/E0) = ΩA.

This result is a consequence of [FC, Chap. VI, Thm. 1.1], which actually constructs a compact-
ification Āg,N of the moduli space Ag,N of principally polarized abelian varieties of dimensions
g with full N -level structures and its universal abelian variety. The pull-back of the compactifi-
cation of the universal abelian variety via the map S → Āg,N (representing the family A → S)
gives the compactification V in our notation.

With the compactification, take R to be the closure of P in V. There is a natural finite map
δ : Pc → R, which is just the normalization of R. Then we have well-defined maps

δ∗(Ω1
V/S |R) −→ δ∗Ω1

R/k −→ Ω1
Pc/k.
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Note that the pull-back of a log-differential is still a log-differential. The log-version of the above
composition give a map

δ∗(Ω1
V/S(logD/E0)|R) −→ Ω1

Pc/k(logE).

By the above property of Ω1
V/S(logD/E0), it becomes

(ψc)∗ΩA −→ Ω1
Pc/k(logE).

This is exactly the extension we want.

Polarization and level structure Go back to the proof of Proposition 3.6. It remains to add
a polarization and a level structure to A.

We first take care of the polarization. By Zarhin’s trick, A∗ = (A × At)4 has a principal
polarization (cf. [Zar] or [MB2, IX, Lem. 1.1]). Write A∗ = A × A3 × (At)4. Extend the closed
point P ∈ A to be the point P ∗ = (P, 03, 04) in A∗. Note that ΩA∗ = ΩA ⊕ (ΩA)3 ⊕ (ΩAt)

4, and
that A∗ has the same set of places of bad reduction as A. The solution of the analogous problem
for the version (A∗, P ∗) implies that of (A,P ). Hence, we can assume that A is principally
polarized.

In order to get a level structure, we need a descent argument. Let S′ → S be a finite, flat
and tamely ramified Galois morphism. Take this morphism to do a base change, and denote by
(S′,P ′, ψ′) the base changes of (S,P, ψ). Denote by E′ the reduced structure of the preimage of
E in P ′c, which is just a point in the local setting. Suppose that we have a well-defined extension
over S′ of the corresponding map γ′, which should take the form

γ′c : (ψ′c)∗ΩA −→ Ω1
P ′c/k(E

′).

Note that the pull-back of Ω1
Pc/k(E) to P ′c is exactly Ω1

P ′c/k(E
′) by considering the ramification

index. Taking the Galois invariants on both sides of γ′c, we get exactly the desired map γc on
Pc.

Finally, we can put a level structure on A. Take a prime ` - (2p). Let K ′ = K(A[`]) be the
field of definition of all `-torsions of A. Let S′ be the integral closure of S in K ′. We are going
to take the base change S′ → S. The only thing left to check is that K ′ is tamely ramified over
K. This is a well-known result proved by Grothendieck under the conditions that p 6= ` and A
has semi-abelian reduction. In fact, the wild inertia group Iw ⊂ Gal(Ksep/K) is a pro-p group.
By [SGA7, Exp. IX, Prop. 3.5.2], the action of Iw on the Tate module T`(A) is trivial. In other
words, any point of A(Ksep)[`∞] is defined over the maximal tamely ramified extension of K.
This finishes the proof of Proposition 3.6.

3.3 More general base fields

This subsection consists of some discussions about whether Theorem 1.1 and other related results
hold for more general base fields K/k. The results are as follows:

(1) If K = k(t) and k is any field of positive characteristic, we conjecture that the theorem still
holds. We reduce it to a question about p-divisible groups.

(2) If K/k is a general global function field, we come up with counterexamples of the theorem
using abelian varieties of p-rank 0.
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Case of K = k(t) with general k

Our proof of Theorem 1.1 relies on the assumption that k is a finite field. Now we speculate a
little to see what’s needed to generalize the proof to K = k(t) for a general field k of characteristic
p > 0.

Suppose k is any field of characteristic p > 0 in Theorem 1.1. At the beginning, apply
the Lefschetz principle to A/K/k, so we can assume that k is finitely generated over Fp. The
arguments in §2.1, §2.2 and §2.3 work well for general k (and thus for finitely generated k).
To finish the proof, we hope that Proposition 2.10 holds for any finitely generated field k of
characteristic p. The same argument still gives a non-zero p-divisible group H∞ over k, such that

Homk(H∞, C[p∞]) 6= 0, HomK(H∞,K , A[p∞]) 6= 0.

Here C = As is an abelian variety over k as before. Therefore, the proof will be complete if we
have a positive answer to the following question:

Question 3.8 Let K be a finitely generated field over a finite field Fp. Let A and B be abelian
varieties over K. Assume that there is a nonzero p-divisible group H over K such that

HomK(H,A[p∞]) 6= 0, HomK(H,B[p∞]) 6= 0.

Do we always have

HomK(A,B) 6= 0?

If k is a finite field, the problem is solved by Theorem 2.14 and Theorem 2.13. However,
Theorem 2.14 fails for finitely generated fields k. In fact, one can check that, for an ordinary
elliptic curve A over a global function field K with a place of multiplicative reduction, the
local-étale exact sequence

0 −→ A[p∞]0 −→ A[p∞] −→ A[p∞]et −→ 0

does not split up to isogeny.

Case of global function field K

For an abelian variety A over a field K of characteristic p > 0, the integer r = dimFp(A(K)[p])
is called the p-rank of A. It is known that 0 ≤ r ≤ dim(A), and we are concerned with the case
r = 0. The goal here is the following result.

Theorem 3.9 Let S be a projective and smooth curve over a finite field k of characteristic p > 0,
and K be the function field of S. Let A be an abelian over K with p-rank 0, trivial (K/k)-trace
and semi-abelian reduction over S. Then the Hodge bundle of A is not ample over S.

As the property of having p-rank 0, trivial (K/k)-trace, and semi-abelian reduction is pre-
served under isogeny, we see that A/K does not satisfy Theorem 1.1.

An interesting fact is that abelian varieties with p-rank 0 over a global function field (or the
fraction field of a DVR containing Fp) always have potentially good reduction. This fact can be
seen in the proof of [Oor1, Thm. 1.1(a)]. Thus the “semi-abelian reduction” in the theorem is
actually “good reduction”.

Before proving the theorem, let us note that there are “plenty of” A/K satisfying the condi-
tions of the theorem. In fact, denote by Ag,N the moduli space of principally polarized abelian
varieties over Fp with a level-N structure. Here N ≥ 3 is not divisible by p. It is well-known
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that dim(Ag,N ) = g(g + 1)/2. Denote by Vg,N the subset of points of Ag,N representing abelian
varieties of p-rank 0. It is known that Vg,N is a projective and geometrically irreducible closed
subscheme of Ag,N with codimension g. This is a combination of [Oor1, Thm. 1.1], [Kob, IV,
Thm. 7], [Chai, Rem 4.7] and [Oor3, Thm. 1.5]. Take any two F̄p-points of Vg,N representing
non-isogenous abelian varieties. This can be achieved by taking two points of different Newton
polygons, whose existence is guaranteed by the dimension formula of Newton polygon stratum in
[Oor2, Thm. 3.2]. Take any closed curve in Vg,N connecting these two points. This curve is actu-
ally defined over a finite field k. Take the function field K of the curve over k, and the universal
abelian variety of Ag,N induces an abelian variety A over K. If A has nontrivial (K/k)-trace, we
can replace it by its quotient by the trace part. Then A/K is an example of the theorem.

Now we prove Theorem 3.9. Assume that (k, S,K,A) satisfies the condition of the theorem,
but fails the conclusion of the theorem. Namely, A is an abelian over K with p-rank 0, trivial
(K/k)-trace, semi-abelian reduction, and ample Hodge bundle over S. We will get a contradiction.
By the Lang–Néron theorem (cf. [Con, Thm. 2.1]), the abelian group A(K) is finitely generated.
Replacing K by a finite extension if necessary, we can assume that A(K) has a positive rank.
The key is to apply Rössler [Ros1, Thm. 1.1], which is the prototype of Theorem 1.2. We see that
A(Kper) = A(K1/pn) for sufficiently large n. Replacing K by such a K1/pn if necessary, we can
assume that A(Kper) = A(K). Now we claim that the map [p] : A(K) → A(K) is surjective. In
fact, for any point P ∈ A(K), consider the inverse image [p]−1P in A, viewed as a 0-dimensional
closed subscheme of A. As A has p-rank 0, the morphism [p] : A → A is purely inseparable,
and thus the induced map [p]−1P → P is radicial. Consequently, the reduced structure Q of
[p]−1P is purely inseparable over P . Then Q corresponds to a point of A(Kper). By the result
above, we have Q ∈ A(K), which is a preimage of P under [p] : A(K)→ A(K). This proves that
[p] : A(K) → A(K) is surjective. Then we have a contradiction as we have assumed that A(K)
has a positive rank.

Tate–Shafarevich group of abelian varieties of p-rank 0

For abelian varieties of p-rank 0, we have the following interesting result.

Proposition 3.10 Let K be a field of characteristic p > 0, and let A be an abelian variety of
p-rank 0 over K. Then H1(K,A)[F∞] = H1(K,A)[p∞]. Therefore, if K is a global function field,
then X(A)[F∞] = X(A)[p∞].

As mentioned in the introduction, H1(K,A)[Fn] ⊂ H1(K,A)[pn], since Fn : A → A(pn) is a
factor of [pn] : A → A. This gives H1(K,A)[F∞] ⊂ H1(K,A)[p∞]. The other direction of the
inclusion is a consequence of the following result.

Lemma 3.11 Let K be a field of characteristic p > 0, and let A be an abelian variety of p-rank 0
over K. Then for any positive integer n, there is a positive integer m such that Fm : A→ A(pm)

factorizes through [pn] : A→ A.

Proof. View [pn] : A → A as the quotient map of A by A[pn]. It suffices to find m such that
Fm : A→ A(pm) annihilates A[pn], or equivalently, the restriction (Fm)|A[pn] : A[pn]→ A(pm)[pn]

is the zero map. Note that A(pm)[pn] ' (A[pn])(pm). Then (Fm)|A[pn] : A[pn] → A(pm)[pn] is just

the relative Frobenius morphism Fm : G→ G(pm). Here we denote G = A[pn].

As A has p-rank 0, the group scheme G is non-reduced and supported at the identity point.
Denote G = Spec(R), and denote by I the defining ideal of the identity section. By the identity
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section, we have a splitting R = K + I as vector spaces over K. Let m be an integer such that
Ip

m
= 0. We will check that Fm : G→ G(pm) is zero.

To avoid confusion, write K → K ′ for the absolute Frobenius map of K, so Fm : G→ G(pm)

is viewed as a morphism over Spec(K ′). Then G(pm) = Spec(R ⊗K K ′) and the morphism
Fm : G→ G(pm) corresponds to the homomorphism

f : R⊗K K ′ → R, x⊗ a 7−→ axp
m
.

This gives f(I⊗KK ′) = 0. Then f factorizes through the quotient map R⊗KK ′ → K ′. In terms
of schemes, Fm : G → G(pm) factorizes through the identity point Spec(K ′) → G(pm), and thus
it is 0.

4. Variation of the Tate conjecture

The goal of this section is to prove Theorem 1.6. The idea of the proof is sketched in §1.5. In
§4.1, we introduce some preliminary results to be used later. In §4.2, we prove Theorem 1.6.

4.1 Preliminary results

The goal of this subsection is to review some basics of the BSD conjecture, and introduce its
equivalence with the Tate conjecture as in the work of Artin–Tate. We also introduce a result
about projective regular models of abelian varieties as a consequence of the works of Mumford,
Faltings–Chai and Kunnëmann.

The BSD conjecture The prestigious Birch and Swinnerton-Dyer Conjecture over global
fields is as follows:

Conjecture 4.1 (BSD Conjecture:BSD(A)) Let A be an abelian variety over a global field
K. Then

ords=1L(A, s) = rankA(K).

Recall that the global L-function

L(A, s) =
∏
v

Lv(A, s)

is the product over all non-archimedean places v of K, where the local L-function

Lv(A, s) = det(1− q−sv Frob(v)|V`(A)Iv)−1.

Here qv is the order of the residue field of v, Frob(v) is a Frobenius element of v in Gal(Ks/K),
Iv is the inertia subgroup of v in Gal(Ks/K), ` is any prime number different from the residue
characteristic of v, and V`(A) is the `-adic Tate module of A.

In this paper, we are only interested in the case that K is a global function field. In this case,
L(A, s) is known to be a rational function of q−s, where q is the order of the largest finite field
contained in K; see [Mil4, VI, Example 13.6(a)] for example. The abelian group A(K) is finitely
generated by the Lang–Néron theorem, as in [Con, Thm. 2.1]. Moreover, in this case, we always
know

ords=1L(A, s) ≥ rankA(K)

by the works [Tat3, Bau], as a consequence by the comparison with the Tate conjecture which
will be reviewed below.
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We will need the following results, which can be checked by treating both sides of the BSD
conjecture.

Lemma 4.2 (1) Let A and B be isogenous abelian varieties over a global function field. Then
the BSD conjecture holds for A if and only if the BSD conjecture holds for B.

(2) Let A and B be any abelian varieties over a global function field. Then the BSD conjecture
holds for A×B if and only if the BSD conjecture holds for both A and B.

Tate conjecture vs BSD conjecture The bridge between the Tate conjecture and the BSD
conjecture is via fibrations of surfaces. Recall that the Tate conjecture T 1(X) (cf. Conjecture
4.1) for a projective and smooth surface X over a finite field k asserts that for any prime ` 6= p,
the cycle class map

Pic(X)⊗Z Qp −→ H2(Xk̄,Q`(1))Gal(k̄/k)

is surjective.

By a fibered surface over a field k, we mean a projective and flat morphism π : X → S, where
S is a projective and smooth curve over k and X is a projective and smooth surface over k, such
that the generic fiber of X → S is smooth.

Then we have the following beautiful result of Artin–Tate.

Theorem 4.3 (Artin–Tate) Let π : X → S be a fibered surface over a finite field k. Denote
by J the Jacobian variety of the generic fiber of π. Then T 1(X) is equivalent to BSD(J).

This equivalence is a part of [Tat3, §4, (d)], which actually treats equivalence of the refined
forms of the conjectures; see also [Ulm] for a nice exposition of the theorem. For further results
related to this equivalence, including results about the Tate–Shafarevich group and the Brauer
group, we refer to [Tat3, Mil3, Bau, Sch, KT].

For a projective and smooth surface X, to convert it to a fibered surface, one usually needs to
blow-up X along a smooth center. The following result asserts that this process does not change
the Tate conjecture.

Lemma 4.4 Let X ′ → X be a birational morphism of projective and smooth surfaces over a
finite field. Then T 1(X) is equivalent to T 1(X ′).

This can be checked by directly describing the change of both sides of the conjectures.

With a little extra work (cf. [TY, Thm. 5.5]), the above results imply that, T 1(X) for all
projective and smooth surfaces X over finite fields is equivalent to BSD(A) for all abelian
varieties A over global function fields.

Projective regular integral models of abelian varieties The following results asserts that we
have well-behaved regular projective models of abelian varieties with semi-abelian reduction.

Theorem 4.5 Let S be a connected Dedekind scheme with generic point η, and let A be an
abelian variety over η with semi-abelian reduction over S. Then there is a projective, flat and
regular integral model ψ : P → S of A over S such that there is a canonical OS-linear isomor-
phism

R1ψ∗OP −→ Lie(A∨/S).

Here A∨ is the Néron model over S of the dual abelian variety A∨ of A.
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Proof. This follows from the theory of degeneration of abelian varieties of Mumford [Mum1]
and Faltings–Chai [FC]. In particular, by the exposition of Künnemann [Kun], the degeneration
theory gives an explicit compactification of a semi-abelian scheme from a reasonable rational
polyhedral cone decomposition. For the purpose of our theorem, choose P to be the integral
model constructed in [Kun, Thm. 4.2]. We claim that it automatically satisfies the property
of the cohomology. Note that we have a canonical isomorphism H1(A,OA) → Lie(A∨/η), as
expressions of the tangent space of the Picard functor PicA/η. Then it remains to prove that this
isomorphism extends to the integral version over S. This essentially follows from the special case
(s, a, b) = (1, 1, 0) of [FC, Chap. VI, Thm. 1.1(iv)], which is proved in §VI.2 of loc. cit.. We can
check literally their proof works in our case. Alternatively, we introduce a different approach in
the following.

First, the truth of our isomorphism does not depend on the choice of the rational polyhedral
cone decomposition, as mentioned at the beginning of page 209 in loc. cit.. Second, the isomor-
phism R1f̄∗OȲ → Lie(G/X̄) of [FC, Chap. VI, Thm. 1.1(iv)] is compatible with base change by
any morphism Z → X̄. In other words, the map f̄ is cohomologically flat in dimension 1. In fact,
by the semi-continuity theorem, this holds if h1(Ys,OYs) is constant in s ∈ X̄, which can be seen
from their proof. Once we have the cohomological flatness, our result holds if A is principally
polarized. In fact, take a level structure by extending S if necessary, and then we have a map
S → X̄ by the moduli property. Then the pull-back of R1f̄∗OȲ → Lie(G/X̄) to S gives the
isomorphism we need. Finally, if A does not have a principal polarization, we can apply Zarhin’s
trick as in our treatment of Proposition 3.6.

4.2 Variation of the Tate conjecture

Now we prove Theorem 1.6. Let X be a projective and smooth surface over k. We will convert
T 1(X) to T 1(Y) for some projective and smooth surface Y over k with H1(Y,OY) = 0.

Step 1: Make a fibration By Nguyen [Ngu], there is a Lefschetz pencil in X over the finite
field k. This is a version over finite field of the existence of Lefschetz pencils in [SGA7, Exp. XVII,
§3]. Blowing-up X along the base locus of the Lefschetz pencil, we get a birational morphism
X ′ → X and a fibered surface π : X ′ → S with S = P1

k. Here X ′ is smooth over k as the base
locus is reduced. Denote by J the Jacobian variety of the generic fiber of π : X ′ → S, which is
an abelian variety over K = k(t).

Since π is semistable, J has semi-abelian reduction over S = P1
k. In fact, by [BLR, §9.5, Thm.

4(b)], the Picard functor Pic0
X′/S is isomorphic to the relative identity component of the Néron

model of J . By [BLR, §9.2, Prop. 10], Pic0
X′s/s

is semi-abelian for any closed point s ∈ S.

By Lemma 4.4, T 1(X) is equivalent to T 1(X ′). By Theorem 4.3, T 1(X ′) is equivalent to
BSD(J).

Step 2: Make the Hodge bundle positive We will prove that BSD(J) is equivalent to BSD(A)
for an abelian variety A over K with everywhere semi-abelian reduction and with an ample Hodge
bundle over S.

Apply Theorem 1.1 to J . Then J is isogenous to A ×K CK , where C is an abelian variety
over k, and A is an abelian variety over K with an ample Hodge bundle over S. Note that A
also has semi-abelian reduction by [BLR, §7.3, Cor. 7]. By Lemma 4.2, BSD(J) is equivalent to
the simultaneous truth of BSD(A) and BSD(CK).
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By [Mil1], BSD(CK) holds unconditionally. Alternatively, in the current case of K = k(t), it
is easy to prove that both sides of the BSD conjecture is 0. For the Mordell–Weil rank, we have

CK(K) = HomS(S,CS) = Homk(S,C) = C(k)

is finite. For the L-function, one can also have an explicit expression in terms of the eigenvalues
of the Frobenius acting on the Tate module of C.

Therefore, BSD(J) is equivalent to BSD(A).

Step 3: Take projective regular model Let ψ : P → S be a projective, flat and regular integral
model of A∨ over S as in Theorem 4.5. In particular, we have a canonical isomorphism

R1ψ∗OP −→ Lie(A/S).

Here A is the Néron model of A over S. Then the dual of R1ψ∗OP is isomorphic to the Hodge
bundle of A, which is ample by construction.

By the Leray spectral sequence for ψ : P → S, we have an exact sequence

0 −→ H1(S,OS) −→ H1(P,OP) −→ H0(S,R1ψ∗OP) −→ 0.

The term H0(S,R1ψ∗OP) vanishes by the ampleness of the dual of R1ψ∗OP . Therefore, we end
up with H1(P,OP) = 0.

Step 4: Take a surface in the regular model Note that P is a projective and smooth variety
over k with H1(P,OP) = 0. We claim that there is a projective and smooth k-surface Y in P
satisfying the following conditions:

(1) H1(Y,OY) = 0.

(2) The canonical map H1(Pη,OPη)→ H1(Yη,OYη) is injective.

(3) The generic fiber Yη of Y → S is smooth.

Here η is the generic point of S.

This is a consequence of the Bertini-type theorem of Poonen [Poo]. By induction on the
codimension of Y in P, it suffices to prove that there is a smooth hyperplane section Y of P
satisfying (3), since (1) and (2) are automatic. For example, (1) follows from the vanishing of
H2(P,O(−Y)), which holds if Y is sufficiently ample. To achieve (3), it suffices to make the
closed fiber Ys smooth over s for some closed point s ∈ S such that Ps is smooth. Take a very
ample line bundle L over P such that H0(P,L)→ H0(Ps,Ls) is surjective. The complete linear
series of L defines a closed immersion P → PN

k . Denote Σd = H0(PN
k ,OPNk

(d)), and denote by

Σ the disjoint union of Σd for all d ≥ 1. Denote m = dimP. By Poonen [Poo, Thm 1.1], we have
the following results:

(a) The density of f ∈ Σ such that div(f) ∩ P is smooth over k is ζP(m+ 1)−1.

(b) The density of f ∈ Σ such that div(f) ∩ Ps is smooth over s is ζPs(m)−1.

We claim that ζPs(m) goes to 1 as [k(s) : s] goes to infinity. In fact, this is easily seen by
the Riemann hypothesis proved by Weil. As a consequence, we can choose s ∈ S such that
ζP(m+ 1)−1 + ζPs(m)−1 > 1. Consequently, we can find f ∈ Σ simultaneously satisfying (a) and
(b). Then Y = div(f) ∩ P satisfies condition (3). This proves the existence of Y.

Let Y be a surface in P with the above properties. Denote by B the Jacobian variety of Yη
over η. Consider the homomorphism A → B induced by the natural homomorphism PicPη/η →
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PicYη/η. The induced map between the Lie algebras is exactly the injection in (2). Therefore, the
kernel of A→ B is finite. It follows that A is a direct factor of B up to isogeny. By Lemma 4.2,
BSD(A) is implied by BSD(B). By Theorem 4.3, BSD(B) is equivalent to T 1(Y).

In summary, T 1(X) is implied by T 1(Y). By construction, Y is a projective and smooth
surface over k with H1(Y,OY) = 0. This finishes the proof of Theorem 1.6.
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