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1 Introduction

This paper is an improvement and simplification of Yuan [Yu]. In particular,
by a simpler method, it proves the identity in [Yu, Theorem A] without
taking the limit p→∞. The method also simplifies the proofs of Moriwaki
[Mo], where more general arithmetic linear series were treated.

Recall that [Yu] explored a way to construct arithmetic Okounkov bodies
from an arithmetic line bundle, inspired by the idea of Okounkov [Ok1, Ok2]
and Lazarsfeld–Mustaţǎ [LM] in the geometric case. Theorem A of [Yu]
asserts that the volumes of the Okounkov bodies approximate the volume of
the arithmetic line bundle. The main result of this paper asserts an exact
identity before taking the limit.

On the other hand, Boucksom–Chen [BC] initiated a different way to
construct Okounkov bodies in the arithmetic setting. From the proof of
the main result in this paper, it is easy to recognize the similarity of the
constructions in [BC] and in [Yu]. We will make a comparison at the end of
this paper.

In the following, we recall the construction of [Yu] and state our main
result. We use exactly the same notations as in [Yu] throughout this paper.
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Volume of an arithmetic line bundle

Let X be an arithmetic variety of dimension d, i.e., a d-dimensional integral
scheme, projective and flat over Spec(Z). Let L = (L, ‖ · ‖) be a hermitian
line bundle over X; i.e., L is a line bundle on X and ‖ · ‖ is a continuous
metric of L(C) on X(C). Denote

Ĥ0(X,L) = {s ∈ H0(X,L) : ‖s‖sup ≤ 1}

and
ĥ0(X,L) = log #Ĥ0(X,L).

Define the volume to be

vol(L) = lim sup
m→∞

ĥ0(X,mL)

md/d!
.

Recall that a line bundle L is said to be big if vol(L) > 0.
Note that Chen [Ch] proved that “limsup=lim” in the definition of vol(L).

The result was also obtained in [Yu] by the construction of the Okounkov
body.

Unlike [Yu], we will not need the metric to be smooth in this paper
because the treatment will not not use any arithmetic intersection number
involving L.

Arithmetic Okounkov Body

Assume that X is normal with smooth generic fiber XQ. Denote by X →
Spec(OK) the Stein factorization of X → Spec(Z). Then K is the algebraic
closure of Q in the function field of X. For any prime ideal ℘ of OK , denote
by F℘ = OK/℘ the residue field, and by N℘ the cardinality of F℘.

Let
X ⊃ Y1 ⊃ · · · ⊃ Yd

be a flag on X, where each Yi is a regular irreducible closed subscheme of
codimension i in X. Assume that Y1 is the fiber XF℘ of X above some prime
ideal ℘ of OK , and Yd ∈ Y1(F℘) is a rational point.

Define a valuation map

νY. = (ν1, · · · , νd) : H0(X,L)− {0} → Zd
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with respect to the flag Y. as follows. For any nonzero s ∈ H0(X,L), we first
set ν1(s) = ordY1(s). Let sY1 be a section of the line bundle O(Y1) with zero

locus Y1. Then s
⊗(−ν1(s))
Y1

s is nonzero on Y1, and let s1 =
(
s
⊗(−ν1(s))
Y1

s
)∣∣∣

Y1
be

the restriction. Set ν2(s) = ordY2(s1). Continue this process on the section
s1 on Y2, we can define ν3(s) and thus ν4(s), · · · , νd(s).

For any hermitian line bundle L on X, denote

vY.(L) = νY.(Ĥ
0(X,L)− {0})

to be the image in Zd. The arithmetic Okounkov body ∆Y.(L) of L is defined

to be the closure of ΛY.(L) =
⋃
m≥1

1

md
vY.(mL) in Rd. It is a bounded convex

subset of Rd if non-empty. The following is the main result of this paper.

Theorem 1.1. If L is big, then

vol(∆Y.(L)) logN℘ =
1

d!
vol(L).

In [Yu], the author restricted to the case F℘ = Fp, and could only prove
that the left-hand side converges to the right-hand side as p → ∞. The
problem was caused by a large accumulated error term in the estimation.
The solution of this problem is found by the author in the preparation of
[YZ], a recent joint work of the author with Tong Zhang. The key is Theorem
2.1, which puts the filtration together and makes a more accurate control of
the error term.

Acknowledgments. The author is supported by the NSF grant DMS-1330987.

This paper is based on a result of lattice points in a joint work of the author with

Tong Zhang. He would like to thank Tong Zhang for many inspiring discussions. He is

very grateful for Huayi Chen who provided a way to extend the result of lattice points

from the field of rational numbers to general number fields.

2 Lattice points in a filtration

In this section, we state and prove the result on lattice points in Theorem
2.1. It is the key for Theorem 1.1.

Fix a number field K. By a normed OK-module, we mean a pair (M, {‖ ·
‖σ}σ) consisting of a locally free OK-module M of finite rank, and a collection
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{‖ · ‖σ}σ of C-norms ‖ · ‖σ on M ⊗σ C, indexed by σ : K ↪→ C and invariant
under the complex conjugation.

Let M = (M, {‖ · ‖σ}σ) be normed OK-module. Define

Ĥ0(M) = {m ∈M : ‖m‖σ ≤ 1, ∀σ},

and
ĥ0(M) = log #Ĥ0(M).

Denote by
OK〈Ĥ0(M)〉, Z〈Ĥ0(M)〉

respectively the OK-submodule and the Z-submodule of M generated by
Ĥ0(M). For any α ∈ R, denote

M(α) = (M, {e−α‖ · ‖σ}σ).

For a normed OK-module L of rank one, define

d̂eg(L) = log #(L/sOK)−
∑
σ

log ‖s‖σ.

Here s ∈ L is any non-zero element, and the definition is independent of the
choice of s. It is just the usual arithmetic degree of a hermitian line bundle
over Spec(OK).

It is clear that the dual L
∨

gives a natural normed OK-module of rank
one, and that the tensor product M ⊗ L is a natural normed OK-module.
The identity of the tensor is given by the trivial normed OK-module OK =
(OK , {| · |σ}σ), where | · |σ is just the usual absolute value.

In some literatures, a normed OK-module is also called a metrized vector
bundle over Spec(OK). A normed OK-module of rank one is also called a
metrized line bundle over Spec(OK), or just a hermitian line bundle over
Spec(OK).

The innovation of this paper is the application of the following result.

Theorem 2.1. Let K be a number field. Let M be a normed OK-module,
and L0, L1, · · · , Ln be a sequence of normed OK-modules of rank one. Here
L0 is the trivial normed OK-module of rank one. Denote

αi = d̂eg(Li), ri = rankOK
OK〈Ĥ0(M ⊗ L∨i )〉, i = 0, · · · , n.
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Assume that
0 = α0 ≤ α1 ≤ · · · ≤ αn.

Then there is a constant C > 0 depending only on K such that

ĥ0(M) ≥
n∑
i=1

ri(αi − αi−1)− C(r0 log r0 + r0),

ĥ0(M) ≤ ĥ0(M ⊗ L∨n) +
n∑
i=1

ri−1(αi − αi−1) + C(r0 log r0 + r0).

The case K = Q is equivalent to [YZ, Proposition 2.3], which follows from
the successive minima of Gillet–Soulé [GS]. The extension to the general K
is provided by Huayi Chen in a private communication to the author. We
start with a simple lemma in the following.

Lemma 2.2. Denote κ = [K : Q] and denote by DK the discriminant of K.

(1) For any hermitian normed OK-module L of rank one, we have

ĥ0(L) > d̂eg(L)− κ log 2− 1

2
log |DK |.

(2) There is a constant δ ≥ 0 depend only on K such that

rankOK
OK〈Ĥ0(M(−δ))〉 ≤ 1

κ
rankZZ〈Ĥ0(M)〉 ≤ rankOK

OK〈Ĥ0(M)〉

for any normed OK-module M .

Proof. The result in (1) follows from Minkowski’s theorem. The second in-
equality of (2) follows from the inclusion

Z〈Ĥ0(M)〉 ⊂ OK〈Ĥ0(M)〉.

For the first inequality of (2), fix a basis (a1, · · · , aκ) of OK over Z. Set

δ = max{log |ai|σ : i = 1, · · · , κ, σ : K ↪→ C}.

Then

OK〈Ĥ0(M(−δ))〉
⊂ Z〈a1Ĥ0(M(−δ)), · · · , aκĤ0(M(−δ))〉
⊂ Z〈Ĥ0(M)〉.

The inequality also follows.
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Proof of Theorem 2.1. If K = Q, then Li is isometric to Z(αi), and thus

M ⊗ L∨i = M(−αi).

The theorem is equivalent to the inequalities for ĥ0 in [YZ, Proposition 2.3].
Next we consider the general case.

Denote κ = [K : Q] and c = log 2 +
1

2κ
log |DK |. Denote βi = αi/κ for

convenience. View M as a normed Z-module, and apply [YZ, Proposition
2.3] to the sequence

0 = β0 ≤ β1 + c ≤ · · · ≤ βn + c.

We obtain

ĥ0(M) ≤ ĥ0(M(−βn − c)) +
n∑
i=1

r′i−1(βi − βi−1) +O(r0 log r0).

Here
r′i = rankZZ〈Ĥ0(M(−βi − c))〉, i = 0, · · · , n− 1.

We claim that r′i ≤ κri by our special choice of c. It simply implies the

second equality we need to prove. By Lemma 2.2 (1), Ĥ0(L
∨
i (βi + c)) 6= 0.

Since
M ⊗ L∨i = M(−βi − c)⊗ L

∨
i (βi + c),

we have

r′i = rankZZ〈Ĥ0(M(−βi − c))〉 ≤ rankZZ〈Ĥ0(M ⊗ L∨i )〉 ≤ κri.

The last inequality follows from Lemma 2.2 (2). It proves the claim.
As for the first inequality, apply [YZ, Proposition 2.3] to M(δ+ c) viewed

as a normed Z-module, and the sequence

0 = β0 ≤ β1 ≤ · · · ≤ βn.

Here δ is as in Lemma 2.2 (2). We obtain

ĥ0(M(δ + c)) ≥
n∑
i=1

r′′i (βi − βi−1) +O(r0 log r0 + r0).
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Here
r′′i = rankZZ〈Ĥ0(M(−βi + δ + c))〉.

Lemma 2.2 (1) gives Ĥ0(Li(−βi + c)) 6= 0, and thus

r′′i ≥ rankZZ〈Ĥ0(M ⊗ L∨i (δ))〉 ≥ κri.

Here the last inequality follows from Lemma 2.2 (2). The proof is finished
by the basic inequality

ĥ0(M) ≥ ĥ0(M(δ + c))− κr0(δ + c+ log 3).

See [YZ, Proposition 2.1] or the original form [GS, Proposition 4].

3 The arithmetic Okounkov body

In this section, we prove Theorem 1.1, and compare our construction with
that of [BC].

Proof of the main theorem

Recall that X is a normal arithmetic variety with smooth generic fiber, geo-
metrically irreducible over OK . Recall that we have the flag

X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd

of regular vertical subvarieties. We have assume that Y1 = XF℘ for some
prime ideal ℘ of OK , and Yd ∈ Y1(F℘) is a rational point.

By [Yu, Proposition 2.5], if L is a big hermitian line bundle on X,

lim
m→∞

#vY.(mL)

md
= vol(∆Y.).

Hence, Theorem 1.1 is reduced to the following result, which strengthens [Yu,
Theorem 2.6].

Theorem 3.1. For any L ∈ P̂ic(X),

lim
m→∞

∣∣∣∣∣#vY.(mL)

md
logN℘ −

ĥ0(X,mL)

md

∣∣∣∣∣ = 0.
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Now we prove the theorem. Recall that

v(L) = vY.(L) = νY.(Ĥ
0(X,L))

is the image in Zd of the valuation map

ν = νY. = (ν1, · · · , νd) : Ĥ0(X,L)− {0} → Zd

defined by the flag
X ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd.

The flag
Y1 ⊃ Y2 ⊃ · · · ⊃ Yd

on the ambient variety Y1 induces a valuation map

ν◦ = (ν2, · · · , νd) : H0(X,LF℘)− {0} → Zd−1

of dimension d − 1 in the geometric case. Similarly, we have a valuation
map ν◦ on the line bundle (L ⊗ ℘i)|Y1 for any i ∈ Z. There are natural
isomorphisms (L ⊗ ℘i)|Y1 ∼= LF℘ , which are compatible with the valuations.

The valuations ν and ν◦ are compatible in the sense that

ν(s) =
(
ν1(s), ν

◦((s
⊗(−ν1(s))
Y1

s)|Y1)
)
, s ∈ Ĥ0(X,L)− {0}.

Here sY1 is the section of O(Y1) defining Y1.

Decompose v(L) = νY.(Ĥ
0(L)) according to the first component in Zd.

We have
v(L) =

∐
i≥0

(
i, ν◦(Ĥ0(L ⊗ ℘i)|Y1)

)
.

Here ℘ is naturally a hermitian line bundle on Spec(OK), endowed with the
metric induced from the trivial metric of OK via the inclusion ℘ ⊂ OK . It is
also viewed as a hermitian line bundle on X by pull-back. It follows that

#v(L) =
∑
i≥0

#ν◦(Ĥ0(L ⊗ ℘i)|Y1). (1)

Note that it is essentially a finite sum. We will estimate it by linearizing each
term Ĥ0(L ⊗ ℘i)|Y1 .
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Denote by F℘〈Ĥ0(L)|Y1〉 the F℘-vector subspace of H0(Y1,L|Y1) generated

by Ĥ0(L)|Y1 . By the geometric case in [LM, Lemma 1.3],

#ν◦(F℘〈Ĥ0(L)|Y1〉) = dimF℘〈Ĥ0(L)|Y1〉.

This is the key in our estimate.
Denote by OK〈Ĥ0(L)〉 the OK-submodule of H0(L) generated by Ĥ0(L).

Then we also have

#ν◦(F℘〈Ĥ0(L)|Y1〉) = rankOK
OK〈Ĥ0(L)〉.

In fact, the reduction map gives an injection

H0(L)/℘H0(L) −→ H0(Y1,L|Y1),

and thus
dimF℘ F℘〈Ĥ0(L)|Y1〉 = rankOK

OK〈Ĥ0(L)〉.

In the following we will see that F℘〈Ĥ0(L ⊗ ℘i)|Y1〉 is not “much larger”

than Ĥ0(L ⊗ ℘i)|Y1 .

Lemma 3.2. For any hermitian line bundle L on X with h0(LF℘) > 0,

F℘〈Ĥ0(L(−αL))|Y1〉 ⊂ Ĥ0(L)|Y1 ⊂ F℘〈Ĥ0(L)|Y1〉,

where αL = log(h0(LK)c℘) and c℘ is a constant depending only on K and ℘.

Proof. We only need to prove the first inclusion. The proof is essentially a
part of the proof of [Yu, Proposition 2.10]. We include it here for complete-
ness.

Choose a set A ⊂ OK of representatives of F℘ in OK . Set

c℘ = max{|a|σ : a ∈ A, σ : K ↪→ C}.

Choose an F℘-basis B of F℘〈Ĥ0(L(−αL))|Y1〉 lying in Ĥ0(L(−αL))|Y1 , and

fix a lifting t̃ ∈ Ĥ0(L(−αL)) for each t ∈ B. The set

S =

{∑
t∈B

att̃ : at ∈ A

}
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maps surjectively to F℘〈Ĥ0(L(−αL))|Y1〉 under the reduction map. For any
such element

∑
t att̃, the supremum norm in L is bounded as

‖
∑
t

att̃‖sup ≤
∑
t∈B

c℘e
−αL ≤ 1.

It follows that S ⊂ Ĥ0(L), and thus their reductions have the relation

F℘〈Ĥ0(L(−αL))|Y1〉 ⊂ Ĥ0(L)|Y1 .

Take the images under #ν◦ of the sets in the lemma. We have

rankOK
OK〈Ĥ0(L(−αL))〉 ≤ #ν◦(Ĥ0(L)|Y1) ≤ rankOK

OK〈Ĥ0(L)〉. (2)

On the other hand, we can control ĥ0(L) by rankOK
OK〈Ĥ0(L)〉 directly.

For any i ≥ 0, denote Li = ℘−i, with the metric induced from that of ℘, i.e.,
the trivial metric given by ‖1‖σ = 1 at any archimedean place σ of K. Then

d̂eg(Li) = i logN℘.

Apply Theorem 2.1 to the normed OK-module

M = (H0(L), {‖ · ‖σ,sup}σ)

and the sequence {Li}i≥0. It is easy to obtain

ĥ0(L) =
∑
i≥0

rankOK
OK〈Ĥ0(L ⊗ ℘i)〉 · logN℘ +O(h0(LQ) log h0(LQ)). (3)

Combine (1), (2) and (3). We have

ĥ0(L(−αL))+O(h0(LQ) log h0(LQ)) ≤ #v(L)·logN℘ ≤ ĥ0(L)+O(h0(LQ) log h0(LQ)).

By [Yu, Lemma 2.9],

ĥ0(L(−αL)) = h0(L) +O(h0(LQ)αL).

It follows that

#v(L) · logN℘ = ĥ0(L) +O(h0(LQ) log h0(LQ)).

Replace L by mL. We obtain Theorem 3.1.
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Construction of Boucksom–Chen

In [BC], Boucksom and Chen constructed Okounkov bodies in a very gen-
eral arithmetic setting. Here we briefly compare their construction with our
construction in the setting of this paper.

We first recall the construction of [BC]. Let (X,L) be as above. Denote
by Z1 = XK the generic fiber. Fix a flag

Z1 ⊃ Z2 ⊃ · · · ⊃ Zd

on the generic fiber Z1. It gives an Okounkov body ∆Z.(LK) ⊂ Rd−1 of the
generic fiber LK .

Denote by K〈Ĥ0(X,L)〉 the K-subspace of H0(XK ,LK) generated by

Ĥ0(X,L). We have a valuation

ν◦Z. = (ν ′2, · · · , ν ′d) : K〈Ĥ0(X,L)〉 − {0} → Zd−1.

It gives a convex body ∆◦Z.(L) contained in ∆Z.(LK).
More generally, for any t ∈ R, denote L(−t) = (L, et‖ · ‖). Then we

have a convex body ∆◦Z.(L(−t)) of L(−t) contained in ∆Z.(LK). The se-
quence {∆◦Z.(L(−t))}t∈R is decreasing in t. Define the incidence function
GZ. : ∆Z.(LK)→ R by

GZ.(x) = sup{t ∈ R : x ∈ ∆◦Z.(L(−t))}.

Its graph gives a (d+ 1)-dimensional convex body

∆Z.(L) = {(x, t) ∈ ∆Z.(LK)× R : 0 ≤ t ≤ GZ.(x)}.

This is the Okounkov body constructed in [BC]. One main result of [BC]
asserts that

vol(∆Z.(L)) =
1

d!
vol(L).

Go back to our construction. Recall that we have a flag

X ⊃ Y1 ⊃ · · · ⊃ Yd

on X. On the special fiber Y1 = XF℘ , we have a flag

Y1 ⊃ Y2 ⊃ · · · ⊃ Yd.
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It gives a valuation of the line bundle LF℘ on Y1. Thus we get an Okounkov
body ∆Y.(LF℘) in Rd−1.

Restricted to the special fiber, we have a valuation

ν◦Y. = (ν2, · · · , νd) : Ĥ0(X,L)− {0} → Zd−1.

It gives a convex body ∆◦Y.(L) contained in ∆Y.(LF℘).

The hermitian line bundle L ⊗ ℘t gives a convex body ∆◦Y.(L ⊗ ℘t) in
Rd−1 for any t ∈ Z. By passing to tensor powers, extend the definition of
∆◦Y.(L⊗℘t) to any t ∈ Q. The sequence {∆◦Y.(L⊗℘t)}t∈Q is decreasing in t.
Define the incidence function GY. : ∆Y.(LF℘)→ R by

GY.(x) = sup{t ∈ Q : x ∈ ∆◦Y.(L ⊗ ℘t)}.

Its graph gives a (d+ 1)-dimensional convex body

∆Y.(L) = {(x, t) ∈ ∆Y.(LF℘)× R : 0 ≤ t ≤ GY.(x)}.

It recovers our previous construction.
Hence, we see that the similarity of these two constructions. The con-

struction of [BC] is archimedean in nature, while the construction of [Yu] is
non-archimedean in nature.

Finally, we remark that the construction of [BC] uses the image of the

vector space K〈Ĥ0(L)〉 under the valuation ν◦Z., while our construction uses

the image of the finite set Ĥ0(L) under the valuation ν◦Y.. However, in the
our construction, we will get the same Okounkov body if we replace the finite
set Ĥ0(L) by the vector space F℘〈Ĥ0(L)|Y1〉 or the OK-module OK〈Ĥ0(L)〉.
This can be deduced from Lemma 3.2. We do not know whether such a
phenomena holds in the construction of [BC].
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ries. Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835.

[Mo] A. Moriwaki: Estimation of arithmetic linear series. Kyoto J. Math.
50 (2010), no. 4, 685–725.

[Ok1] A. Okounkov: Brunn-Minkowski inequality for multiplicities. Invent.
Math. 125 (1996), po. 405–411.

[Ok2] A. Okounkov: Why would multiplicities be log-concave? In The orbit
method in geometry and physics, Progr. Math. 213, 2003, pp. 329–347

[Yu] X. Yuan: On volumes of arithmetic line bundles. Compos. Math. 145
(2009), no. 6, 1447–1464.

[YZ] X. Yuan, T. Zhang: Effective bound of linear series on arithmetic
surfaces. Accepted by Duke Math. J..

13


	Introduction
	Lattice points in a filtration
	The arithmetic Okounkov body

