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Abstract
For most steels, the aging- or radiation-induced hardenability of Cu precipitates
has been concerned for many years. Experiments show that Fe–Cu alloys
undergo aging- or radiation- induced phase separation into Cu-rich precipitates,
resulting in property degradation processes. In this work, we developed a model
integrating constrained string method and phase-field approaches to investigate
the non-classical critical nuclei and minimum energy path of Cu precipitates.
The Fe–Cu binary alloy is taken as a model system. The free energies used in
the phase-field model are from CALPHAD. The simulation results demonstrated
that the formation of Cu stable clusters undergo an energy barrier and the
predicted thermodynamic properties of the critical nucleus which are related to
temperature and Cu overall concentration, in good agreement with the theor-
etical calculation as well as experimental observations.

Keywords: Fe–Cu alloys, non-classical clustering, minimum energy path,
phase field model, constrained string method
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1. Introduction

For most steels, the aging- or radiation-induced hardenability of Cu precipitates has been
concerned for many years [1]. These Cu precipitates can not only strengthen the hardness of
low-carbon steels [2], but also result in important materials property degradation processes,
especially in reactor pressure vessel [3]. For instance, Fe–Cu alloys undergo aging- or
radiation- induced phase separation into Cu-rich precipitates, and the addition of Mn and Ni
in these steels can accelerate this progress [4]. Such phase separation leads to material
property degradation including embrittlement and reduction of ductile to brittle transition
temperatures [3]. On the other hand, Cu is a common element in steels with a low solubility in
α phase at a lower temperature. It is easier for Cu-rich clusters to form at a lower temperature
driven by thermodynamics. In the dynamic process, the diffusion coefficient of Cu decreases
with the decrease of temperature. Extra defects induced by radiation such as vacancies, or
high temperature can accelerate the clustering of Cu-rich precipitates [5–8]. Therefore, it is
crucial to understand the thermodynamic properties of critical nuclei for predicting micro-
structure evolution and material property degradation.

Phase separation in Fe–Cu alloys takes place through two mechanisms: (1) Cu-rich phase
nucleation and growth and (2) spinodal decomposition, which is determined by the temp-
erature and Cu overall concentration. However, modeling and simulation of nucleation is
believed to be one of the most challenging problems in materials. The phase field model is a
powerful simulation tool that can account for the effect of short and long range interaction
energies on phase stability and microstructure evolution as well anisotropic thermodynamic
and kinetic properties [9–14]. However, it is a challenge for the phase field approach to
simulate the nucleation process by solving Allen–Chan or Cahn–Hilliard equations because it
assumes that the microstructure evolution is driven by the energy minimization while the
nucleation needs to overcome a minimum thermodynamic energy barrier. Moreover, the
critical nucleus is a saddle point configuration along the minimum energy path (MEP), and it
is difficult to be captured from physical experiments because it only appears transiently at
very fast time scales. Therefore, there have been many efforts to study the critical nucleus and
nucleation events in order to simulate the phase separation [15–25].

In this work, we will quantitatively calculate the critical nucleus by coupling the phase
field model with the constrained string method. A detailed description of the model will be
presented in section 2, including the phase field model and the string method used for finding
the non-classical critical nuclei and MEP of Cu precipitates. The thermodynamic and kinetic
properties of Fe–Cu alloys are described as well. The simulation results of critical nucleus
radius, concentration of Cu in a critical nucleus, energy barrier and the MEP of Cu-rich
precipitates are presented and discussed in section 3.

2. Description of the model

2.1. Phase field model

In this model, the precipitation of Cu is described by Cu concentration, ( )rC t, ,Cu where
= ( )r r rr , ,1 2 3 is the spatial coordinate and t is the evolution time. Considering the high

solubility of Cu and the low thermal equilibrium vacancy concentration in Fe–Cu system, we
can ignore the vacancy concentration in this model. As a result, the concentration of Fe is
- C1 .Cu The total energy of the system usually includes chemical free energies, interfacial

energies and long-range interaction energies, such as elastic energy and static electric energy.
For our Fe–Cu alloys, the total free energy can be written as:
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where l0 is a characteristic length. Then the equation (2) can be written as:
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2.2. Chemical free energy

To predict Cu cluster and solve the phase field equation (4), we need the chemical free energy
density ( )G C T, .Cu Due to the efforts made by many researchers, the analytical free energy
density has now become available for the Fe–Cu system [27, 28]. The chemical free energy
density (Gibbs free energy) of α (bcc) phase for Fe–Cu binary alloy with magnetic
contribution is described as:

= + + + + - -( ) [ ( ) ( )] ( )G C T G G G RT C C C C, ln 1 ln 1 , 5E
Cu
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Cu Cu Cu Cu
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where G0 is the ideal mixing Gibbs free energy and Gi
0 is the Gibbs free energy of pure

element =( )i i Cu, Fe with bcc crystal structure in terms of temperature [29]. GE is the excess
free energy caused by the heat of mixing, and Gmg is the magnetic contribution to the Gibbs
free energy. R and T are gas constant of = - -R 8.314 J mol K1 1 and the absolute temperature
(K), respectively. The interaction parameter L ,Cu,Fe the Curie temperature T ,c and the atomic
moment ba are available from the thermodynamic database of equilibrium phase diagrams
and have been assessed by Miettinen [30]:
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For a given temperature, the chemical free energy can be plotted, as shown in figure 1.
For a given temperature and Cu concentration, we can obtain the equilibrium concentration
and the spinodal decomposition concentration of this Fe–Cu system, as shown in table 1. In
table 1, the equilibrium Cu concentration means the concentration of Cu clusters will grow to

Figure 1. Chemical free energy density of Fe–Cu alloys at different temperatures.
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that equilibrium state, and the spinodal decomposition is a mechanism for the rapid un-mixing
of a Fe–Cu mixture system, with Cu concentration higher than that of spinodal decomposition
concentration. Cu-rich clusters will form by nucleation and growth processes when the
concentration of Cu if less than the spinodal decomposition concentration.

2.3. Interfacial energy coefficient and diffusion coefficient

In the phase field model described in equations (1)–(4), both the chemical free energy
( )G C T,Cu and the gradient energy contribute to the interfacial energy. So a numerical method

is used to determine the concentration gradient energy coefficients for a given interfacial
energy γ and interfacial thickness λ. The numerical value of the composition gradient energy
coefficient can be estimates as k = W/ d1 2Cu

2 [32], where W is an interaction parameter
between atoms and we use W = = = -( ) ( )L T 0 K 41 033.0 J molCu,Fe

1 (see equation (10)). d
is an effective interaction distance [33], which is assumed as = ( )d 0.7 nm . This value is
about a half length of the interface region between the Cu-precipitate and the matrix. Then we
have k = ´ - -( )1.0 10 J m molCu

14 2 1 for g = -1 J m 2 and l = l3 .0

On the other hand, the diffusion coefficient in solids at different temperatures is needed to
solve the equations (1)–(4), as well. These parameters are generally found to be well predicted
by the Arrhenius equation:

= /D D e ,E kT
0 A

where D is the diffusion coefficient, D0 is the maximum diffusion coefficient, T is the
temperature, k is the Boltzmann constant, and EA is the diffusion activation energy. For bcc
Fe alloys, these parameters of different elements diffusion coefficient by a vacancy
mechanism can be adapted from the [34] and listed in table 2 (T=550, 650 K).

Table 1. Equilibrium and spinodal decomposition concentrations for Fe–Cu binary
alloy.

Equilibrium concentration Spinodal decomposition

Temperature (K) Solution Cu precipitate Concentration

550 0.6×10−3 0.999 0.06 0.94
650 1.5×10−3 0.998 0.07 0.93
773 3.6×10−3 0.996 0.10 0.90
950 0.01 0.990 0.13 0.87
1150 0.03 0.970 0.16 0.84

Table 2. Diffusion coefficients of different elements.

Element =( )D T 550 K =( )D T 650 K

Fe ´ -7.2 10 32 ´ -4.2 10 27

Cu ´ -5.0 10 29 ´ -8.0 10 25
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2.4. String method

To compute the MEP and the critical nucleus, we apply the constrained string method
developed by Du and Zhang [35]. The string method was first proposed by Ren and Vanden-
Eijnden in [15, 16], and it has been successfully used for nucleation in solids [17, 18] and
phase transformations [19].

The string method proceeds by evolving a string, i.e., a smooth curve with intrinsic
parametrization, to the MEP between two metastable/stable states in the configuration space.
Specifically, let f a( )t, denote the string at the time t with parametrization a Î [ ]0, 1 , then
the simplified string method [16] is to evolve the string according to

j a j lt= - +( ) ( ) ˆt E, ,t

where t̂ is the unit tangent vector to the string, i.e., t j j= a aˆ ∣ ∣.l is the Lagrange multiplier
to impose the equal arc-length constraint. The above equation is supplemented with the
boundary conditions:

f j= =( ) ( )t C t C0, , 0, ,eq
0

eq
1

where Ceq
0 and Ceq

1 are two equilibriums of the energy.
For a conserved concentration field, the computation of MEP and critical nucleus is

subject to the constraint ò - =
W

( ( ) )C x C xd 0,0 with C0 is the concentration for the

homogeneous state. The constrained string method can be applied to solve the constrained
MEP [35]. Then the critical nucleus is the image with the highest energy along the MEP since
it is the maximum along the path direction and the minimum along the other directions.

The constrained string method allows several equivalent formulations such as the
Lagrange multiplier method or the augmented Lagrange multiplier method. Yet, some for-
mulations are more natural and robust than others and require less parameter turning. In
particular, one effective approach is to apply Cahn–Hilliard type dynamics rather than the
Allen–Cahn dynamics with additional Lagrange multiplier. The Allen–Cahn equation refers
to the standard L2 inner product while the Cahn–Hilliard equation uses the -H 1 inner product.
Hence, we now introduce the constrained string method as follows:

j a
d j
dj

lt= - +( ) ( ) ˆt
E

, .t
2

In the numerical implementation, the discretized string is composed of a number of
images j = ¼{ ( ) }i t i N, , 0, 1, , . Then we can use a time splitting scheme via the following
iterations:

Step 1 (string evolution): We update the images on the string over some time intervalDt
according to

f
d j

dj
= - = ¼ -( ) ( ( ))

i
E i

i N, 1, 2, , 1.t
2

Step 2 (string re-parametrization): After the string is updated by Step 1, we apply linear
or cubic interpolation by equal arc length to redistribute the images along the string to obtain
the new discretized string with equal distance.
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3. Results and discussion

The nucleus of Cu clusters in Fe will be a sphere in a real three dimensional space, and
experiments have proved that [36, 37]. In this work, we consider a 2D simulation cell of

´l l128 1280 0 ( =l 0.2 nm0 in this work) for simplification.
The critical nucleus will change with the temperature and Cu overall concentration because

of the chemical free energy in equation (4) depending on the Cu overall concentration and
temperature. Here we consider two different temperatures 550K/7 73 K, and three Cu overall
concentration of 0.5%, 1.0% and 3.0%. For a given temperature ( )T and Cu overall concentration
C ,Cu0 we can obtain the critical nucleus, the final Cu cluster and the energy path for this progress.

We can see that the concentrations inside the nuclei are much smaller than the equili-
brium concentration of Cu precipitates »( )C 1Cu that are calculated from the equilibrium
phase diagram. Experiments of atom probe observation [36, 37] have also demonstrated that
the Cu concentration in the nuclei does not have to be its bulk equilibrium value; therefore,
the critical nucleus of Cu precipitate is non-classical. Although it is hard to define the critical
size of a nucleus, we can clearly see that Cu concentration inside the critical nuclei increases
with the decrease of the Cu overall concentration or the increase of temperature. That is to
say, it is more stable for Cu to precipitate in Fe–Cu system in a lower temperature or higher
Cu overall concentration.

The concentration of Cu nucleus and the energy for nucleation are calculated from the
Cahn–Hilliard non-classical nucleation theory. In figures 2(a)–(c), for T=550 K and

Figure 2. Critical nucleus, equilibrium and MEP for Fe–Cu alloys at 550 K. (a) 550 K,
Fe-0.5%Cu (b) 550 K, Fe-1.0%Cu (c) 550 K, Fe-3.0%Cu (solid line for considering
elastic energy and open line for not).
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=C 0.5, 1.0, 3.0,Cu0 we plot the MEP and insert both the critical nucleus and the equili-
brium precipitate on the string. The X axis represents the configuration along the MEP. In
particular, 0 represents the initial homogeneous configuration, 120 stands for the equilibrium
precipitate, and the configuration with the highest energy corresponds to the critical nucleus.
Another example is figures 3(a)–(c), for T=773 K and =C 0.5, 1.0, 3.0.Cu0 One of the
interesting observations is for T=773 K and =C 0.5%,Cu0 the Cu clusters would not be

Figure 3. Critical nucleus, equilibrium and MEP for Fe–Cu alloys at 773 K. (a) 773 K,
Fe-0.5%Cu (b) 773 K, Fe-1.0%Cu (c) 773 K, Fe-3.0%Cu (solid line for considering
elastic energy and open line for not).

Table 3. Thermodynamic properties of critical nucleus.

Temperature (K)

Cu
concentration

(at%)

Initial
energy
(eV)

Energy
barrier
(eV)

Final
energy
(eV)

Cu concentration
in critical

nucleation (at%)

550 0.5 9.72 1.08 8.66 56
1.0 24.92 1.62 20.22 37
3.0 97.94 0.49 43.54 17

773 0.5 −1.29 * * *

1.0 4.89 3.08 6.69 69
3.0 47.76 2.30 24.43 34
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stable, the energy per atom is increasing for any Cu segregation (so here we did not draw the
MEP without consideration of elastic energy). Therefore, with a lower Cu average con-
centration and a higher temperature, there are possibilities that Cu would not segregate. With
section 2.4, it is known that the critical nucleus is associated with the concentration fluc-
tuation that has the minimum free energy increase amongst all of the fluctuations that lead to
growth. We list the thermodynamic properties of critical nucleus in table 3, including the
energy barrier and Cu concentrations in critical nucleation for different temperatures and Cu
overall concentrations. It is easy to find that both the nucleation barrier and the maximum
value of a critical nucleus strongly depend on the temperature and Cu concentration. It is
clearly seen that the nucleation barrier decreases with decreasing temperature and increasing
average Cu concentration. This is in agreement with the spinodal decomposition theory.
These thermodynamic properties are important to calculate the nucleation rates and introduce
the correct critical nuclei in the phase-field modeling of precipitation kinetics.

4. Conclusions

With the thermodynamic and kinetic properties of Fe–Cu binary alloys from CALPHAD, the
phase-field model coupled with the constrained string method have been successfully applied
to quantitatively predict the concentration profiles of critical nuclei, nucleation energy bar-
riers, and equilibrium of Cu precipitates in Fe–Cu binary alloys. The phase field approach is
used to describe the effect of radiation damage or aging on phase stability and microstructure
evolution while the constrained string method is applied to obtain the MEP. These results are
in agreement with experiment results (both aging and radiation damage sample) and simu-
lation results.

The simulations of critical nuclei showed a number of interesting phenomena, including:

(1) The formation of Cu stable clusters needs to overcome an energy barrier calculated with
Cahn–Hilliard non-classical nucleation theory.

(2) The concentration of the critical nucleus of Cu decreases with the decrease of the
temperature or the increase of overall Cu concentration in the matrix.

(3) The relative energy barrier for forming a stable Cu cluster increases with the increase of
the temperature or the decrease of overall Cu concentration in the matrix.

All these results are in agreement with experimental results (both aging and radiation
damage sample) and simulation results [2, 13, 14, 27, 38]. The obtained thermodynamic
properties are important to calculate the nucleation rates and introduce the accurate critical
nuclei in the phase-field modeling of precipitation kinetics, which is essential to study the
evolution kinetics of precipitates.
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