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My research interest lies in Diophantine geometry, Arakelov geometry, algebraic dynam-
ics, Shimura varieties and automorphic forms. In particular, I focus on interdisciplinary
results among these areas. My works are mainly 3-fold:

(1) Arakelov geometry and its application to algebraic dynamics and Diophantine geome-
try. My inspiration of Arakelov geometry also comes from results of algebraic geometry
and complex analysis.

(2) Gross–Zagier type formulas which relate derivatives of L-functions to heights of special
cycles on Shimura varieties. Such formulas lie in the intersection of Arakelov geometry,
Shimura variety and automorphic forms.

(3) Arithmetic problems over related to the BSD conjecture over global function fields
and the Tate conjecture over finite fields. For this subject, there are many approaches
beyond the Gross–Zagier and Kolyvagin treatment.

1 Arakelov Geometry

Most of my works in Arakelov geometry are related to volumes of Hermitian line bundles
and version of the arithmetic Hodge index theorem.

1.1 Volumes of arithmetic line bundles

Let X be an arithmetic variety over Z of absolute dimension n, and L = (L, ‖·‖) a hermitian
line bundle on X . Define

h0(L) = log #{s ∈ H0(X ,L) : ‖s‖sup ≤ 1}.

The volume of L is defined by

vol(L) = lim sup
N→∞

h0(L⊗N)

Nn/n!

As in the geometric case, the “lim sup” is actually a limit. It was first proved by Chen [Ch1],
and also implied my construction of Okounkov bodies in [Yu2].
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Motivation to study the volumes of arithmetic line bundles

The volume of a hermitian line bundle, as a birational invariant, is a fundamental object in
Arakelov geometry. For expositions of volumes in the classical case, we refer to [La].

Lower bound of the volume in the arithmetic case can be used to control heights of
algebraic points, and thus deduce results in algebraic dynamics and Diophantine geometry.
This procedure is crucial in Vojta’s proof of the Mordell conjecture in [Vo1] and Faltings’s
proof of Lang’s conjecture in [Fa2]. It is expected that the theory of volumes will lay the
foundation in attacking Diophantine problems such as Vojta’s conjecture (cf. [Vo2]).

Arithmetic version of Siu’s Inequality

The arithmetic Hilbert–Samuel formula due to Gillet–Soulé [GS] and Bismut–Vasserot asserts
that, if L is ample in the sense of Zhang [Zh1], then vol(L) = ĉ1(L)n. The following is the
arithmetic analogue of a theorem of Siu in algebraic geometry.

Theorem 1. ([Yu1]) If L and M are two ample hermitian line bundles over X , then

vol(L ⊗M⊗(−1)
) ≥ ĉ1(L)n − n · ĉ1(L)n−1ĉ1(M).

It can be viewed as an extended version of the arithmetic Hilbert–Samuel formula. The
extension is very meaningful in that it can be applied to line bundles without any positivity

condition, since L⊗M⊗(−1)
can be any line bundle. Many results and techniques in complex

geometry and Arakelov theory, including the arithmetic Hilbert-Samuel formula, depend
heavily on some positivity assumptions. As an application, an equidistribution result over
algebraic dynamics is deduced. See Theorem 5.

Okounkov body for arithmetic line bundles

Extending an idea of Okounkov [Ok1, Ok2], Lazarsfeld and Mustaţǎ [LM] explored a system-
atic way to construct a convex body (called Okounkov body) from a line bundle on projective
varieties. The volume of the Okounkov body gives the volume of the line bundle. A lot of
important results in algebraic geometry are recovered by the construction.

An arithmetic analogue is introduced and treated in [Yu2, Yu3], where Okounkov bodies
are constructed from the arithmetic object (X ,L). The volumes of these Okounkov bodies
approximate vol(L), and basic properties of the volume function is proved in [Yu2, Yu3].
For example, I obtain the arithmetic Fujita approximation theorem that the volume of a
big hermitian line bundle can be approximated by the volumes of certain ample hermitian
line bundles. The arithmetic Fujita approximation theorem is also proved by Chen [Ch2]
independently.

Effective upper bound of the volume

The main theorem of [YtZ1] is as follows.

2



Theorem 2. ([YtZ1]) Let X be an arithmetic surface over Z, and D be a nef arithmetic
divisor on X . Then

ĥ0(D) ≤ 1

2
D

2
+ 4d log(3d).

Here d = degDQ.

It is an effective version of the arithmetic Hilbert–Samuel formula. We have generaliza-
tions of the result to function fields and high dimensions in [YtZ2, YtZ3].

1.2 Hodge index theorem for adelic line bundles

This subsection is to describe the main results of [YsZ1], which generalizes the arithmetic
Hodge index theorem of Faltings [Fa1], Hriljac [Hr] and Moriwaki [Mo] from integral Hermi-
tian line bundles to adelically metrized line bundles over number fields. The work of [YsZ2]
further generalizes the theorem further to finitely generated fields.

Global Hodge index theorem

The main result of [YsZ1] is the following Hodge index theorem.

Theorem 3. ([YsZ1]) Let π : X → SpecQ̄ be a normal and integral projective variety of
dimension n ≥ 1. Let M be an integrable adelic Q-line bundle on X, and L1, · · · , Ln−1 be
n− 1 nef adelic Q-line bundles on X. Assume M · L1 · · ·Ln−1 = 0 and that each Li is big.
Then

M
2 · L1 · · ·Ln−1 ≤ 0.

Moreover, if Li is arithmetically positive and M is Li-bounded for each i, then the equality
holds if and only if

M ∈ π∗P̂ic(Q̄)Q.

The theorem has an immediate consequence in algebraic dynamics as we shall see next
section. The paper also proves a local version of the theorem, which is essentially the
following non-archimedean Calabi–Yau Theorem.

Non-archimedean Calabi–Yau Theorem

The prestigious Calabi–Yau theorem is as follows. Let L be an ample line bundle on a
complex projective manifold X of dimension n. Let ω be a positive and smooth (n, n)-form
on X with

∫
X
ω = deg(L). Then there exists a positive hermitian metric h on L such that

c1(L, h)n = ω. Moreover, the metric h is unique up to scalar multiples.
The following is the uniqueness part of a non-archimedean analogue of the Calabi–Yau

theorem.
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Theorem 4. ([YsZ1]) Let X be a projective variety of dimension n over a complete non-
archimedean valued field. Let L be an ample line bundle over X, and ‖ · ‖1 and ‖ · ‖2 be two
semipositive metrics on L. Then:

c1(L, ‖ · ‖1)n = c1(L, ‖ · ‖2)n ⇐⇒ ‖ · ‖1

‖ · ‖2

constant.

Here c1(L, ‖·‖)n denotes the measure associated to (L, ‖·‖), introduced by Chambert-Loir
[CL], on the Berkovich analytic space Xan of X constructed by Berkovich [Be].

2 Algebraic dynamical systems

Let K be a field. A polarized algebraic dynamical system over K is a triple (X, f, L), where
X is a projective variety over K, f : X → X is an endomorphism, and L is an ample line
bundle on X such that f ∗L ∼= L⊗q for some q > 1. The most popular examples are abelian
varieties and projective spaces.

Equidistribution Theorem

Assume that K is a number field. There is a canonical height function ĥf : X(K) → R≥0

introduced by Call–Silverman [CS]. Similar to Neron–Tate height on abelian varieties, the
canonical height is obtained by Tate’s limiting argument from any Weil height function in
the class of L. Furthermore, ĥf (x) = 0 if and only if x is preperiodic in the sense that the
orbit {x, f(x), f 2(x), · · ·} is finite.

Theorem 5 ([Yu1]). Let {xm}∞m=1 be a generic sequence of points in X(K) with ĥf (xm)→ 0.
Then the Galois orbit of the sequence is equidistributed on the analytic space Xan

Kv
at any place

v of K.

The previously known cases were mainly the abelian variety case by Szpiro–Ullmo–Zhang
[SUZ], the torus case by Bilu [Bi], and the non-archimedean analogue of these two cases by
Chambert-Loir [CL]. The proof in [SUZ] uses the arithmetic Hilbert–Samuel formula, which
does not work here since in our general case “negative” line bundles appears in the proof.
Theorem 2 overcomes this difficulty. Another feature of the theorem is that it gives a uniform
proof including all the previous cases.

Rigidity of the Set of Preperiodic Points

Let (X, f, L) be a polarized algebraic dynamical system over K of characteristic zero. The
set Prep(f) of preperiodic points in X(K) determines many aspects of the dynamics. For
example, its accumulation points form the Julia set over the complex numbers.

Theorem 6 ([YsZ1, YsZ2]). Let (X, f, L) and (X, g, L) be two polarized algebraic dynamical
systems, sharing the same underlying space X and the same polarization L, over any field
K of characteristic zero. Then the following are equivalent:
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(a) Prep(f) = Prep(g);

(b) gPrep(f) = Prep(f);

(c) Prep(f) ∩ Prep(g) is Zariski dense in X.

The theorem works for any field of characteristic zero including C, while the proof is
arithmetic. We reduce the problem to number fields, and then use Theorem 5 and Theorem
4. In the number field case, we actually prove that the conditions of the theorem are
equivalent to ĥf = ĥg. Hence the arithmetic of f and g are essentially the same.

In the case X = P1, the theorem is obtained independently by Baker–DeMarco [BD].

3 Special Value Formulas

Here we introduce the Gross–Zagier formula proved in [YZZ] and the averaged Colmez
conjecture proved in [YsZ3].

Gross–Zagier Formula under any Ramification

Gross and Zagier proved their original formula on certain modular curves in [GZ], and S.
Zhang extended it to quite general cases over totally real fields in [Zh2, Zh3, Zh4]. There
are many difficulties in the computation of automorphic forms and arithmetic intersection
on Shimura curves, so these proofs only work under a lot of unramified conditions.

In [YZZ], we prove the Gross–Zagier formula in the most general setting, as expected
by Gross [Gr]. More precisely, we compute the central derivative of the Rankin–Selberg
L-function L(s, π, χ) with root number −1 in the following case:

• π = ⊗vπv is cuspidal automorphic representation of GL2 over a totally real number
field F , discrete of weight 2 at all archimedean places;

• χ : E×\A×E → C× is a character of finite order for a totally imaginary quadratic
extension E over F . Assume that χ|A× is reciprocal to the central character of π.

This general formula automatically simplifies many important results on Heegner points
depending on the original formulas of Gross–Zagier and S. Zhang. For example, we can
simply sharpen the indefinite case of Mazur’s conjecture proved in the work of Cornut–
Vatsal [CV].

Our new treatment simplifies the previous proofs in many respects. It follows the frame-
work of the central value formula by Waldspurger [Wa], uses Kudla’s generating function
with coefficients given by special cycles as a substitute of the theta function, and takes a
more representation-theoretic point of view. The identity at unramified places follows from
explicit computation, and computation of the identity at bad places is avoided by an argu-
ment using the multiplicity one result of local linear functionals by Tunnell [Tu] and Saito
[Sa].
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Averaged Colmez conjecture

Let E be a CM field of degree [E : Q] = 2g, with the maximal totally real subfield F . Let
Φ ⊂ Hom(E,C) be a CM-type, i.e., a subset such that Φ ∩ Φ̄ = ∅ and Φ ∪ Φ̄ = Hom(E,C).
Let AΦ be a CM abelian variety over C of CM type (OE,Φ). By the theory of complex
multiplication, AΦ is defined over a number field K and has a smooth and projective integral
model over OK . Denote by h(AΦ) the Faltings height of AΦ, which is the arithmetic degree
of the Hodge bundle of AΦ.

The averaged Colmez conjecture proved by [YsZ3] is the following theorem.

Theorem 7. ([YsZ3]) Let E/F be a CM extension, η = ηE/F be the corresponding quadratic
character, and dF (resp. dE/F ) be the absolute discriminant of F (resp. the norm of the
relative discriminant of E/F ). Then

1

2g

∑
Φ

h(Φ) = −1

2

L′(0, η)

L(0, η)
− 1

4
log(dE/FdF ),

where Φ runs through the set of all CM types of E.

The theorem is independently proved by [AGHM]. By the recent work of Jacob Tsimer-
man [Ts] et al, the theorem implies the Andre–Oort conjecture: Let X be a Shimura variety
of abelian type over C. Let Y ⊂ X be a closed subvariety which contains a Zariski dense
subset of special points of X. Then Y is a special subvariety.

4 Arithmetic over function fields

This section describes my recent work [Yu4]. It proves some results related to the BSD
conjecture of abelian varieties over global function fields, or equivalently the Tate conjecture
of projective and smooth surfaces over finite fields.

Positivity of Hodge bundle

Let S be a projective and smooth curve over a field k, and K = k(S) be the function field of
S. Let A be an abelian variety over K, and A be the Neron model of A over S. The Hodge
bundle of A over S is defined to be the locally free OS-module

ΩA = ΩA/S = e∗Ω1
A/S,

where Ω1
A/S denotes the relative differential sheaf, and e : S → A denotes the identity section

of A. The main theorem of [Yu4] is as follows.

Theorem 8 ([Yu4]). Denote K = k(t) and S = P1
k for a finite field k. Let A be an abelian

variety over K. Then A is isogenous to B×K CK, where C is an abelian variety over k, and
B is an abelian variety over K with an ample Hodge bundle over S.

In the following, we introduce two other consequences of the theorem.
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Partial finiteness of Tate–Shafarevich group

Let A be an abelian variety over a global function field K of characteristic p. The Tate–
Shafarevich group X(A) is conjectured to be finite, and the finiteness of X(A)[p∞] is actually
equivalently to the BSD conjecture for A by the works of Tate et al. Denote by F n : A →
A(pn) the relative pn-Frobenius morphism over K. Define

X(A)[F n] = ker(X(F n) : X(A)→X(A(pn)))

and
X(A)[F∞] =

⋃
n≥1

X(A)[F n].

Both are subgroups of X(A). Note that F n : A → A(pn) is a factor of the multiplication
[pn] : A→ A, so X(A)[F∞] is a subgroup of X(A)[p∞].

Theorem 9 ([Yu4]). Denote K = k(t) for a finite field k. Let A be an abelian variety over
K with everywhere semi-abelian reduction over S = P1

k. Then X(A)[F∞] is finite.

Variation of Tate conjectures

One version of the prestigious Tate conjecture for divisors is as follows. Let X be a projective
and smooth variety over a finite field k of characteristic p. Then for any prime ` 6= p, the
cycle class map

Pic(X)⊗Z Q` −→ H2(Xk̄,Q`(1))Gal(k̄/k)

is surjective.

Theorem 10 ([Yu4]). If the Tate conjecture holds for all projective and smooth surfaces X
over finite fields with H1(X,OX) = 0, then the Tate conjecture holds for all projective and
smooth surfaces over finite fields.

The proof uses Theorem 8, and also makes crucial use of the equivalence between the
BSD conjecture and the Tate conjecture.
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