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or more variants, are determined by the competition among bulk thermodynamic driving
force, elastic strain energy, and interfacial energy. In this work, a diffuse-interface model is
developed to predict both the critical nucleus morphology of a single variant tetragonal
precipitate described by a conserved field and the critical morphology of a two-variant

Ilf;?; Zveo_rﬁd; d nucleus and equilibrium multivariant twinning microstructure resulted from a structural
Diffuse-interface transformation described by non-conserved fields. A constrained string method was
Nucleation employed to compute the probable minimum energy paths and the microstructures along
Critical nucleus each path. Numerical experiments indicate that our approach works effectively for predict-
Constrained string method ing the critical nucleus morphology both the precipitation processes and structural
Elasticity transformations.

Cubic to tetragonal transformation © 2010 Elsevier Inc. All rights reserved.

1. Introduction

Nucleation in solid-state phase transformations is generally believed to be one of the most difficult processes to model. It
takes place when a material becomes metastable with respect to its transformation to a new crystal structure. During a nat-
ural precipitation process in a supersaturated solid or liquid solution, e.g. during isothermal annealing of a quenched homo-
geneous alloy within a two-phase-field of a phase diagram, the majority of precipitation reactions in solids occur through a
nucleation-and-growth mechanism followed by particle coarsening. There are two thermodynamically well-defined mor-
phologies: the morphology of a critical nucleus and the equilibrium morphology of a precipitate particle. Predicting precip-
itate particle morphology in solids becomes a main challenge because of the presence of both interfacial energy anisotropy
and anisotropic elastic interactions. Moreover, since the actual nucleation process is a rare event and the critical nucleus only
exists transiently, it is of great interest for developing effective methods that can be used to study the morphological relation
between the critical nucleus and the equilibrium precipitation.

The diffuse-interface description, or the nonclassical nucleation theory, is based on the gradient thermodynamics of non-
uniform systems and provides a general framework of treating nucleation. Rather than assuming a particular geometry for a
critical nucleus which is determined by a competition between a bulk free energy decrease which is proportional to volume
and an interfacial energy increase which is proportional to interfacial area, a critical nucleus is defined as the composition or
order parameter fluctuation having the minimum free energy increase among all fluctuations which lead to nucleation,
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i.e., the saddle point configuration along the minimum energy path (MEP) between the metastable initial phase represented
by a local minimum in the free energy landscape and the equilibrium phase represented by the global minimum. Therefore,
nucleation of new phase particle requires overcoming a minimum thermodynamic barrier. The magnitude of the nucleation
barrier, and thus the nucleation rate, or the resulted new phase particle density, is strongly dependent on the morphology of
critical nucleus. On the other hand, following nucleation-and-growth, the morphology and volume fraction of new phase
particle during coarsening are generally close to equilibrium. The particle morphology and volume fraction during coarsen-
ing together with the particle density predicted from nucleation provide the essential information that is needed for predict-
ing the strength of a solid in mechanistic models.

Early studies of equilibrium shapes in solids often use both sharp- and diffuse-interface approaches [1-4,14,15]. Recent
attempts have also been made to predict the morphology of a critical nucleus in solids by taking into account both interfacial
energy anisotropy and anisotropic elastic interactions [16-18,20-23]. For example, we showed that one can predict the mor-
phology of a critical nucleus in a system going through a phase transition [20,21] using a combination of the diffuse-interface
(phase-field) description and the minimax algorithm based on the mountain pass theorem [12,22]. Diffuse-interface critical
nuclei have also been incorporated in the dynamic phase-field simulation through the explicit nucleation algorithm in [28].
Recently, in [23], a new approach is developed to simultaneously predict the morphology of a critical nucleus as well as the
equilibrium morphology of a precipitate within the same diffuse-interface model described by a single phase-field function.
In this paper, we consider the more complex nucleation in cubic to tetragonal transformations which leads to the various
crystallographic orientation variants (structure domains). Computationally, our approach is based on the calculation of MEPs
with the unconstrained and constrained string methods which we describe in Section 2. We also compare such an approach
with the corresponding modification to the Nudged Elastic Band method. The main results of the paper are given in Section 3.
There, we first discuss the diffuse-interface model corresponding to the cubic to tetragonal transformations, with either a
single order parameter or a pair of phase-field functions. We then present the algorithm for computing both the critical nu-
cleus and the equilibrium microstructure simultaneously by combining the diffuse-interface model with the constrained
string method. Results of several numerical examples in the single order parameter case are provided. An example on the
extension to the two-variant nucleation case is also shown. These examples demonstrate the great potential in enlarging
the applicability of our method to the complex cubic to tetragonal nucleation. Final conclusions are given in Section 4.

2. Method
2.1. String method

In the diffuse-interface theory of Cahn-Hilliard, phase-field variables such as order parameters or compositions are uti-
lized to describe the structural transitions or concentration distributions in solids. Based on the transition state theory, the
point (state) with the highest energy along the minimum energy path (MEP), a saddle point in general, defines the critical
nucleus configuration, and the critical nucleation energy that determines the rate of a nucleation reaction. By the calculus of
variations of the total free energy functional subject to external constraints, we know that the saddle points are unstable
stationary points and they cannot be computed via the conventional total free energy minimization approaches.

In the last decade or so, several numerical methods have been developed for computing the saddle points and MEPs,
including the Nudged Elastic Band (NEB) method [5,6] and more recently the string method and its various improvements
[7,8]. The relevant saddle point can be identified with the highest energy point on the MEP [12]. In practical applications, the
computation of MEPs and/or saddle points may be subject to one or more constraints. In [19,23], we adopted the idea of
string method and the method of Lagrange multipliers to develop a constrained string method for finding the MEPs and sad-
dle points subject to general constraints. Similar extensions to incorporate constraints can also be made to the NEB method
which is to be shown later. We note that an interesting and yet different application of the string method to the study of
nucleation in a constrained setting has been presented recently in [11] which also contained a comprehensive discussion
on a variety of implementation strategies.

The original string methods [7,8] proceed by evolving a string, i.e., a smooth curve with intrinsic parametrization, to the
MEP between two metastable/stable regions in the configuration space. Specifically, let ¢(o.,t) denote the instantaneous po-
sition (representing the composition/order parameter profile in our case) of the string with « being a suitable parametriza-
tion. For an energy E = E(¢), the canonical string dynamics is

{wt = ~VE(p)" +71, a
(191, =0,

where 1 is a Lagrange multiplier for enforcing the particular parametrization of the string and 7 is the unit tangent of the
curve ¢.

For the numerical implementation, it was proposed in [8] to use the simplified string method based on a time-splitting
scheme. The evolution of the string is based on first taking a gradient descent direction via the dynamic equation

¢, = =VE(9),
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then followed by a projection step that maps ¢ back to a configuration satisfying the specified parametrization. In practice, a
commonly used parametrization for a string discretized by a finite number of line segments is to enforce an equal segment
length condition through an interpolation procedure [8]. For recent applications of the string methods, we refer to [9-11,23].

2.2. Constrained string method

In search for MEPs, there may be additional physical constraints present on the feasible states. Without loss of generality,
we denote

g(p)=0 (2)

as a general constraint which may represent, for example, the constant concentration constraint, constant surface area con-
straint or any other constraints that may arise in applications.

By adopting the idea of string method and the method of Lagrange multipliers, we developed a constrained string method
for finding the MEPs and saddle points subject to general constraints in [19,23]. The constrained string dynamics is given by

@ = -VE(@)" +1'Vg(p) + 11,
Vg ® Vgl = Vg(p)VE", 3)
(1@4l)y =0,

where, as in the improved string method, A is the Lagrange multiplier determined by the parametrization, and the new
parameter / is the Lagrange multiplier associated with the constraint (2) with its dimension matches with that of the con-
straint function g. Here, the symbol ® denotes the tensor product with entries of Vg ® Vg4 given by (Vg; - Vg;) for g with
components {g;}. If g has a single component, then Vg @ Vg = |Vg|>.

We notice that in the second equation of (3), /1 is independent of the choice of parametrization 2 [19]. Thus, in the numer-
ical computation, the constrained string method can be efficiently implemented by adopting the simplified string method
and using a time-splitting scheme.

Indeed, the constrained string method allows several equivalent formulations such as the penalty or Lagrange multiplier
methods. Yet, some formulations are more natural and robust than others and require less parameter tuning. One particu-
larly effective approach is based on the augmented Lagrange multiplier approach [13], which can be utilized to modify the
total energy by

Eu(9) = E(9) + 78(0) + 5 8(0)" 4

where M is a finite penalty constant.
The augmented Lagrangian method is then implemented via the following iterations [23]:

Step 1: Assume 4; and ¢; are known, we apply the simplified string method to solve the dynamical equation:
(@) = ~VE(@)) — 7] V&(9;) — Mg(¢;) V().

Step 2: Once the solution of ¢; is obtained, we update
i = 2+ Mg(@,) Ve ().

Then go back to Step 1 and iterate until convergence.

At the end of iteration, the constrained MEP is found with Eq. (2) satisfied along the string, and the limit of 4; gives the
corresponding Lagrange multiplier. Adopting this formulation, the implementation of the constrained string method is
straightforward and it assures the satisfaction of the constraint without requiring M to be exceedingly large, thus reducing
the stiffness of the dynamic system. For other implementation issues and applications of the constrained string method, we
refer to [19,11,23]. Let us point out that the constrained string method with the augmented Lagrange multiplier formulation
can also be derived for very general energies and constrained manifolds and thus have many potential applications.

2.3. Comparison with the NEB method

The NEB method [5,6] is another popular method for finding the MEP between the given initial and final states of a tran-
sition. A recent application of the NEB method is to use the free-end NEB algorithm in the computation critical nucleus in
solid-state transformation [18]. Similar as the string method, NEB method is also a chain-of-states method. The discrete rep-
resentation of a string is created and connected together with springs, then an optimization algorithm is applied to relax the
string down towards the MEP.

With a continuum description, the NEB dynamics can be considered as the following evolution,

(I _VE((/))l + K((f)ococ7 %)%7 (5)
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where k is the spring constant. While the string method and the NEB method are closely related, a key difference between
them is in the use of different second terms on the right hand side of (1) and (5), which are aimed at preventing the images
along the path from collapsing onto the local minima at the ends. In the string method, a particular parametrization is en-
forced, while in the NEB method, some artificial spring force is added along the path.

Naturally, one can also implement the NEB method in the constrained setting, much like what has been done for the
string methods. Given a general constraint g(¢) = 0, the constrained NEB method is then

{ @ = —VE(@)" + ATVE(P) + K(@,y, 1)1,

i (6)
Vg e Vgi=Vg(@)VE",

where the parameter / is the Lagrange multiplier.

Comparing (6) with (3), we notice that the second equations in (6) and (3) are the same. We thus see that the Lagrange
multiplier 4 is independent of the choice of the spring force in the constrained NEB method. This also provides much freedom
in the design of the efficient algorithms.

2.4. Improvement of the saddle point calculation

The simplest case of parametrization for the string method is to enforce the equal arc-length on the string [8]. Given the
values {¢;} on a possibly nonuniform mesh {¢;}, the equal arc-length parametrization is done by interpolating these values
onto a uniform mesh with the same number of points:

(1) Compute the arc-length by the current images,
S$o0=0, Si=si1+[@;—@i 4, i=12,....N.

The mesh {o;} is then obtained by normalizing {s;}, i.e., o = s;/sw.
(2) Apply the linear/cubic interpolation to get the new images ¢/*' at the uniform grid points o; = i/N.

In some applications, a more accurate determination of the saddle point can be more important than computing the
whole MEP precisely. It is suggested that [8], instead of the equal arc-length parametrization, a simple energy-weighted
arc-length parametrization could be used in the string method, in order to have finer resolution around the saddle point, thus
giving a better estimate of the energy barrier. This technique can be naturally extended to the constrained string method
since the Lagrange multiplier for the extra constraint is independent of the parametrization. Thus, we can substitute the
equal arc-length s; by the weighted arc-length s by

s =0, s'=s1+Wilp;—¢; 4, i=1,2,...,N,

where the weight function W is some positive and increasing function depending on the E(¢;). Examples of such a weight
function include a polynomial type weight W;=(E(p;) — m+1)* with degree k, and an exponential type weight
W; = exp(E(¢;) — m), where m = min; <;<n{E(¢i)}.

3. Application to cubic to tetragonal nucleation

We now describe the diffuse-interface model that can be used, in combination withe above discussed algorithms for MEP
computations, to study the cubic to tetragonal nucleation in solid-state transformations.

3.1. Single composition profile in a conserved field

Following [26], we use the conserved field c to describe the concentration distribution in a binary solid. The total free
energy, E;o:q, arising from the compositional fluctuation in an initially homogeneous state with cy, is given by

Faal©) = [ (SIAVE +f0))dx + (). )

For simplicity, we take the computational domain to be © = (—1,1)? with d being the space dimension. The gradient energy
coefficient A is a constant diagonal tensor in € for isotropic interfacial energy, while for anisotropic interfacial energy, it can
be made to be either directionally dependent or dependent on the derivatives of c.
The local free energy density change Jf(c) arising from a compositional fluctuation around the homogeneous state with
composition ¢ is given by
1 2 1 2 1

f(c)=-—(c2-1)" ——(c2 —1)* ==(c — co)(c2 — ¢

f(0) = 4= (€ =1 = 2-(6 = 1)° =~ (c — o) (¢} — ),
where « is a coefficient of energy density. The plots of Jf = 5f(c) are given in Fig. 1 for different values of the average com-
position ¢ at x = 0.03 with ¢, being the spinodal composition given by —+v/3/3.
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Fig. 1. Free energy change for ¢, from —1 (blue curve) to c; (green curve) (For interpretation of the references in colour in this figure legend, the reader is
referred to the web version of this article.).

The cubic to tetragonal crystal lattice rearrangement may be realized by a homogeneous strain of three different types
leading to different orientations of the tetragonal axes, along the [100], [010] and [001] parent phase directions, respec-
tively. These types of strain are described respectively by the matrices

e 0 0 € 0 0 e€ 0 0
0 €, o0 |, 0 € 0|, 0 €, 0
0 0 €, 0 0 €, 0 0 €

We assume that the elastic modulus is anisotropic but homogeneous so we may employ the microscopic elasticity theory of
Khachaturyan [27]. For a cubic crystal, the elastic energy formula is written as

1 ) — e () P
Fustc = 5573 / dKB(m)[77(K) — 10 (K)|. (8)

Here, #j(K) is the Fourier transform of #(x), and the integration in (8) is over the reciprocal space Q of the reciprocal lattice
vector Kk, n = k/|K| = (nq,n,,n3) is the normalized unit vector and in three dimensions, and the term B(n) is given by

B(n) = Cijk,eg-eﬁ, - niagQﬂ(l‘l)G?mnm,

where Gy is the elastic modulus tensor, €] is the stress-free strain, g is the elastic stress and €;; is the inverse to the tensor
QQI (n) = Ciygnyeny.

For a cubic material with its three independent elastic constants cy1, ¢12 and c44 in Voigt’s notation, the stress-free strain
for cubic to tetragonal transition is given by the tensor

e€, 0 0
e=|0 € 0
0 0 €,

We can then simplify B(n) to get

where

¥(n) = (o2 +An5(1 —n3) — (o2 — 1)nd + éBnn2n2 + 2&02n?n3]
1

.C11 +C12 éznznznz
- P

c 2c C
x |1 +¢ (n%n%_}rn%n%_i_n%n%)_i_w

C11 C11

and
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£ Ci1 — C12 — 2C44 o a9 (i1 +Ci2)ty + €1z €
- el = TR TRz ;=1
Caq ' a9, 2cnpti +en €’
C C C
A=""4 2 1_2) - 20, <£+1>,
Caa Caa Cas
C11 +C C11 — C. Cip +C
p_ ]2—&-20{% =Gy G2 FCas
C4a C4a Caq
g, 0 O
0_ 5. 0
O',»j = Lijki€y = 0 0'(1)1 0 s

0
0 0 o3
0 0 0 0 0 0
011 = (C11 + C12)€y + C12€33, 033 = 2C12€7; + C11 €33,
B_ 5. 00 _ 5.0 0 0 0
B= ijki €€y = 26,07, + €33035.

Rather than varying the magnitude of lattice mismatch and elastic constants, a factor f is introduced to study the effect of
the relative elastic energy contribution to the chemical driving force on the critical nucleus morphology and equilibrium par-
ticle morphology. A periodic boundary condition is used for the composition profile c. The period is sufficiently large in com-
parison with the size of the nucleus and particle to minimize boundary effects. Meanwhile to provide high resolution to the
states on the discretized string representing the composition profiles in the computational domain. We use the Fourier spec-
tral method for the spatial discretization which has been both numerically demonstrated and theoretically analyzed to have
superior accuracy than other low order schemes [25]. Due to the use of the first order splitting in the time integration, the
gradient descent step is simply implemented by the semi-implicit time marching [24].

For a conserved field, its profile ¢ = ¢(x) is subject to the constraint

/Q (c(xX) = co)dx = 0. (10)

Using the model and the algorithm described above, both the critical nucleus and equilibrium particle with a conserved com-
position can be determined. As an illustration, we focus on the two-dimensional example of a cubic to tetragonal transfor-
mation within the homogeneous modulus approximation. The 2D formulation of the elastic energy can be derived in a
similar manner as that in (8). The computational set-up and the parameters used are as follows. The initial state has a uni-
form composition with c(x) = co in Q. Then, for the MEP computation, one end of the string is fixed to be the initial state, and
the other end of the string allows to move but it is taken generally within the energy well of the ground state or equilibrium
solution. The point with the highest energy on the MEP is identified as the profile corresponding to a critical nucleus. The
string is discretized by m =30 points and the spatial simulation grid is maintained as 256 x 256. Numerical verification
was conducted to ensure that the numerical results enjoy sufficient resolution. Since the critical nucleus is relatively small
in comparison to the computational domain, the plots of critical nuclei are magnified by a factor of 2 in order to get a better
view. For the next series of simulations, we take the average composition co= —0.86, and parameters A; = A, = 1.56 x 1074,
k=1.5 and C11 = 250, Ci2 = 150, Cqq = 200.

In Fig. 2, we plot the critical nucleus (left) and equilibrium solution (right) in the presence of the long-range elastic inter-
actions and with =1, €%, = 0.01 and €J; = 0.03. The result shows that both the critical nucleus and the equilibrium par-
ticle display a plate-like shape due to the strong anisotropic elasticity, and we find that the composition value at the center of
a critical nucleus (0.9278) is smaller than the composition of the equilibrium particle (0.9880). In Fig. 3, we show the energy
plot along the MEP to demonstrate how the energy changes from the initial state (the left-end point) to the final equilibrium
state (the right-end point) by passing the critical nucleus (the point with the highest energy). Moreover, since the compe-
tition among the interfacial energy, bulk energy, and elastic energy determines the characteristic of the nucleation process,
we also plot three energies along the MEP in Fig. 3 with a zoomed-in insert showing the values of these energies around the
saddle point.

Fig. 2. Critical nucleus and equilibrium particle.
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Fig. 4. Critical nucleus and equilibrium precipitate for g = 1.

Fig. 5. Critical nucleus and equilibrium precipitate for g = 2.

In Fig. 4, we change the stress-free strain to €2, = 0.02, €J; = —0.02 and plot both the critical nucleus and the equilibrium
at B = 1. For such a relatively small elastic energy contribution, both the critical nucleus and the equilibrium particle display a
cubic symmetry. The shape of the critical nucleus is nearly circular while the equilibrium particle displays a diamond shape.

To examine the effect of elastic energy contributions, we fix the chemical driving force and increase § to compute the
MEPs. In Fig. 5, we choose =2 and compute both the critical nucleus and the equilibrium precipitate. With higher elastic
strain energy contribution, while the critical nucleus maintains the cubic symmetry, the equilibrium precipitate becomes
plate-like with only the twofold symmetry.

As we further increase the elastic energy contribution, for example, g = 3 in Fig. 6, both the critical nucleus and the equi-
librium precipitate exhibit plate-shaped particles. We also observe the increases in both the critical nucleus size and the
nucleation energy barrier with increasing elastic energy contributions.

From the above numerical examples for modeling the cubic to tetragonal phase transformation in a conserved field, sim-
ilar as the cubic to cubic transformation [23], we can see that the elastic energy plays an important role to determine the
morphologies of both the critical nucleus and the equilibrium solution. For the same g, the influence of elastic energy on
the critical nucleus and equilibrium solution may be different. Depending on the competition between the elastic energy
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Fig. 6. Critical nucleus and equilibrium precipitate for g = 3.

and interfacial energy, the shapes of the critical nuclei may either keeping the cubic symmetry or changing to a twofold sym-
metry. Furthermore, choosing the different types of the stress-free strain can result in different orientations of the critical
nucleus and the equilibrium solution.

3.2. Two orientation variants in a non-conserved field

In order to extend our method to more general cases, we next consider a case with two long-range order parameters
111 = 11(x) and #, = n(x), with each of them characterizes the shape, size, and spatial distribution of one of the two orienta-
tion domains.

The total free energy contains non-local gradient terms, a bulk free energy, f(71,72), and elastic energy, i.e.,

Eromt = / B (01 [Vgy (X)|2 + 0‘2|V'72(X)|2) +f(11(%),1,(x)) | dX + B - Eetastic,
Q

where o, o are gradient energy coefficients.
The bulk free energy is usually approximated by a Landau-type polynomial expansion following the symmetry operations
with respect to the parent phase. Here we choose an expansion with terms up to sixth order, so it is written as

al b cl
F1y.1) =5 (% + 1) = (it +118) + 5 (% + 1)’

To choose some suitable parameters, a couple of conditions should be satisfied:

f(£1,00=0, f,(0,£1)=0,
f(1,0) < f(0,0) = 0.

So it turns out that

E—E+£<O
2 46 ’
One example is shown in Fig. 7, where we take a=2, b=19, c=17 and A= 1. It is easy to see that the initial cubic phase is
located at (#1,#2) = (0,0) and the final tetragonal phase takes place at (#1,72) = (+1,0) or (0,+1) which depends on different

orientation domains.

a-b+c=0;

0.4

0.2

0

0.2
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0.8

15 E] 05 0 0.5 1 15

Fig. 7. Free energy surface, contour, free energy for one single domain.
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In a two-dimensional analogue, the tetragonal phase forms two orientation variants in the cubic phase matrix. Without
considering the dilatational components, one can choose the stress-free strains of two variants as

60(1):€0<(1) f)1>; 60(2):60(701 (1)>

where € is a constant.
Following Khachaturyan’s theory [27], we can derive an explicit form of the elastic energy:

,,122* 2 ()2 _lzz _dk_ 2 () (7
Eelastic = 2 P qu/'/lp(x)’?q(x)dx 3 2 /(27_[)2 Byg(m) (n2) (k) (n2) (k), (11)
where

E“ = §22 = 26(2)(C11 - C12)7 B12 = §21 = —En,

. 6(2)((:1] — C]z)z(C44 + 2(C]1 -+ C]z)n%n%)
C44D(n)

Bi1(n) = Byy(n) =
Bi2(n) = By1(n) = —By1 (M),

)

D) =cy + & + Clz)”%n%, &= m~
Cyq

Once again as an illustration, the two-dimensional example of a cubic to tetragonal transformation is considered within
the homogeneous modulus approximation in a non-conserved field. The computational set-up and the parameters used are
as follows. The string is discretized by m = 50 points and the spatial simulation grid is maintained as 256 x 256. Numerical
verification was conducted to ensure that there is enough resolution. We choose the coefficients of the bulk free energy a = 2,
b =20, c=18 that gives the parameter 1 which determines the energy difference between two well depths. Some other
parameters are oq = 0, = 1.56 x 1074, c11 =250, /4 =0.15, c13 = 150, ca4 = 100, and €, = 0.01.

In Fig. 8, we compute the order parameter profiles for both critical nucleus (left) and equilibrium structure (right) at
B =0.5. It shows that the critical nucleus has a single-variant structure, nevertheless the equilibrium structure appears a
two-variant polytwinned microstructure due to the long-range elastic interactions.

One interesting result is shown in Fig. 9. The order parameter profiles show that the critical nucleus has a two-variant
twin shape, and the equilibrium structure displays a two-variant polytwinned microstructure which is identical with that
in Fig. 8 because of the periodicity. It indicates that the highly spatially correlated polytwinned domain structure could
be formed by the twin-shape critical nucleus. If we increase the elastic energy by taking = 1.5 in Fig. 10, both the critical
nucleus and the equilibrium solution keep the similar configurations as Fig. 9.

To offer a more intuitive observation, we plot the order parameter profiles along the diagonal direction in Fig. 11. For the
comparison of the critical nuclei in Fig. 11 (left), it can be seen that the critical nucleus at g = 1.5 is larger than that at = 0.5,
and the maximum value of critical nucleus at g = 1.5 is also bigger than that at g = 0.5. For the different equilibrium solutions
in Fig. 11 (right), it shows that the interface of the equilibrium one at = 1.5 becomes more diffuse than that at g = 0.5. This is
because when the elastic energy increases, coupling of two variants with more diffuse-interface reduces the per-volume
elastic energy even at a cost of an increasing interfacial energy. Also, the order parameter value at the equilibrium phase
at f=1.5 is smaller than that at g = 0.5, which can be explained by the fact that the elastic interaction functions as the bulk
energy. Moreover, we notice that the critical nucleation energy increases from 1.81 x 1074 (=0.5) to 2.83 x 1074 (f=1.5),
and the energy of the equilibrium precipitate increases from —0.0307 (8 = 0.5) to —0.0074 (p = 1.5).

Fig. 8. Order parameter profiles of critical nucleus (left) and equilibrium particle (right).
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Fig. 9. Order parameter profiles of critical nucleus (left) and equilibrium particle (right) at g =0.5.

Fig. 10. Order parameter profiles of critical nucleus (left) and equilibrium particle (right) at = 1.5.
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Fig. 11. Order parameter profiles of critical nucleus (left) and equilibrium particle (right) along the diagonal direction. Red dashed line: § = 0.5; blue solid
line: g =1.5. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

The examples provided here serve to illustrate the effectiveness of the diffuse-interface model developed here to study
the cubic to tetragonal nucleations. It is expected that more understanding of this important process can be obtained
through further simulations, in particular for the case of the two-variant nucleation. The latter will be pursued in future
works.

4. Summary

In this work, we extended our earlier studies to take advantage of the generality of the diffuse-interface approach in the
study of nucleation in solid-state transformations. By combining the diffuse-interface model with the constrained string
method, we were able to compute the morphologies of both critical nuclei and equilibrium microstructures for cubic to
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tetragonal transformation without a priori shape assumptions. We conducted a series of preliminary numerical experiments
that demonstrated the effectiveness of our new approach. Moreover, the limited experiments can already offer insights into
the complicated nucleation process. For example, we find that choosing the different stress-free strains can lead to different
orientations of the critical nuclei and the equilibrium twin structures in cubic to tetragonal transformation. It is also shown
that the elastic energy contribution may lead to different symmetries in the morphologies of critical nucleus and equilibrium
microstructure. In addition, for the nucleation of the two variants, an interesting observation is that the polytwinned domain
structure can be formed by the twin-shape critical nucleus. We will utilize the models and algorithms developed here to
carry out more systematic simulations in the future in order to gather more quantitative information on the cubic to tetrag-
onal nucleations.
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