Publications:
∗Corresponding author; #Equal
contribution; ^Group Member/Rotation Trainee.
Selected Publications:
l Rou, L., Zhan, X.*,Wang, T.*
(2023). A Flexible Zero-inflated Poisson-Gamma Model with Application to
Microbiome Sequence Count Data. Journal
of the American Statistical Association, 118, 792-804.
l Srinivasan,
A.^, Xue, L.*, and Zhan, X.* (2021). Compositional knockoff filter for
high-dimensional regression analysis of microbiome data. Biometrics, 77(3), 984-995. [Selected
as one of Biometrics 2021-2022 top cited papers]
l Zhan, X.* and Wu, M.
C.* (2018). A note on testing and estimation in marker-set association study
using semiparametric quantile regression kernel machine. Biometrics, 74, 764–766.
l Zhan, X.*, Plantinga,
A., Zhao, N. and Wu, M. C.* (2017). A fast small-sample kernel independence
test for microbiome community-level association analysis. Biometrics, 73, 1453–1463. [Selected
as an ENAR2016 Distinguished Student Paper Award, and an ASA JSM2017 David P. Byar Paper Award, and one of Biometrics 2017-2018 top
download papers]
l Li, D.#,
Srinivasan, A#^., Xue, L.*, and Zhan, X.* (2023).
Robust Shape Matrix Estimation for High-Dimensional Compositional Data with
Application to Microbial Inter-Taxa Analysis. Statistica
Sinica, 33, 1577-1602
l Wang, T. Lin,
W., Plangtinga, A. M., Wu, M. C. and Zhan, X.* (2022). Testing microbiome
association using integrated quantile regression models. Bioinformatics, 38(2), 419-425.
l Wilson, N.,
Zhao, N., Zhan, X., Koh, H., Fu, W.,
Chen, J., ... & Plantinga, A. M.* (2021). MiRKAT:
Kernel machine Regression-Based global association tests for the microbiome. Bioinformatics, 37 (11) 1595-1597.
l Yang, S.,
Wen, J., Eckert, S. T., Wang, Y., Liu, D. J., Wu, R., ... & Zhan, X.* (2020). Prioritizing genetic
variants in GWAS with lasso using permutation-assisted tuning. Bioinformatics, 36(12), 3811-3817.
l Zhan, X.*, Girirajan, S., Zhao, N., Wu, M. C., and Ghosh, D.* (2016).
A novel copy number variants kernel association test
with application to autism spectrum disorders studies. Bioinformatics, 32, 3603–3610.
l Banerjee,
K.^*, Chen, J., and Zhan,.X.* (2022). An adaptive test for microbiome
association studies via feature selection. NAR Genomics and Bioinformatics,
4(1): lqab120. [Selected as an ASA
JSM2021 David P. Byar Paper Award, and the IISA2021
Best Applied Statistics Student Paper Award]
Full List of Publications:
2023 and beyond:
1.
Rou, L., Zhan, X.*,Wang, T.* (2023). A Flexible
Zero-inflated Poisson-Gamma Model with Application to Microbiome Sequence Count
Data. Journal of the American
Statistical Association, 118, 792-804.
2.
Li, D.#, Srinivasan, A#^., Xue, L.*, and Zhan, X.* (2023). Robust Shape Matrix
Estimation for High-Dimensional Compositional Data with Application to
Microbial Inter-Taxa Analysis. Statistica Sinica, 33, 1577-1602.
3.
Li, C.,
Li, R., Wen, J.*, Yang, S.*, Zhan, X.#
(2023). Regularized Linear Programming Discriminant Rule with Folded
Concave Penalty for Ultrahigh-dimensional Data. Journal of Computational and Graphical Statistics, 32, 1074-1082.
4.
Srinivasan, A^., Xue,
L.*, and Zhan, X.* (2023). Identification of microbial features in
multivariate regression under false discovery rate control. Computational
Statistics & Data Analysis. 181:107621
5.
Jiang, Z., Zhang, H., Aheran, T.U., Garcia-Closas, M.,
Chatterjee, N., Zhan, X.*, and Zhao,
N.* (2023). The sequence kernel
association test for multi-categorical outcomes with application to a breast
cancer genome-wide association study. Genetic
Epidemiology, 47(6), 432-449.
6.
Li, Y.#, Hu, Y.#,
Zhan, X.#, Song, Y., Xu, M., Wang,
S., ... & Xu, Z. Z.* (2023). Meta-analysis reveals Helicobacter pylori
mutual exclusivity and reproducible gastric microbiome alterations during
gastric carcinoma progression. Gut Microbes, 15(1),
2197835.
[Journal 2022 IF=12.2, ranked 11/135 in Microbiology]
7.
Hongjiao Liu, Wodan Ling, Xing Hua, Jee-Young
Moon, Jessica Williams-Nguyen, Xiang
Zhan, Ni Zhao, Angela Zhang, Ramon A. Durazo-Arvizu,
Robert D. Knight, Qibin Qi, Robert Burke, Robert
Kaplan and Michael C. Wu* (2023) Kernel-based genetic association analysis for
microbiome phenotypes identifies host genetic drivers of beta-diversity. Microbiome, 11:80.
[Journal 2022 IF=15.5, ranked 7/135 in Microbiology]
8.
Schneider
A, Nolan Z, Banerjee K^, Paine A, Cong Z, Gettle
S, Longenecker A, Zhan X, Agak G, and Nelson A* (2023). Evolution of the skin
microbiome during puberty in normal and acne skin. Journal of the European Academy of Dermatology and Venereology, 37(1),
166-175.
[Journal 2022 IF=9.2, ranked 4/70 in Dermatology]
9.
Zachary T.
Nolan, Kalins Banerjee^, Zhaoyuan
Cong, Samantha L. Gettle, Amy L. Longenecker, Yuka I.
Kawasawa, Andrea L. Zaenglein,
Diane M. Thiboutot, George W. Agak, Xiang
Zhan, Amanda M. Nelson* (2023). Treatment response to isotretinoin correlates with
specific shifts in Cutibacterium acnes strain
composition within the follicular microbiome. Experimental Dermatology, 32 (7), 955-964.
2022:
10.
Banerjee, K.^*, Chen, J., and Zhan,.X.*
(2022). An adaptive test for microbiome association studies via feature
selection. NAR Genomics and Bioinformatics, 4(1): lqab120.
[An earlier version won the first author a JSM 2021
Biometrics Section paper award]
[An earlier version won the first author a Best Student
Paper Competition Award in IISA 2021 May Virtual Conference]
11.
Wang, T. Lin, W., Plangtinga,
A. M., Wu, M. C. and Zhan, X.*
(2022). Testing microbiome association using integrated quantile regression
models. Bioinformatics, 38(2),
419-425.
12.
Jiang, Z., He, M., Chen, J., Zhao, N.*,
and Zhan, X.* (2022) MiRKAT-MC: a
distance-based microbiome kernel association test with multi-categorical
outcomes. Frontiers in Genetics, 13: 841764.
13.
Cho, Y.*, Zhan, X.* and Ghosh,
D. (2022). Nonlinear predictive directions in clinical trials. Computational
Statistics & Data Analysis. 174: 107476.
14.
Chen, H., Ji, T., Zhan, X.,
Liu, X., Yu, G., Wang, W., Jiang, Y.*, and Zhou X-H* (2022). Seizures
Prediction and Epileptogenic Focus Localization via Dynamic Functional Brain
Connectivity View from Scalp EEG. Computational
Intelligence and Neuroscience, 2022, 2183502.
15.
Colello, J., Ptasinski,
A., Zhan, X., Kaur, S., & Craig,
T. J.* (2022). Assessment of Patient Perspectives and Barriers to Self-Infusion
of Augmentation Therapy for Alpha-1 Antitrypsin Deficiency During the COVID-19
Pandemic. Pulmonary Therapy, 8,
95-103.
2021 :
16.
Srinivasan, A.^, Xue,
L.*, and Zhan, X.* (2021).
Compositional knockoff filter for high-dimensional regression analysis of
microbiome data. Biometrics, 77(3),
984-995.
[Selected as a top cited article in Biometrics 2021-2022]
17.
Zhan, X.* Banerjee,
K.^ and Chen, J* (2021). Variant‐set association test for generalized linear
mixed model. Genetic Epidemiology, 42(4),
402-412.
18.
Jiang, L., Liu, X., He, X., Jin, Y., Cao, Y., Zhan,
X., ... & Wu, R.* (2021). A behavioral model for mapping the genetic
architecture of gut-microbiota networks. Gut
Microbes, 13(1), e1820847.
19.
Wilson, N., Zhao, N., Zhan, X., Koh, H., Fu, W., Chen, J.,
... & Plantinga, A. M.* (2021). MiRKAT: Kernel
machine Regression-Based global association tests for the microbiome. Bioinformatics, 37 (11) 1595-1597.
20.
Carney, M. C., Zhan, X., Rangnekar, A., Chroneos, M. Z., Craig, S. J., Makova,
K. D., ... & Hicks, S. D.* (2021). Associations between stool
micro-transcriptome, gut microbiota, and infant growth. Journal of Developmental Origins of Health and Disease, 12(6),
876--882.
21.
Bagley, J.J., Piazza, B., Lazarus, M.
D., Fox E. J.* & Zhan, X. (2021).
Resident Training and the Assessment of Orthopaedic
Surgical Skills. JBJS Open Access, 6(4),
e20.00173.
2020 :
22.
Yang, S., Wen, J., Eckert, S. T.,
Wang, Y., Liu, D. J., Wu, R., ... & Zhan,
X.* (2020). Prioritizing genetic variants in GWAS with lasso using
permutation-assisted tuning. Bioinformatics,
36(12), 3811-3817.
23.
Agarwal, A., Wen, T., Chen, A.,
Zhang, A. Y., Niu, X., Zhan, X., ... & Brantley, S. L. (2020). Assessing
Contamination of Stream Networks near Shale Gas Development Using a New
Geospatial Tool. Environmental Science
& Technology, 54, 8632-8639.
24.
Schneider, A. M., Cook, L. C., Zhan, X., Banerjee, K.^, Cong, Z.,
Imamura-Kawasawa, Y., Gettle,
S.L., Longenecker, A.L., Kirby, J.S., and Nelson, A. M.* (2020). Response to
Ring: In silico predictive metagenomic analyses highlight key metabolic
pathways impacted in the HS skin microbiome. Journal of Investigative Dermatology, 140 (7), 1476-1479.
25.
Gandhi C.*, Patel, J. and Zhan, X. (2020). Trend of influenza
vaccine Facebook posts in last four years: a content analysis. American Journal of Infection Control,
48(4), 361-367.
26.
Schneider, A. M., Cook, L. C., Zhan, X., Banerjee, K.^, Cong, Z.,
Imamura-Kawasawa, Y., Gettle,
S.L., Longenecker, A.L., Kirby, J.S., and Nelson, A. M.* (2020). Loss of skin
microbial diversity and alteration of bacterial metabolic function in Hidradenitis
Suppurativa. Journal of Investigative
Dermatology, 140(3), 716-720.
27.
Ruzieh, M., Rogers,
A. M., Banerjee, K.^, Soleymani, T., Zhan, X., Foy, A. J., & Peterson,
B. R.* (2020). Safety of Bariatric Surgery in Patients with Coronary Artery
Disease. Surgery for Obesity and Related
Diseases, 16(12), 2031--2037.
28.
Patel, V. A., Dunklebarger,
M., Banerjee, K.^, Shokri, T., Zhan, X.,
and Isildak,H.* (2020). Surgical Management of Vestibular Schwannoma:
Practice Pattern Analysis via NSQIP. Annals
of Otology, Rhinology & Laryngology, 129(3), 230-237.
2019:
29.
Banerjee, K.^, Zhao, N., Srinivasan,
A., Xue, L., Hicks, S. D., Middleton, F. A., ...
& Zhan, X.* (2019). An adaptive
multivariate two-sample test with application to microbiome differential
abundance analysis. Frontiers in
Genetics, 10, 350. [R Software]
30.
Zhan, X.* (2019).
Relationship between MiRKAT and coefficient of determination
in similarity matrix regression. Processes,
7, 79.
31.
Wang, Q., Liu, X., Jiang, L., Cao,
Y., Zhan, X., Griffin, C.H., and Wu,
R.* (2019). Interrogation of Internal Workings in Microbial Community Assembly:
Play a Game through a Behavioral Network? mSystems, 4(5), e00550-19.
32.
Yang, S., Wen, J., Zhan, X., and Kifer,
D. (2019). ET-Lasso: A New Efficient Tuning of Lasso-type Regularization for
High-Dimensional Data. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (pp. 607-616). ACM.
33.
Koh, H., Li, Y., Zhan, X., Chen, J., and Zhao, N.* (2019). An adaptive
distance-based kernel association test based on the generalized linear mixed
effect model for correlated microbiome studies. Frontiers in Genetics, 10: 458.
34.
Ozdemir, T., Bowers,
D., Zhan, X., Ghosh, D., Brown J.L.*
(2019). Identification of Key Signaling Pathways Orchestrating Substrate
Topography Directed Osteogenic Differentiation Through High-Throughput siRNA
Screening. Scientific Reports, 9,
1001.
2018:
35.
Zhan, X.* and Wu, M.
C.* (2018). A note on testing and estimation in marker-set association study
using semiparametric quantile regression kernel machine. Biometrics, 74, 764–766.
36.
Zhan, X., Xue, L., Zheng, H., Plantinga, A., Wu, M.C., Schaid, D.J., Zhao, N.* and Chen, J.* (2018). A
small-sample kernel association test for correlated data with application to
microbiome association studies. Genetic
Epidemiology, 42, 772–782.
37.
Zhao, N.*, Zhan, X., Guthrie, K.A., Mitchell, C.M. and Larson, J. (2018).
Generalized Hotellings test for paired compositional
data with application to human microbiome studies. Genetic Epidemiology, 42, 459–469.
38.
Zhao, N.*, Zhan, X., Huang, Y. T., Almli, L., Smith,
A., Ressler, K., Binder, E., Epstein, M. P., Conneely,
K. and Wu, M. C.*(2018). Kernel machine methods for integrative analysis of
genome-wide methylation and genotyping studies. Genetic Epidemiology, 42, 156-167.
2017 and before:
39.
Zhan, X.*, Plantinga,
A., Zhao, N. and Wu, M. C.* (2017). A fast small-sample kernel independence
test for microbiome community-level association analysis. Biometrics, 73, 1453–1463.
[Selected as a top downloaded article in
Biometrics 2017-2018]
[An earlier version won an JSM 2017
Biometrics Section Young Investigator Paper Award]
40.
Zhan, X.#, Tong, X.#,
Zhao, N., Maity, A., Wu, M. C.* and Chen, J.* (2017).
A small-sample multivariate kernel machine test for microbiome association
studies. Genetic Epidemiology, 41, 210-220.
41.
Zhan, X., Zhao, N.,
Plantinga, A., Thornton, T., Conneely, K., Epstein,
M. P. and Wu, M. C.* (2017). Powerful genetic association analysis for common
or rare variants with high dimensional structured traits. Genetics, 206, 1779–1790.
[Highlight paper of the August 2017 issue of Genetics
selected by The Genetics Society of America (GSA) ]
[An earlier version won an ENAR 2016 Distinguished
Student Paper Award]
42.
Plantinga, A., Zhan, X., Zhao, N., Chen, J., Jenq, R. R.
and Wu, M. C.* (2017). MiRKAT-S: a community-level
test of association between the microbiota and survival times. Microbiome, 5:17.
43.
Mitchell, C.*, Srinivasan, S., Zhan, X., Wu, M. C., Reed, S., Guthrie,
K., LaCroix, A., Fiedler, T., Munch, M., Liu, C., Hoffman, N., Blair, I.,
Newton, K., Freeman, E., Joffe, H., Cohen, L., Fredricks. D. (2017). Vaginal
microbiota and genitourinary symptoms of menopause: A cross sectional analysis.
Menopause, 24, 1160-1166.
44.
Zhan, X.*, Girirajan, S., Zhao, N., Wu, M. C., and Ghosh, D.* (2016).
A novel copy number variants kernel association test
with application to autism spectrum disorders studies. Bioinformatics, 32, 3603–3610.
45.
Zhan, X.* and Ghosh,
D. (2016). A novel power-based approach to Gaussian kernel selection in the
kernel-based association test. Statistical
Methodology, 33, 180-191.
46.
Zhan, X., Patterson,
A. D. and Ghosh, D.*(2015). Kernel approaches for differential expression
analysis of mass spectrometry-based metabolomics data. BMC Bioinformatics, 16:77.
47.
Zhan, X.* and Ghosh,
D. (2015). Incorporating auxiliary information for improved prediction using
combination of kernel machines. Statistical
Methodology, 22, 47-57.
48.
Zhan, X.*, Epstein, M.
and Ghosh, D. (2015). An adaptive genetic association test using double kernel
machines. Statistics in Biosciences,
7, 262–281.