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Morphogens provide positional information for spatial patterns of gene expression during
development. However, stochastic effects such as local fluctuations in morphogen concentration
and noise in signal transduction make it difficult for cells to respond to their positions accurately
enough to generate sharp boundaries between gene expression domains. During development of
rhombomeres in the zebrafish hindbrain, the morphogen retinoic acid (RA) induces expression of
hoxb1a in rhombomere 4 (r4) and krox20 in r3 and r5. Fluorescent in situ hybridization reveals
rough edges around these gene expression domains, in which cells co-express hoxb1a and krox20 on
either side of the boundary, and these sharpen within a few hours. Computational analysis of spatial
stochastic models shows, surprisingly, that noise in hoxb1a/krox20 expression actually promotes
sharpening of boundaries between adjacent segments. In particular, fluctuations in RA initially
induce a rough boundary that requires noise in hoxb1a/krox20 expression to sharpen. This finding
suggests a novel noise attenuation mechanism that relies on intracellular noise to induce switching
and coordinate cellular decisions during developmental patterning.
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Introduction

A fundamental feature of developing systems is that cells
sense their positions along morphogen gradients and respond
collectively to form precise domains of target gene expres-
sion (Meinhardt, 2009; Wartlick et al, 2009). How do gene
expression domains achieve such sharp boundaries? Cells
near a future boundary experience fluctuations or ‘noise’ in:
(1) morphogen concentration, due to varying synthesis and
transport, (2) ability to respond, for example, due to differ-
ences in numbers of receptors, (3) transcription and trans-
lation rates of target genes, and (4) feedback (Kepler and
Elston, 2001; Elowitz et al, 2002; Kaern et al, 2005). Various
mechanisms have been proposed to attenuate these sources of
noise to generate consistent gene expression domains in every
individual. In spatial patterning systems, noise is generally
considered as detrimental to the ultimate goal of the system.

However, for systems without spatial constraints, noise can
regulate biological switches between high and low gene expres-
sion states, and noise can be attenuated by an ultrasensitive
signal (Hasty et al, 2000; Thattai and van Oudenaarden, 2002;
To and Maheshri, 2010). Could similar switches be operating in

spatial patterning systems? Bistability (distinct steady states of
a regulatory gene network within a cell) can have a critical role
in spatial patterning and lead to sharp borders between gene
expression domains in deterministic models (Meinhardt, 1978,
1982; Ferrell, 2002; Lopes et al, 2008). Spatially constrained
stochastic models, such as for segmentation of the Drosophila
embryo, suggest that noise predominantly depends on trans-
cription and translation dynamics of target gene expression
(Holloway et al, 2011), but external fluctuations in signals
also have an important role in these downstream responses
(He et al, 2012). However, very few studies have addressed
mechanisms of noise attenuation in the formation of gene
expression boundaries in any system.

Here, we investigate interactions between noise in a morpho-
gen (i.e., retinoic acid—RA) and noise in its downstream,
bistable regulatory gene network in boundary sharpening.
RA specifies rough boundaries between segments (called
rhombomeres) of the zebrafish hindbrain in a concentration-
dependent manner, which subsequently become razor sharp
(Giudicelli et al, 2001; Cooke and Moens, 2002; White et al,
2007; White and Schilling, 2008). Two genes downstream of
RA, hoxb1a (r4) and krox20 (r3 and r5), cross-inhibit one
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another and auto-activate their own expression to form a
bistable switch (Barrow et al, 2000; Giudicelli et al, 2001;
Alexander et al, 2009). With a stochastic model that incorpo-
rates these interactions we estimate the switching probability
between hoxb1a and krox20 expression at different RA concen-
trations based on an exponential function of Minimum Action
Paths (MAPs) between stable and unstable states (Freidlin and
Wentzell, 1998). Exploration of the stochastic models reveals
that noise in the RA morphogen gradient can lead to rough
gene expression boundaries initially, and that sharpening is
driven by noise in the expression of hoxb1a and krox20, due to
induced switching between expression of one gene and the
other. These results reveal an unexpected positive role for
noise in boundary sharpening that may be common for many
patterning systems.

Results

hoxb1a and krox20 co-expression during
rhombomere boundary sharpening

To determine the temporal dynamics of hoxb1a and krox20
expression in the embryonic zebrafish hindbrain, we per-
formed fluorescent in situ hybridization (FISH) analysis.
Previous studies showed that initial boundaries of hoxb1a in
r4 and krox20 expression in r3 and r5 are rough but become
razor sharp between 10 and 14 h post fertilization (h.p.f.)
(Figure 1A–F; Cooke and Moens, 2002; Cooke et al, 2005).
Cells that find themselves on the wrong side of a boundary
(i.e., surrounded by neighbors with a different pattern of gene
expression) may go through a transient phase in which they
express both genes and subsequently downregulate one or the
other to enable sharpening (Schilling et al, 2001; Cooke and
Moens, 2002). To quantify sharpness in krox20 expression,
confocal stacks were collected for a minimum of 10 embryos at
6 different stages (between 10.7 and 12.7 h.p.f.) (Figure 1A–F)
and the fluorescence was measured at different positions along
the anterior-posterior (A-P) axis focusing on the r4/5 boundary
(Figure 1G–I). This analysis demonstrated quantitatively how
krox20 expression sharpens at rhombomere boundaries over
time.

To examine this more closely, we used confocal analysis and
two-color FISH to colocalize hoxb1a and krox20 near the r3/4
and r4/5 boundaries at 20-min intervals between 10.6 and
12 h.p.f. (Figure 1J–L). hoxb1a expression is initiated broadly
in the early gastrula (6.5 h.p.f.; Maves and Kimmel, 2005), and
is preceded by its close relative hoxb1b, which is the first gene
induced by RA in this system and activates hoxb1a transcrip-
tion directly (McClintock et al, 2001). By 10.5 h.p.f. hoxb1a
expression resolves into a strong r4 stripe 4–6 cells wide along
the A-P axis while krox20 is expressed in flanking r3 and r5
stripes that overlap with hoxb1a at its edges (Figure 1J–L).
Higher magnification images demonstrated that krox20
and hoxb1a mRNAs colocalize in many of these cells near
future boundaries (insets) and occasional colocalization
was observed as late as 12.0 h.p.f. This revealed an initial
‘transition zone’ containing a mixture of hoxb1a, krox20 and
co-expressing cells that was B40 mm in length along the A-P
axis and later reduced to 5–10mm (1 cell diameter) by 12 h.p.f.
Similar numbers of co-expressing cells were identified at

10.7 h.p.f. (average 7 cells, n¼ 3) and 11.3 h.p.f. (average 7.3
cells, n¼ 3), however, by 12 h.p.f. the number of co-expressing
cells decreased (average 3, n¼ 3). Conversely, the percentage
of mis-specified cells that were expressing both genes
increased from 36% and 34% at 10.7 and 11.3 h.p.f. to 56%
at 12 h.p.f. The co-expressing cells were more prevalent in the
r5 domain at both 10.7 and 11.3 h.p.f. (Figure 1M and N) while
this bias was not observed at 12 h.p.f. (Figure 1O).

Induction of stripes of hoxb1a and krox20
expression by RA requires bistability and initial
expression of Hoxb1

RA activates hoxb1a expression in r4 (directly) and krox20 in
r3 and r5 (indirectly through Vhnf1 and MafB) in a concentra-
tion-dependent manner (Niederreither et al, 2000; Begemann
et al, 2001; Hernandez et al, 2004; Labalette et al, 2011). Our
deterministic model is based on a previous continuum model
of the RA signaling network that consists of diffusive
extracellular and intracellular RA, and self-enhanced degrada-
tion through the enzyme Cyp26a1 (White et al, 2007), without
inclusion of downstream signal responses (see Equation S1.1
in Supplementary information). In the new model, RA
activates hoxb1a and krox20 expression, which in turn both
positively regulate their own expression and negatively
regulate each other (Barrow et al, 2000; Giudicelli et al,
2001; Alexander et al, 2009; Figure 2A). Such positive auto-
regulation and mutual inhibition have been modeled and
shown to result in only one gene remaining active in a
particular cell (Meinhardt, 1978, 1982). Here, the dynamics of
both genes are modeled using rate equations along with Hill
functions for regulation, with RA as input (see Equation S1.2 in
Supplementary information).

Exploration of the model reveals that the system robustly
resolves into a striped pattern of gene expression with
hoxb1a in r4 and krox20 in r3 and r5 (Figure 2B). This
demonstrates that by simply including two bistable steady
states and an anteriorly declining RA gradient, one can specify
alternating gene expression patterns with sharp boundaries.
Simulations in two dimensions show a similar striped pattern
(Supplementary Figure S1). Auto-activation and mutual inhi-
bition between Hoxb1 and Krox20 allow one to switch from
the off to the on state, or vice versa, within a range of RA.
In particular, at a low RA concentration (RAo0.22 mM), there
are three stable states (hoxb1a-on, krox20-on, or both off) and
two unstable critical transition states (Figure 2C). As the RA
concentration increases above 0.22 mM, both the off state
and one unstable transition state merge and disappear, while
other states (hoxb1a-on, krox20-on, and another unstable
transition state) remain (Figure 2C). If the RA concentration is
high (larger than 0.85 mM in Figure 2C), then the hoxb1a-on
and unstable transition states disappear and only krox20 is
activated.

Because of the monotonic spatial distribution of RA (and
additional influences from Fgf signaling) (Hernandez et al,
2004; White et al, 2007; Labalette et al, 2011), the activation
(and auto-activation) of krox20 is likely stronger than hoxb1a,
at least in r5. However, our models suggest that enhanced
activation alone cannot create this bistability. Rather, the
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mutual inhibition between hoxb1a and krox20 is essential for
generating complementary stripes of gene expression. Lack of
either inhibitory interaction eliminates rhombomere-specific
gene expression (see Supplementary Figure S2).

Our model suggests that an initial low level of hoxb1a
expression is necessary to enable formation of an alternating
pattern of hoxb1a and krox20 expression (Figure 2D). krox20
expression can be activated in the absence of initial hoxb1a
due to its strong auto-activation. However, as the hoxb1a
concentration increases (40.084 in Figure 2D), it represses

krox20 expression and activates its own expression in r4.
Interestingly, hoxb1a is first expressed at an intermediate level
of RA, not in the anterior hindbrain where RA concentrations
are low. This reflects the presence of the initial low level of
hoxb1a expression, which compensates for its weaker auto-
activation than krox20. This is consistent with previous
theoretical findings (Meinhardt, 1978, 1982) and experimental
observations of extremely early onset of hoxb1a (and hoxb1b)
expression during zebrafish gastrulation (McClintock et al,
2001; Maves and Kimmel, 2005).
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Figure 1 Sharpening of gene expression boundaries in the zebrafish hindbrain. (A–F) Single confocal images of fluorescent in situ hybridization (FISH) for krox20 (red)
mRNA, dorsal views, anterior to the left, between 10.7 and 12.7 h post fertilization (h.p.f.). (G–I) Fluorescence measurements at different positions along the anterior-
posterior axis (X axis) at 11, 11.7, and 12.7 h.p.f. Lines represent four different samples. (J–L) Single confocal images of two-color FISH for hoxb1a (r4, red) and krox20
(r3 and r5, green). Insets show enlargements of cells co-expressing both (yellow). (M–O) Sample distributions of mis-expressing cells along the r4/5 boundary (black
lines) between 10.7 and 12 h.p.f., anterior to the top. Cells mis-expressing krox20—green dots, hoxb1a—red dots and co-expressing cells—orange dots.
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Noise in RA can generate rough boundaries
of hoxb1a and krox20 expression

Stochastic fluctuations in ligand-receptor binding and morpho-
gen synthesis introduce noise into any morphogen gradient.
To study the propagation of such noise and its influence on
target gene expression in the hindbrain, we introduced spatial
and temporal noise into the deterministic RA model:

q½RA�out

qt
¼DRA

q2½RA�out

qx2
þVRAðx; tÞ� ð1þ bÞkA½RA�out

þ kA½RA�inþ eout½RA�out

q2Woutðt; xÞ
qtqx

;

q½RA�in
qt

¼ kA½RA�out�ðkAþ ½Cypð½RA�inÞ�Þ½RA�inþ ein

�½RA�in
q2Woutðt; xÞ

qtqx
; ð1Þ

where [RA]out and [RA]in represent extracellular and intracellular

RA concentrations, and q2Woutðt;xÞ
qtqx ; q

2Winðt;xÞ
qtqx , denote standard white

noise in extracellular and intracellular RA concentrations,
respectively. [Cyp([RA]in)] represents RA degradation by
Cyp26 (see Section 1 in Supplementary information for the
other parameters and boundary conditions).

Because of inherent stochasticity in gene expression and
other cellular components (Elowitz et al, 2002) in any gene
regulatory network, we also include temporal noise in each
gene equation:

dgh

dt
¼ Chgnh

h þðkh½RA�inÞ
m

1þChgnh

h þCkgnk

k þðkh½RA�inÞ
m � dhghþ ahgh

doðtÞ
dt

;

dgk

dt
¼ Ckgnk

k þðkk½RA�inÞ
m

1þChgnh

h þCkgnk

k þðkk½RA�inÞ
m � dkgkþ akgk

dcðtÞ
dt

:

ð2Þ

Here, gh and gk represent the concentrations of hoxb1a
and krox20, respectively, and o(t)c(t) represents white noise
with amplitudes ah and ak, respectively (see Section 1 in
Supplementary information for more details).

To investigate the effects of noise on boundary sharpening
we have varied each term in Equations (1) and (2) and
modeled the outcome. First, if noise is only present in
extracellular RA (i.e., eout 6¼ 0; ein¼ ah¼ ak¼ 0), due to
fluctuations in environmental factors (e.g., availability of
vitamin A) or in RA synthesis, then the boundaries between
Krox20 and Hoxb1 expression domains are sharp from the
outset (see Supplementary Figure S3). This is because
RA induces Cyp26a1, creating ‘self-enhanced degradation’
feedback that makes signaling robust to fluctuations in RA
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Figure 2 Modeling induction of hoxb1a and krox20 expression by a gradient of retinoic acid (RA) in a noise-free system. (A) Diagram illustrating RA movement
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(Eldar et al, 2003; White et al, 2007) resulting in a smooth
gradient of intracellular RA concentration along the A-P axis.
Consistent with this idea, simulations in which we have
varied spatial noise demonstrate that self-enhanced degrada-
tion provides excellent noise attenuation for fluctuations in
extracellular RA (see Supplementary Figures S3 and S4).

In contrast, if noise is introduced into the intracellular RA
concentration, [RA]in (i.e., eout 6¼ 0; ein 6¼ 0; ah¼ ak¼ 0), for
example, due to fluctuations in RA transport into cells, then
boundaries between hoxb1a and krox20 never sharpen
(Figure 3A). In this case, the r3 domain of krox20 expression
expands as fluctuations in the RA gradient reach the threshold
that induces krox20. Monte Carlo simulations indicate that
there is a large variation in the distribution of gene expres-
sion around the r4/5 boundary over time when [RA]in is
noisy (Figure 3B). Two-dimensional simulations also show
that hoxb1a and krox20 expression domains initially form a
rough r4/5 boundary, which does not sharpen (Figure 3C).
An initial noisy distribution of hoxb1a expression at this
boundary can also disrupt sharpening (see Supplementary
Figure S5). However, if noise is only restricted to later hoxb1a
and krox20 expression, and not local RA concentration
(i.e., eout¼ ein¼ 0; ah 6¼ 0; ak 6¼ 0), then boundaries tend
to sharpen from the outset (Figure 3D and F) and Monte
Carlo simulations confirm this prediction (Figure 3E). These
results suggest that rough boundaries of gene expression
between r4 and r5 arise due to noise in [RA]in or initial hoxb1a
expression.

Noise in Hoxb1/Krox20 expression enables noise
attenuation during boundary sharpening

Rhombomeres form lineally-restricted compartments (Fraser
et al, 1990; Jimenez-Guri et al, 2010) and single hindbrain
cells can upregulate or downregulate their Hox expression
according to their host environment/rhombomere (Trainor
and Krumlauf, 2000; Schilling et al, 2001). This suggests that
similar gene expression ‘switches’ occur in cells on either side
of a noisy rhombomere boundary. For example, cells expres-
sing krox20 isolated among neighbors expressing hoxb1a
(Figure 1J–L) may downregulate the former and upregulate
the latter, thereby attenuating the noise and sharpening the
border. To study such switching from one stable gene expres-
sion state to another, we employed an MAP analysis based
on the Wentzell–Freidlin theory of large deviation (Freidlin
and Wentzell, 1998). This theory allows one to estimate the
probability of a transition j between two stable states X1, X2 in
a stochastic dynamic system (e.g., with a form of Equation (2)).
The most probable path j* requires the least action and is
called an MAP (see Section 2 in Supplementary information
for more details). MAP analysis has been used primarily to
model phase transitions between two states in stochastic
chemical kinetics (E et al, 2004). Here, we adapt it to estimate
the switching probability between two stable gene expression
states.

The likelihood that a system switches from X1 to X2 relies
on its ability to pass through the unstable critical point Xc

that lies between X1 and X2 along the path j*. The distance
|j*(X1)�j*(Xc)| is the minimum barrier to the stochastic

transition from one state to the other. For a smooth RA gradient
and a simple bistable gene expression state (Figure 2C), we
calculate MAPs (E et al, 2004) at different levels of RA. At low
RA concentration (e.g., at RA¼ 0.1 mM), three MAPs connect
each pair of stable states, with each MAP passing through one
unstable critical point (Figure 4A). Based on MAP theory, the
activation of Krox20 (Krox20-on) from a ‘both-off’ state
requires less action (a lower barrier) than activation of Hoxb1,
which helps explain why the r3 domain of Krox20 expression
expands when noise increases in our models (Figure 3C). In
contrast, at intermediate RA concentrations a single MAP
connects the two steady states and the action to switching from
Hoxb1-on to Krox20-on decreases from RA¼ 0.5 to 0.8 mM
(Figure 4A), indicating that it becomes easier to switch in this
direction as RA increases. When RA levels are high, Krox20-on
is the only stable state.

To quantify such switching capability, we estimate the
switching probability from X1 to X2 within a time interval [0, T]
through an exponential of the minimal barrier:

PX1!X2
¼ exp ð� a� j j�ðX1Þ�j�ðXcÞ j nÞ: ð3Þ

The switching probability from X2 to X1 is defined in a
similar manner:

PX2!X1
¼ exp ð� a� j j�ðX2Þ�j�ðXcÞ j nÞ: ð4Þ

We estimate the Hoxb1/Krox20 gene switching probabilities
PH-K and PK-H using the MAP calculation of Equation 2 for a
normalized RA concentration. Our models indicate that PH-K

increases exponentially when [RA] is high and PK-H is low,
and cells have a high probability of switching from Hoxb1 to
Krox20 expression. On the other hand, Krox20 expression is
more stable due to a cell’s low switching (to Hoxb1 expression)
probability (Figure 4B). Together, this suggests that noise in
Hoxb1/Krox20 expression drives cells from occasionally co-
expressing Hoxb1/Krox20 expression to a uniform Krox20
expression when RA concentrations are high, leading to a
sharp boundary. In support of this analysis, direct Monte Carlo
simulations of the gene system (2) of switching probability at
the same time intervals provide similar MAP estimates based
on Equations (3) and (4) (Figure 4B; see Section 2 in
Supplementary information for more details).

Thus, surprisingly, our models suggest that the combination
of noise in both [RA]in and Krox20/Hoxb1 expression (i.e.,
eout 6¼ 0; ein 6¼ 0; ah 6¼ 0; ak 6¼ 0), synergize to reduce
noise during boundary sharpening, at least at the r4/5
boundary (Figure 4C–E). Interestingly, the initial boundary
(T¼ 1) is established at 160±10 mm along the A–P axis and,
following sharpening, the boundary is located at 144 mm
(T¼ 50) (Figure 4E). This suggests that sharpening preferen-
tially drives cells near the initial, rough boundary to krox20
expression due to the irreversibility of gene switching. Similar
directional boundary shifts in gene expression have also been
observed in Drosophila (Jaeger et al, 2004). This fits well with
our in vivo observation of a higher percentage of hoxb1a/
krox20 co-expressing cells on the posterior side of the putative
r4/5 boundary at 10.7 and 11.3 h.p.f. (Figure 1M and N), which
might predict that the forming boundary shifts anteriorly.

To quantify boundary sharpening more systematically, we
define a ‘Sharpness Index’ (S), which resembles the standard
deviation. To define S, we calculate the ‘mean’ location of the
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boundary (X axis). Solutions are at the scaled time T¼ 50, which is typically long enough for simulations to reach steady state (1000 samples are taken to calculate the gene
distributions). (C, F) 2D simulations at three time points showing the pattern of hoxb1a/krox20 gene expression around the r4/5 boundary (hoxb1a: blue; krox20: red).

Noise drives sharpening of gene expression
L Zhang et al

6 Molecular Systems Biology 2012 & 2012 EMBO and Macmillan Publishers Limited



boundary between Hoxb1 and Krox20 expression domains as
the intersection of their distributions at 50% of the normalized
value. Using this definition, we can measure the roughness of
the boundary, that is, deviation from a sharp boundary
(without transition zone) in both one-dimensional and two-
dimensional simulations. A decrease in S over time indicates
noise attenuation and a sharper boundary while a larger S
implies a rougher boundary. Stochastic simulations of four
cases that differ in whether or not they include noise in:
(a) [RA]out, (b) both [RA]out and [RA]in, (c) Hoxb1/Krox20
expression, and (d) both [RA]in and Hoxb1/Krox20 expression,
show that S starts with a large value and decreases
significantly over time only when there is both noise in [RA]in

and noise in gene expression, which is consistent with S value
estimates based on the experimental data for krox20 expres-
sion (Figures 1A–F and 4F).

If boundary sharpening depends on gene switching induced
by noise in gene expression, then the timing of switching,
which is closely related to noise frequency, is likely to be
critical. To test this, we have varied noise frequency, both in RA
levels and in gene expression, to study effects on boundary
sharpening. g is defined as the ratio of frequency of noise in RA
levels over that of gene expression. For a small g, indicating
high frequency noise in gene expression, rough boundaries
remain rough (Figure 5A). In this case, gene expression
oscillates relatively too fast to reach a critical level of gene
switching to enable sharpening. Lower frequency noise in
gene expression improves boundary sharpening (Figure 5B).
Conversely, high frequency noise in RA (i.e., a larger g) leads
to better noise attenuation (Figure 5C) since the time average
of RA signal over a substantial period reduces the influence
of noise. As a result, the Sharpness Index, S, decreases as the
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frequency ratio g increases, indicating that lower frequency
noise in gene expression and higher frequency noise in RA
together facilitate boundary sharpening (Figure 5D).

The noise amplitude, corresponding to the size of ah and ak

also must be within an appropriate range for noise attenuation
and boundary sharpening (Supplementary Figure S6A). When
ah and ak are relatively small, switching between expression
of Hoxb1 and Krox20 rarely occurs and oscillations in gene
expression caused by noise in [RA]in are barely affected by
noise in gene regulatory networks (Supplementary Figure
S6B). Conversely, when ah and ak are relatively large, cells
do not commit to expressing one gene or the other, leading
to oscillations that make the boundary even less sharp
(Supplementary Figure S6C) or isolated krox20 expressing
cells within the hoxb1a expression domain (Supplementary
Figure S13).

Because tissue growth potentially changes the RA gradient
and affects the pattern, we also explore a two-dimensional
stochastic model incorporating growth along the A-P axis. As
measured in our fluorescent in situs (Figure 1), the length of
the r3-r5 field increases from 106±4mm at 10.7 h.p.f. to
127±11 mm at 12.7 h.p.f., corresponding to approximately a
20% increase in A-P length. When incorporated into the
stochastic PDE model (see Section 1.3 in Supplementary
information), simulations reveal that as the RA gradient fades
due to growth (Figure 6A) sharpening of the r4/5 boundary is
delayed and less accurate (Figure 6B). This reflects depen-
dence of gene switching on RA concentration—lower RA levels
reduce the switching probability for cells around the future
boundary. Furthermore, without noise in the gene expression,
a fading RA due to growth becomes unable to induce sharp
boundaries of gene expression, indicating that this noise is
essential (Supplementary Figure S9).

In addition to the stochastic continuum model studied
above, we also use a discrete cell model containing a
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one-dimensional array of cells within which the reactions
and regulatory interactions (Figure 2A) are calculated
using a Stochastic Simulation Algorithm (Gillespie, 1977).
The number of RA molecules is obtained either by the
continuum approach shown above or through a stochastic
reaction-diffusion process (Kang et al, 2012; see Section 3 in
Supplementary information for more details). We found that
when the number of RA molecules is large, noise in gene
expression can drive boundary sharpening (Supplementary
Figures S7 and S8), while when the number of RA molecules
is very small, leading to large fluctuations in the RA gradient,
the rough boundary remains. Both results are consistent with
the stochastic continuum approach.

Time delays, such as those that occur during transcriptional
regulation, often affect the dynamics of gene switching and
sharpening (Kepler and Elston, 2001; Bratsun et al, 2005).
By incorporating a constant time delay in the expression
of hoxb1a and krox20 in our model (see Section 1.4 in
Supplementary information; Kuang, 1993), we find additional
stochastic oscillations that reduce the speed and efficiency
of boundary sharpening (Supplementary Figure S10). One
possible explanation is that the time delay averages (or filters)
noise such that gene switching becomes difficult, particularly
when the time delay is long relative to the dynamics of gene
expression.

Boundaries may also sharpen through cell movements
and differential adhesion that can lead to cell sorting
(Xu et al, 1999; Firtel and Meili, 2000; Dormann and Weijer,
2003, 2006). Previous studies in the zebrafish hindbrain
have demonstrated some limited sorting at rhombomere
boundaries (Cooke et al, 2005; Kemp et al, 2009). Simulations
with two-dimensional stochastic discrete cell models, which
incorporate both directional cell movements and stochastic
reaction diffusion (see Section 4 in Supplementary informa-
tion), suggest that the speed of cell sorting must be strongly
regulated to facilitate sharpening (Supplementary Figure S11).
Moreover, directed cell movements without noise in gene
expression lead to variability in the location of the r4/5
boundary (Supplementary Figure S12).

Discussion

Morphogen gradients activate target genes in a concentration-
dependent manner to generate distinct spatial domains of
expression in developing tissues. Extrinsic noise in morphogen
concentration and tissue geometry, as well as intrinsic noise
in signal transduction and gene expression, reduces precision
of patterning (Bollenbach et al, 2008; Balazsi et al, 2011;
Kang et al, 2012). Here we show, surprisingly, that noise in
intracellular signal transduction actually improves precision
and robustness of patterning. In particular, we find that the
initially rough expression boundaries of hoxb1a and krox20 in
the developing zebrafish hindbrain are due to extrinsic noise in
the morphogen (RA) that induces them, but that intracellular
fluctuations in their expression lead to gene switching that
enables sharpening. The resulting noise attenuation progres-
sively narrows the transition zone between the two gene
expression domains, similar to the sharpening that occurs
in vivo. Within this transition zone cells transiently co-express

both genes before adopting one segmental fate or the other.
This result is consistent with experimental evidence showing
that cells at these stages can upregulate or downregulate Hox
expression, rather than having to migrate to sort themselves
out at the future boundary (Trainor and Krumlauf, 2000;
Schilling et al, 2001) and that rhombomeres form lineally
restricted compartments at early embryonic stages (Fraser
et al, 1990; Jimenez-Guri et al, 2010). Similar rules may also
apply for other RA target genes (e.g., Vhnf1) and other gene
expression boundaries where cross-inhibition and/or auto-
activation between target genes occur in morphogen systems
(Rivera-Pomar and Jackle, 1996; Perkins et al, 2006; Balaskas
et al, 2012). Notably, this property of the system does not
depend on the genes being direct transcriptional targets of the
morphogen signal—Hoxb1 is a direct target while Krox20 is
induced indirectly through Vhnf1, Mafb and other transcrip-
tion factors (Barrow et al, 2000; Giudicelli et al, 2001;
Hernandez et al, 2004; Alexander et al, 2009).

Our deterministic model shows that an initial low level of
Hoxb1 is required to generate the alternating striped pattern
of Hoxb1 and Krox20 expression in response to a spatially
monotonic RA gradient (see Figure 2). During gastrulation
in zebrafish, hoxb1a expression is initiated several hours
before krox20, and induced by the even earlier expression
of hoxb1b in response to RA (McClintock et al, 2001; Maves
and Kimmel, 2005). This early onset is important genetically
(it fine-tunes target genes within its expression domain;
Labalette et al, 2011) and computationally (i.e., pre-steady-
state decoding) during embryonic patterning (Bergmann et al,
2007; Saunders and Howard, 2009). This helps explain how
alternating, mutually exclusive domains of target gene expres-
sion can be induced by the same signal, a common feature of
many boundary-forming morphogen systems (Lander, 2011).
Another major assumption of the model is the irreversibility of
cell switching such that gene expression remains stable when
the morphogen gradient decreases or disappears (Gould et al,
1998; Grapin-Botton et al, 1998). This irreversibility has also
been pointed out in previous modeling studies (Meinhardt,
1978, 1982).

Intracellular noise may arise from two sources: an intrinsic
one due to small numbers of molecules or stochastic fluctua-
tions inherent in biochemical reactions and an extrinsic one
driven by fluctuations in cellular environment (Swain et al,
2002). Gene expression noise in some morphogen systems
depends predominantly on fluctuations in transcription and
translation (Holloway et al, 2011). From our combination
of spatial SSA simulations, which take into consideration
the number of molecules, and stochastic continuum PDE
models, both types of intracellular noise can be utilized to
induce switching between gene expression states (e.g., the
switching from Hoxb1 to Krox20 is dominant in the transition
region between r4 and r5), leading to boundary sharpening.
Of course, the level of noise in the morphogen signal must be
within a range that allows switching in the transition region
through this system of intracellular noise.

Our models also suggest that the cells in the transition region
near the r3/r4 boundary utilize somewhat different noise
attenuation mechanisms despite undergoing similar boundary
sharpening. Unlike the case at higher levels of RA (i.e., at the
r4/r5 boundary) where the switching probability from Hoxb1
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to Krox20 is significantly higher than the one from Krox20
to Hoxb1 (Figure 4B), near the r3/r4 boundary where RA
levels are lower, switching probabilities are also lower. Since
we can detect cells co-expressing hoxb1a and krox20 at the
r3/4 boundary during sharpening (Figure 1J–L), it seems
likely that differences lie upstream, at the level of the
inductive signals. Cells at this boundary may have intrinsic
differences in their RA responses. Alternatively, these cells
integrate responses to additional morphogens such as Fgfs
(e.g., Fgf3 and Fgf8), which are produced in the anterior
hindbrain during sharpening and influence both RA degrada-
tion and expression of hoxb1a and krox20 (Hernandez et al,
2004; Labalette et al, 2011).

In particular, our simulations suggest that both time delays
and cell movements can affect rhombomere boundary
sharpening. We find that time delay in the expression of
hoxb1a and krox20 may introduce additional stochastic
effects, leading to reduced speed and efficiency in boundary
sharpening. Likewise, cell movements and differential adhe-
sion can lead to cell sorting (Xu et al, 1999; Firtel and Meili,
2000; Dormann and Weijer, 2003, 2006) and some limited
sorting has been observed at rhombomere boundaries in the
hindbrain (Fraser et al, 1990; Cooke et al, 2005; Kemp et al,
2009). However, clones derived from single progenitors in the
neural plate are for the most part lineally restricted to
individual rhombomeres (Fraser et al, 1990; Jimenez-Guri
et al, 2010) and do not move across boundaries. Hindbrain
cells at these stages are also capable of upregulating or
downregulating Hox expression if they find themselves on the
wrong side of a boundary (Trainor and Krumlauf, 2000;
Schilling et al, 2001). Our simulations also reveal that: (1) the
speed of cell sorting is critical for sharpening and (2) directed
cell movements without noise in gene expression disrupt the
location of the r4/5 boundary. Our simulation data suggest
that cell movements alone are unlikely to account for
rhombomere boundary sharpening, and that noise in gene
expression is critical for this process. However, more
comprehensive experiments are needed to quantify the
amount of sorting that occurs and modeling to understand
the roles of this sorting in the establishment and maintenance
of precise boundaries.

Our model is limited to two spatial dimensions. Interest-
ingly, in other systems the precision of responses to morpho-
gen gradients rapidly increases when considered in three
dimensions (Bollenbach et al, 2008). The zebrafish hindbrain
is several cell diameters thick during the sharpening period
considered here. Therefore, incorporating more accurate tissue
geometries in our stochastic model will undoubtedly reveal
new features of the system—most likely including more robust
patterning and boundary sharpening that can resist larger
amplitude fluctuations. There exist other potential mechan-
isms that may facilitate boundary sharpening and noise
attenuation, including cell-to-cell communication (e.g., Notch
signaling) (Louvi and Artavanis-Tsakonas, 2006; Ozbudak
and Lewis, 2008; Koseska et al, 2009; VanHook, 2011) and
averaging (Tanouchi et al, 2008).

While molecular noise often introduces fluctuations in
biochemical reactions and increases uncertainty in cellular
decisions, it also can improve performance objectives of
biological systems in surprising ways. For example, noise can:

(1) help create synchronous oscillations in cell–cell signaling
systems (Zhou et al, 2005; Springer and Paulsson, 2006); (2)
enhance sensitivity in intracellular regulation (e.g., stochastic
focusing; Paulsson et al, 2000), and (3) through reversible
progression, help reliable cellular decision making (Kuchina
et al, 2011). Our results add to the growing body of evidence
that points to important roles for molecular noise in cell fate
decisions, and reveals a novel mechanism by which intracel-
lular molecular noise reduces uncertainty in the ability of a
fluctuating morphogen to induce precise domains of target
genes.

Materials and methods

Numerical methods of stochastic PDE model

The stochastic PDEs (1) were solved with a finite-difference approxi-
mation in both one- and two-dimensional spaces. The stochastic
system (2) was solved with Milstein’s method (Higham, 2001). Noise
was added at each grid point in the space at a specified time interval.
We used spatial resolutions of 100 grid points in the one-dimensional
model or 100�20 grid points in the two-dimensional model and
temporal resolution of h¼ 0.1s. Numerical tests were conducted to
ensure sufficient resolution. The solutions were typically observed at
the scale time T¼ 1.25 and 50, which is the steady state for all of the
variables at each spatial point to reach an approximately invariant
distribution.

To estimate the stationary distribution from one realization, we
performed Monte Carlo simulations, which are repeated computations
of the stochastic models. We took 1000 samplings in the Monte Carlo
simulations to calculate the Sharpness Index. We explored a range of
sample numbers from 50 to 5000 to ensure consistent results. Please
see Section 1 in Supplementary information for more details and
Dataset 2 in Supplementary information for the simulation codes.

Numerical methods for finding MAPs

We followed the algorithm in E et al (2004) to find the MAPs for the
gene switch. First, a discrete time interval was used to form a mesh and
the path j is approximated on the mesh. Next, the action S[j] of this
path was approximated according to the midpoint rule. The steepest
descent method was then applied to minimize the discrete action S[j].
Please see Section 2 in Supplementary information for the equations
and Dataset 2 in Supplementary information for the simulation codes.

Numerical methods for spatial SSA

We partitioned the one-dimensional or the two-dimensional space into
identical compartments based on a computational strategy previously
developed (Kang et al, 2012), and applied the Gillespie algorithm to the
stochastic reaction-diffusion simulations (Gillespie, 1976). Please see
Sections 3 and 4 in Supplementary information for more details and
Dataset 2 in Supplementary information for the simulation codes.

Gene expression analysis in zebrafish

Wild-type zebrafish embryos (TL) were collected from natural matings
and staged as previously described (Kimmel et al, 1995). Fluorescent
whole mount in situ hybridization was performed as previously
described for Fast Red alone (Thisse et al, 2004) or with two colors
using tyramide amplification (Zuniga et al, 2010). Probes were synthe-
sized from cDNA clones of krox20 (Oxtoby and Jowett, 1993) and
hoxb1a (McClintock et al, 2001). Embryos were imaged on an Olympus
Fluoview FV1000 confocal microscope, processed in Image J, and post-
processed on Adobe Photoshop CS3. Fast Red in situ images for krox20
were processed and analyzed by the Matlab Image Processing Toolbox
(The MathWorks, Natick, MA, USA). Graphs of cell location were
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made in Microsoft Excel based on confocal stacks analyzed in Image J.
Please see Dataset 1 in Supplementary information for the processed
cell location data. Full image data are available from the authors upon
request.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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