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Abstract

In this manuscript, we have quantitatively calculated the thermodynamic
properties of the critical nuclei of Cr precipitates in FeCr alloys. The
concentration profiles of the critical nuclei and nucleation energy barriers were
predicted by the constrained shrinking dimer dynamics method. It is found
that Cr concentration distribution in the critical nuclei strongly depends on the
overall Cr concentration as well as on the temperature. The critical nuclei
are non-classical because the concentration in the nuclei is smaller than the
thermodynamic equilibrium value. These results are in agreement with atomic
probe observation. The growth kinetics of both classical and non-classical
nuclei was investigated by the phase-field approach. The simulations of critical
nucleus evolution showed a number of interesting phenomena: (1) a critical
classical nucleus first shrinks toward its non-classical nucleus and then grows;
(2) a non-classical nucleus has much slower growth kinetics at its earlier
growth stage compared to the diffusion-controlled growth kinetics and (3) a
critical classical nucleus grows faster at the earlier growth stage than does a
non-classical nucleus. All of these results demonstrate that it is critical to
introduce the correct critical nuclei in order to correctly capture the kinetics of
precipitation.

Keywords: critical nucleus, nucleation barrier, dimer method, phase-field
approach, FeCr alloys
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1. Introduction

High chromium ferritic/martensitic steels are preferred candidates for structural materials in
fusion and advanced fission reactor components [1]. The addition of Cr has a positive effect on
mechanical, corrosion and radiation resistance properties. However, it is well known that FeCr
alloys undergo thermal- and irradiation-induced phase separation from the solid solution into
a Fe-rich phase and a Cr-rich phase in the temperature range of 300-550 °C [2, 3]. The phase
separation causes material property degradation, such as embrittlement and stress corrosion
cracking [2,4]. A fundamental understanding of the thermodynamics, mechanism and kinetics
of phase separation is of technological importance in predicting microstructure evolution and
material property degradation.

Phase separation in FeCr solid solutions takes place through two different mechanisms,
which are: (1) spinodal decomposition and (2) Cr-rich phase nucleation and growth. Which
mechanism operates depends on Cr concentration and ageing temperature. Spinodal
decomposition can be naturally simulated using atomistic and field theoretical methods by
introducing any fluctuation of temperature, composition and/or order parameters. However,
modeling nucleation is generally believed to be one of the most challenging issues.
For example, the phase-field approach is a very powerful simulation tool to predict the
microstructure evolution during phase separation [5]. Although the phase-field approach
takes into account the energy changes during nucleation (such as a bulk free energy
decrease that is proportional to the nucleus volume, an interfacial energy increase which is
proportional to interfacial area, and long-range interaction energies (e.g. elastic energy)), it is
unable to simulate the nucleation process because the phase-field approach assumes that the
microstructure evolution is driven by the energy minimization while the nucleation needs to
overcome an energy barrier. Therefore, in order to simulate the phase separation, phase-field
simulations have to introduce critical nuclei into the simulation cells. According to classical
nucleation theory, the thermodynamic and kinetic information including the critical nucleus
radius, nucleation barrier, and nucleation rate can be calculated once we know the chemical
free energy, interfacial energy and long-range interaction energy. However, experiments [6]
and kMC simulations [7] have all shown that the nucleation of Cr precipitates in FeCr
alloys is a non-classical nucleation; that is, the Cr concentration inside the nucleus is not
the same as the thermal equilibrium concentration, particularly when the FeCr alloys have
high supersaturations. The thermodynamic and kinetic information of non-classical nuclei in
FeCr alloys are lacking for the phase-field simulations. Furthermore, it is unknown how the
critical nucleus from non-classical nucleation and classical nucleation affects growth kinetics.

In this work, we will quantitatively calculate the thermodynamic properties of critical
nuclei with the chemical free energy and interfacial energy assessed from thermodynamic
calculation and atomistic simulations [8,9]. The constrained shrinking dimer dynamics
(CSDD) method is employed to search for the critical concentration profiles of the nuclei
in FeCr alloys in terms of temperature and overall Cr concentration. The growth kinetics of
Cr precipitates with classical and non-classical nucleus profiles is examined by the phase-field
approach.

2. Phase-field model of Cr precipitation in FeCr alloys

In FeCr alloys, Cr precipitates are Cr-rich phases that have the same structure as the matrix
phase (i.e. bcc FeCr solid solution). Therefore, the precipitate microstructure in bec FeCr
alloys can be uniquely described by Cr concentration. In the framework of the phase-field
approach, the concentration of Cr, Cc(r, t), is employed as the phase-field variable where
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r = (ry, 2, r3) is the spatial coordinate and ¢ is time. Compared with the Cr solubility in FeCr
alloys, thermal equilibrium vacancy concentration is very small and is, therefore, ignored in
the present model. Consequently, the concentration of Fe is 1 — C¢,. Due to the low lattice
mismatch, the elastic energy contribution in the FeCr system is negligible and omitted in this
study. Therefore, the total free energy of the binary system can be expressed as

NA() K 2
E(Ccr, T)=f o /(€. T) + 2 [VCarl™ | dV, ey
1

0
where V. = (9/dr; + 0/dr, + 0/0r3) is the gradient operator and V is the volume of the
considered system. N = 6.022 x 102 (atom mol™!), is the Avogado’s constant. €y =
1.4087 x 10~5 [m> mol~']is the molar volume of bee Fe, constant Ag = 1.602x 10719 Jevh.
f(Ccy, T) is the chemical free energy density per atom in electron volts (eV) and « is the
interfacial energy coefficient.

Since the concentration Cc; is a conserved field variable, its temporal evolution is described
by the Cahn—-Hillard equation:

dCcr SE NAy 0

S _v.(-mv =V.MV O—f—;cv2ccr , 2)

ot 8Ccr

where M is the mobility of C¢, and related to Cr atom diffusivity, D, as M = DQy/(NRT)
with N being the gas constant of )i = 8.314J/ (mol K). To numerically solve equation (2),

the following normalizations are used: t* = t/ty, ty = ISQO/NAOM, r’ = rifly, * =

kQo/NA2, YV = (8/dr;,d/dry, d/3r3) = (1/1) (8/8rf, a/0ry, 8/8r§") = (1/lp)V*. [hisa
characteristic length. Therefore, equation (2) is rewritten as

Cer _ g | O
ot* aCc¢r

Equation (3) will be numerically solved by the semi-implicit Fourier-spectral method [10]

under periodic boundary conditions.

— K" v*zc@} ) 3)

3. Assessment of thermodynamic properties

3.1. Chemical free energy

To predict Cr precipitate formation and growth, or to solve the evolution equation (3), the free
energy density f(Ccy, T') is needed. Thanks to the efforts of many people, an analytical free
energy density has now become available for the FeCr system [8, 9]:

f(Cer. T) =G (1= Ccr. T), . )
Gx, T)=Go(x,T) Tz + H,(x) — Hy(x)T log T — H, (x) T2 + Hd(x)%
0
+H,(x)T +kpT [xlogx + (1 — x)log (1 — x)], )
5
Ha(x)zx(l—x)Zai (1 =2x) +agx +a7 (1 —x), (6)
i=0
3
Heeppeay(x) = & (1 —x)', @)
=0
H,(x) 7}
H,(x) = — + Hy (1) log To + He(N) Ty + Hy (x) ®)
5 .
Go) =x (1 —x) Y fi(l=2x) + fox + fr (1 —x), ©)
i=0
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Table 1. Coefficients for the FeCr free energy given in equations (4)—(9) [9].
& a b c d f

& 0.3856 2.630 x 10~* 3.145x 107°  —1.7601 x 1013 0.3817
& 0.0973 4.696 x 107> —2.203 x 1078 5.579 x 10712 0.1007
& —0.0467 —4.959 x 107> 3.960 x 1078 —5.935 x 10712 —0.0485

& 0.1945 1.133 x 1075 —3.090 x 1078 1.229 x 10! 0.1541
& —0.1856 —0.1684
&s 0.0044 0.0416
& —4.1231 —4.1671
& —3.8366 —3.8602
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Figure 1. Chemical free energy of FeCr alloys.

where Ty = 410K, kg = 8.6173 x 10~° eV K~! is the Boltzmann constant, and x = 1 — C¢,
is the concentration of Fe. The corresponding coefficients are listed in table 1. At the given
temperatures, the free energies are plotted in figure 1.

With the free energy density f(Cc, T), we calculate the Cr solubility, spinodal
concentrations, and equilibrium concentration of Cr precipitate in the FeCr alloys at different
temperatures. The chemical free energy f(Cc;, T) has a common tangent at the Cr solubility
in FeCr solid solution and Cr equilibrium concentration in Cr precipitate. The spinodal
concentration is associated with the inflection point of f(Cc¢y, T). Table 2 lists the Cr solubility
and spinodal concentrations in Fe-rich side and Cr thermodynamic equilibrium concentration
in Cr precipitates.

3.2. Interfacial energy

In the phase-field model described in equations (1) and (2), both the chemical free energy
f(Ce¢r, T) and the gradient energy contribute the interfacial energy. For given characteristic
length [ and gradient coefficient «, the interfacial energy of a flat interface can be numerically
calculated. To do so, we put a precipitate at the center of a one dimensional (1D) simulation
cell (5121y x Iy x lp) and let the system approach equilibrium through Cr diffusion. At the
equilibrium state, the equilibrium concentrations in both precipitate and matrix, as well as the
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Table 2. Cr solubility and spinodal concentrations in Fe-rich side and Cr equilibrium
concentration in Cr precipitates.

Cr equilibrium

Temperature  Cr solubility ~ Cr spinodal concentration in

(K) (Coke9y concentration  Cr precipitate (Ce.™)
300 0.04199 0.19049 1.0

400 0.048 29 0.19422 1.0

500 0.05501 0.198 40 0.999 98

600 0.06223 0.203 09 0.999 89

700 0.07008 0.208 40 0.999 58

Table 3. Interfacial energies at different temperatures.

This work with
Temperature «* = 0.8eV/atom [y = 0.287nm  Work [9, 11]

() Im™) (Jm™)
300 0.5334 0.4049
400 0.5016 0.3910
500 0.4811 0.3762
600 0.4382 0.3606
700 0.4093 0.3441

equilibrium interface concentration profile, are reached. The interfacial energy can then be
numerically calculated with the equilibrium concentration profile by

_ 1NA

r=39, ) [ {rCe 1) = [ €™ 1)+ g™ T(Cer — ey |

+ %K* ]V*CCr\z]dv, (10)

where the 1/2 factor outside the integral is due to the fact that there are two interfaces in the
one-dimensional model. f(Coy®d, T) and f'(Coy®, T) are the corresponding function and its
derivative with respect to C¢, at Cey = Cg[r’eq. Through tailoring the characteristic length [
and gradient coefficient « *, the phase-field model can correctly describe the interfacial energy
of Cr precipitates. In the general case, the interfacial energy is anisotropic. Then, the gradient
coefficient k is a tensor. The same method can be used to determine the tensor «.

By taking [, as the «-Fe lattice parameter (i.e. [y = 0.287 nm and «* = 0.8 eV/atom), the
corresponding interface energies are calculated with equation (10) for different temperatures.
The results are listed in table 3 and compared with those obtained by Schwen et al [9]
through fitting the results from Sadigh and Erhart [11]. It is seen that the interfacial
energy from this work is slightly larger than that from the previous studies. This can be
adjusted by taking a smaller /y. The corresponding equilibrium profiles for an average
concentration of Cc, = 15.8% at different temperatures are given in figure 2. From the
inset of the figure, we can see that the phase-field model can well predict the equilibrium
concentrations.
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Figure 2. Equilibrium profiles of Cr precipitates of 1D simulation model when Cr
average concentration is ¢y = 0.158. The two insets display the Cr concentration at the
interface and the matrix phase.

4. CSDD

In recent years, high-performance numerical methods have been proposed to find critical
nucleus [12] and applied to the nucleation in solid-state phase transformation [13]. In
particular, the shrinking dimer dynamics (SDD) [14] and its extension on a constrained
manifold, CSDD [15], have been successfully used to efficiently compute the saddle point
associated with an energy functional. Here we apply the CSDD to predict the critical nuclei
of Cr precipitates in FeCr alloys basing on the free energy and interfacial energy given in
the previous section. The constraint of the current model comes from the mass conservation;
that is,

G (Cer) = / [Car (. T) — co]dV = 0. (11)
14

To construct the dimer system, we let Ccy(1y and Ccr(2) be the two end points of a dimer with
a length of / = [Ccr1) — Ccr2)l. The dimer orientation is given by a unit vector v, so that
Ccr(1y — Ccr2) = lv. Therotation center of a dimer is defined as C¢, = (1 — o) Cer1y +aCer2),
where the parameter o € [0, 1]. So the geometric center (midpoint of the dimer) corresponds
toa = 0.5. Thereby, CCr(l) = C(a:r +alv, CCr(Z) = Cgr - (1 — O()ll).

To enforce the constraint, CSDD uses the projected natural force, which is the negative
gradient force projected on the tangential hyper plane of the constraint; that is,

_ SE*(Ce) 1 [ 8E*(Car d
F (o = 2 ) C)——/—( ) gy = (2 _ervc,
SCCr \% 174 (SCCr acCr

1 b
_L f S evece ) av., (12)
14 % 8CCr
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with E*(C¢r) = (R0/NAg)E(Ccr) = fv [f(CCr, T)+ (k*/2) IV*CCrIZ] dV. Following the
SDD, the formulation of the CSDD is given by [15]

aCe .
= = (1= 200") [(1 —a)F +an] ,
Fi—F
T G i

d _ _dEdimer(l)

W = al

with the relaxation constants i, o, U3. l~71 =F (CCr(])) and I:} =F (CC,(z)). The first
equation of the CSDD in (13) represents the translation step of the dimer, and the operator
(I — 2vv") is the Householder mirror reflection, which reverses the component of the negative
gradient force at v direction. The second equation in (13) is the rotation step of the CSDD.
The third equation in (13) follows the gradient flow of the dimer energy, resulting in the dimer
shrinking over time and the solution of (13) converging to an exact saddle point. In this work,
we have decided to use an auxiliary function Egimer(/) = I? /2, which gives an exponential
decay of the dimer length.

The initial condition of the CSDD needs to satisfy the following compatibility assumption:
G(Ce) =0, lvo@| =1, [, vo () dV = 0. The |vo| represents the magnitude of vector
vo. One straightforward way to implement the time discretization of the CSDD is to apply the
modified forward Euler scheme:

cert=cgr 2 (1= ) [a - o) F(ct) +oF (Chp) .

ﬁn+l — " + AZ‘[I':(C&(I))—I:‘(C&(Z))] n+l E}Hl
a ol ’ ~ o] (14)
"
n+l __
1+ Af/l,L3 ’

which performs a normalization on v at each iteration for the dimer rotation step so that the
scheme improves the local stability and optimal error reduction rate. To further improve the
stability of Euler method, and to allow the larger time step in the algorithm, we employ
a semi-implicit splitting scheme for the CSDD, in which the principal linear operator is
treated implicitly to reduce the associated stability constraint while the nonlinear terms are still
treated explicitly to avoid the expensive process of solving nonlinear equations at each time
step. The Fourier-spectral method is used for the spatial discretization to achieve exponential
convergence in space. In our calculations, u; = uy = u3 = I, = 0.5.

5. Non-classical critical nuclei and nucleation barriers of Cr precipitates in
FeCr alloys

Here, we assume that the interfacial energy is isotropic and, therefore, the critical nucleus
will be a sphere in a real three dimensional (3D) space. Experiments [6] have also shown
that the Cr precipitates in FeCr alloys have a spherical shape. Since the chemical free energy
of equation (4) depends on Cr concentration and temperature, the critical nucleus profile
will also vary with Cr overall concentration and temperature. To calculate the concentration
profile of critical nuclei, we consider a 3D simulation cell of 641, x 64y x 64l,. For a given
temperature (7)) and Cr overall concentration (c), the critical nucleus profile is obtained by
solving the CSDD equations. Figure 3 plots the critical profile dependence on the Cr overall
concentration (cg) and temperature (7). We can see that the concentrations inside the nuclei

7



Modelling Simul. Mater. Sci. Eng. 22 (2014) 025002 Y Li etal

(@) 1.00{ 7o0r 1 () ¢,=0.16
—=—5~0.18 0.6 T=500 K
c o £,70.16 - .,/ \\ —— T=600 K
S 1 ¢;=0.14 1 & f
® ®
s c
3 0504 {4 8
= c
3 3
5 =
0.25 i °
000 T Ly T T T T T T T T
1 17 33 49 65 25 29 33 37 41

Grid Grid

Figure 3. Cr nucleus profiles at: (a) different Cr overall concentration (cy); and (b)
different temperature (7). The plots illustrate the Cr concentration distribution along
the diameter of the spherical nuclei. In (b), the plots are zoomed in the nucleus center
areas in order to give a better resolution.

are much smaller than the equilibrium concentration of Cr precipitates (i.e. CCP’r “ ~ 1) that are
calculated from the equilibrium phase diagram. Experiments of atom probe observation [6]
have also demonstrated that the Cr concentration in the nuclei does not have to be its bulk
equilibrium value; therefore, the critical nucleus of Cr precipitate is non-classical. Although it
is hard to define the critical size of a nucleus, we can clearly see that Cr content inside the nuclei
increases with the decrease of the Cr overall concentration and the increase of temperature.

To validate that the concentration profiles predicted from the CSDD are critical profiles,
we numerically examine the evolution of the nucleus. Figure 4(a) displays the profiles of the
critical nuclei for cp = 0.16 at T = 500K and T = 501 K, respectively. Although the nucleus
at T = 501 K is very slightly larger than the one at 7 = 500 K, the difference between them
is hardly identified from the figure. By introducing the nuclei into the phase-field simulation
cells and evolving the phase-field equation (3) at the corresponding temperatures, we find
from figures 4(b) and (c) that both nuclei are stable and grow. If the slightly small nucleus
obtained at 7 = 500K is used for T = 501 K, the nucleus becomes unstable and shrinks
(as shown in figure 4(d)). These results numerically prove that the CSDD method can provide
the critical nucleus concentration profiles. Of course, the validation of the critical profile (that
is, the saddle point of the energy functional (1)) can be performed by introducing a small
perturbation pg as Ce;(r) = CE9%(r) + povsadde(r), where CE249 (1) and v$294°(r) are the
solution of equation (14). A small value pg can drive the profile of C¢, () away from its saddle
point C(Sﬁddle () by either growing or shrinking through substituting Cc; () into equation (3)
and evolving it for a long enough time. In practice, the numerical error included in C244¢ ()
through numerical searching is already large enough to make the nucleus grow or shrink.

It is known that the critical nucleus is associated with the concentration fluctuation that
has the minimum free energy increase amongst all of the fluctuations that lead to growth. In
the following, we calculate the energy excess, the energy difference between the system with
a critical nucleus and the original supersaturated system with uniform concentration,

_ ISNAO _ l * [k 2 *
Eexcess = F o = f(Ccr, T) + 2K |V CCr| Sf(co, T)|dV™. (15)
V*

Actually, Eexcess 1S the nucleation energy barrier. The results of Excess for different temperatures
and concentrations are given in figure 5. It is clearly seen that the nucleation barrier decreases
with decreasing temperature and increasing average Cr concentration. The nucleation barrier
approaches to zero when Cr concentration approaches the spinodal concentration ¢y = 0.20.
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Figure 4. Critical nucleus concentration profiles for ¢¢ = 0.16 at T = 500K and
501 K and their temporal evolution: (a) critical profiles; (b) evolution of the nucleus of
T = 500K at T = 500K; (c) evolution of the nucleus of 7 = 501 K at T = 501K;
and, (d) evolution of 7 = 500K nucleus at 7 = 501 K.
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Figure 5. (a) The energy excess (nucleation barrier) required for the formation of
a critical nucleus; and (b) the maximum concentrations inside the critical nuclei at
different temperature and different overall Cr concentration.

This is in agreement with the spinodal decomposition theory. The maximum Cr concentrations
of the nuclei corresponding to figure 5(a) are plotted in figure 5(b). Both the nucleation barrier
and the maximum value of a critical nucleus strongly depend on the temperature and Cr
concentration. These thermodynamic properties are important to calculate the nucleation rates
and introduce the correct critical nuclei in the phase-field modeling of precipitation kinetics.
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Figure 6. Classical nucleus profile of 7 = 500 K and ¢y = 0.16 and its evolution growth
with time: (a) comparison of critical nucleus profiles between the classical nucleus and
non-classical nucleus; (b) nucleus evolution at its shrinking stage; (c) comparison of the
non-classical nucleus and the classical nucleus at the stage with lowest concentration at
its center and (d) nucleus evolution at its growth stage.

6. Growth kinetics of classical and non-classical nuclei

In classical nucleation theory, the concentration inside the critical nucleus is assumed to be
CCP;eq, which is the equilibrium concentration of the precipitate phase. However, as shown in
the previous section, the concentration in non-classical critical nucleus is much less than the
equilibrium concentration. So, the question is, how do the critical concentration profiles
affect their growth kinetics? To answer this question, the growth kinetics of the critical
nuclei with classical and non-classical concentration profiles is simulated with the phase-field
model. In the simulations, we first numerically determine the critical concentration profile
of a classical nucleus by examining the growth and shrinkage of different nuclei that have a
Cr concentration of Ccp;eq inside the nucleus, and a smooth interface between the matrix and
the nucleus. Figure 6(a) shows the concentration profile of the classical critical nucleus for
given Cr overall concentration ¢cg = 0.16 at temperature 7 = 500 K. For comparison, the
concentration profile of the non-classical critical nucleus from the CSDD method is shown in
the same figure. We can see that the classical and non-classical nuclei have quite different
concentration profiles. Analyzing the evolution of the classical nucleus, it is interesting to
find that the nucleus first shrinks to a critical state and then grows. Figure 6(b) shows the
evolution of the classical nucleus at the shrinkage stage. The concentration profile of the
nucleus at the critical state is plotted in figure 6(c). The non-classical critical nucleus predicted
from the CSDD method is plotted in the same figure for comparison. We can see that the
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Figure 7. Comparison of the growth kinetics of the non-classical nucleus and classical
nucleus. (a) Nucleus profile evolution with time. The dashed and solid lines represent
the evolution of the non-classical nucleus. The lines with symbols represent the evolution
of the classical nucleus. Only partial profiles are shown for clarity. Grid point 33 is the
center of the spherical nuclei. (b) Total Cr concentration inside the nucleus cores. The
core is defined as with Cc; > 0.20. The total Cr concentration in the simulation cell is
64 x 64 x 64 x 0.16 = 41943. (c) Evolution of the energy excess. (d) The evolution of
maximum concentration inside the nucleus and minimum concentration in the matrix.

concentration profile at the critical state is almost the same as that of the non-classical nucleus.
The temporal evolution at the growth stage is depicted in figure 6(d). The results show that the
classical nucleus concentration profile first evolves to the non-classical nucleus concentration
profile, which further proves the capability of the CSDD method in searching for critical
nuclei.

The evolution kinetics of classical and non-classical nuclei is then compared. Figure 7(a)
shows the comparison of Cr concentration distribution evolution. Since the maximum
concentration varies with time, the radius of the nucleus could not reflect the growth kinetics.
We analyze the evolution of the total Cr contents in Cr precipitates, which are plotted in
figure 7(b). Both figures 7(a) and (b) show that the classical nucleus grows faster at the
early growth stage than the non-classical nucleus. By examining the total amounts of Cr in
the classical and non-classical nuclei that are shown in figure 6(a), we can easily find that
the difference of their growth kinetics can be attributed to the facts that: (1) the classical
critical nucleus requires more Cr than the non-classical nucleus; and, (2) when the classical
nucleus shrinks to the critical state, the extra Cr causes a higher supersaturation around the
nucleus compared to the non-classical nucleus. If we compare the similarity of the two curves
in figure 7(b), we can find that the growth of the non-classical nucleus has a certain time
delay. In classical nucleation theory, the diffusion-controlled growth of a spatial particle can
be described by R = A(Dt)'/?; where, R is the radius of the particle, D is the diffusivity,
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t is time, and X is a dimensionless growth parameter which depends on the supersaturation
and the particle size [16]. It is clear that the growth of a non-classical nucleus does not follow
the growth kinetics of classical diffusion-controlled growth. The non-classical nucleus has
a very small driving force when it starts to grow from the critical nucleus profile because
the critical nucleus is a saddle point. The time to get away from the saddle point is non-
ignorable compared to the time that the center point of the nucleus reaches to its equilibrium
value. A profile with its equilibrium value at its center point belongs to the classical nuclei.
Figures 7(c) and (d) plot the evolution of the energy excess and maximum concentrations
inside the nucleus and the minimum concentration in the matrix. We can see that in the energy
excess, the maximum and minimum concentration change very slowly during the time to get
away from the saddle point. After getting away from the saddle point, the growth of the nucleus
speeds up. The energy excess then starts to decreases sharply. The maximum concentration
increases and the minimum concentration decreases. The nuclei gradually reach their thermal
equilibrium concentrations, as shown in figure 7(d). The nucleus growth then follows the
diffusion-controlled growth. The growth kinetics of the classical nucleus is different from
that of the non-classical nucleus. The big differences are that: (1) Cr concentration inside
the nucleus first reduces, then increases and (2) it takes a shorter time to get transition from
decreasing to increasing of Cr concentration inside the nucleus. These results demonstrate
that the non-classical nucleus at the early growth stage has a different growth kinetics from
that predicted by the classical diffusion-controlled growth theory. The deviation of the nucleus
concentration profiles introduced in a phase-field model could result in a profound effect on
growth kinetics. Therefore, to correctly capture the kinetics of precipitation, it is critical to
introduce the correct critical nuclei.

7. Conclusions

Using the thermodynamic and kinetic properties of FeCr alloys from CALPHAD calculations
and atomistic simulations, the CSDD and phase-field method have been able to quantitatively
predict the critical nucleus concentration profiles, nucleation energy barriers, and growth
kinetics of Cr precipitates in FeCr alloys. It is found that the critical nuclei of Cr precipitates
from the CSDD method are non-classical because the concentration inside the nuclei is much
smaller than the thermal equilibrium concentration calculated from the equilibrium phase
diagram. These results are in agreement with atomic probe observation. The simulations of
critical nucleus evolution showed a number of interesting phenomena, including: (1) a critical
classical nucleus first shrinks to a non-classical nucleus and then grows; (2) a non-classical
nucleus has much slower growth kinetics at the earlier growth stage when compared to the
diffusion-controlled growth kinetics and (3) a critical classical nucleus grows faster at the
earlier growth stage than the non-classical nucleus. All of these results demonstrate that it
is essential to introduce the correct critical nuclei in order to correctly capture the kinetics of
precipitation.
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