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ABSTRACT

We extend the concept of self-consistency for the Fokker-Planck equation (FPE) [Shen et al., 2022]
to the more general McKean-Vlasov equation (MVE). While FPE describes the macroscopic behav-
ior of particles under drift and diffusion, MVE accounts for the additional inter-particle interactions,
which are often highly singular in physical systems. Two important examples considered in this pa-
per are the MVE with Coulomb interactions and the vorticity formulation of the 2D Navier-Stokes
equation. We show that a generalized self-consistency potential controls the KL-divergence between
a hypothesis solution to the ground truth, through entropy dissipation. Built on this result, we pro-
pose to solve the MVEs by minimizing this potential function, while utilizing the neural networks
for function approximation. We validate the empirical performance of our approach by comparing
with state-of-the-art NN-based PDE solvers on several example problems.

1 Introduction

Researchers are utilizing AI to push the boundaries of science research, following their success in the fields of com-
puter vision and natural language processing. For centuries, scientists have discovered natural laws through real-world
observations, using these laws to describe and predict the dynamics of real-world systems through Partial Differential
Equations (PDEs). As PDEs are of fundamental importance, a growing area in machine learning is the use of neural
networks (NN) to solve these equations [Han et al., 2017, 2018, Zhang et al., 2018, Wang et al., 2018, Raissi et al.,
2020, Cai et al., 2021, Karniadakis et al., 2021, Li et al., 2021, Cuomo et al., 2022].

An important category of PDEs is the McKean-Vlasov equation (MVE), which models the dynamics of a stochastic
particle system with mean-field interactions

dXt = −∇V (Xt)dt+K ∗ ρ̄t(Xt)dt+
√
2νdBt, ρ̄t = Law(Xt). (1)

Here Xt ∈ X denotes the (phase) space position of a random particle, X is either Rd or the torus Πd = [−L,L]d (a
cube with periodic boundary condition), V : Rd → R denotes a known exterior potential, K : Rd → Rd denotes some
interaction kernel function and the convolution operation ∗ is defined as h ∗ ϕ =

∫
X h(x− y)ϕ(y)dy, {Bt}t≥0 is the

standard d-dimensional Wiener process with ν ≥ 0 being some diffusion coefficient, and ρ̄t : X → R is the law or the
probability density function of the random variable Xt and the initial data ρ̄0 is given.

Under mild regularity conditions, the density function ρ̄t satisfies the MVE

∂tρ̄t + div (ρ̄t(−∇V +K ∗ ρ̄t)) = ν∆ρ̄t, (2)

where div denotes the divergence operator, i.e. div h(x) =
∑d
i=1

∂hi

∂xi
for a velocity field h : Rd → Rd, ∆ denotes

the Laplacian operator on the spatial variables defined as ∆ϕ = div(∇ϕ), where ∇ϕ denotes the gradient of a scalar
function ϕ : Rd → R. Note that all these operators are applied only on the spatial variable x.

It is important to note that in order to accurately describe dynamics in real-world phenomena such as electromagnetism
[Golse, 2016] and fluid mechanics [Majda et al., 2002], the interaction kernels K in the MVE are usually chosen to be
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highly singular. Two of the most notable examples are the MVE with Coulomb interactions where

K(x) = −∇g(x), with g(x) =
{
((d− 2)Sd−1(1))

−1 ∥x∥−(d−2), d ≥ 3,

−(2π)−1 log ∥x∥, d = 2,
(3)

with Sd−1(1) denoting the surface area of the unit sphere in Rd, and the vorticity formulation of the 2D Navier-Stokes
equation (d = 2) where the interaction kernel K is given by the Biot-Savart law

K(x) =
1

2π

x⊥

∥x∥2
=

1

2π

(
− x2
∥x∥2

,
x1

∥x∥2

)
, (4)

where x = (x1, x2) and ∥x∥ denotes the Euclidean norm of a vector. These choices of K are called singular since
∥K(x)∥ → ∞ when ∥x∥ → 0. The presence of singularity in the interaction kernel poses significant difficulties
in solving the MVE using NN-based approaches. Furthermore, there is a significant lack of theoretical guarantees
in the literature for NN-based algorithms. Specifically, prior to our research, there was no established method for
determining the quality of a candidate solution through an easily computable quantity.

By noting ∆ρ̄t = div(ρ̄t∇ log ρ̄t), we can rewrite the MVE in the form of a continuity equation

∂tρ̄t + div
(
ρ̄t

(
−∇V +K ∗ ρt − ν∇ log ρ̄t

))
= 0, (5)

and for simplicity throughout this paper we will denote A[ρ̄t](x) = −∇V + K ∗ ρ̄t − ν∇ log ρ̄t and refer to A[ρ̄t]
as the underlying velocity. Consider another time-varying hypothesis velocity field f : R × Rd → R. The goal of
this paper is to show that, given some time interval [0, T ] with T > 0, when f(t, ·) is sufficiently close to A[ρ̄t] in an
appropriate sense, one can recover {ρ̄t}t∈[0,T ], i.e. the solution to the MVE in the time interval [0, T ], by solving the
following continuity equation

∂tρ
f
t +∇ · (ρft f) = 0, (6)

for t ∈ [0, T ] with ρf0 = ρ̄0 (recall that we assume the initial law ρ̄0 to be given). The superscript in ρft is to emphasize
its dependence on the hypothesis velocity field f and we will refer to ρft as the hypothesis solution. Our results can be
informally summarized as follows.
Theorem 1. Suppose that the initial density function ρ̄0 is sufficiently regular and the hypothesis velocity field ft(·) =
f(t, ·) is at least three-times continuously differentiable both in t and x. Define the self-consistency potential/loss
function to be

R(f) =

∫ T

0

∥∥∥ft − (−∇V +K ∗ ρft − ν∇ log ρft )
∥∥∥2
ρft

dt. (7)

Here ∥h∥ϕ denotes the weighted L2 norm for the function h, ∥h∥2ϕ =
∫
∥h(x)∥2ϕ(x)dx. We have for the MVE with

the Coulomb interactions (3) or the Biot-Savart law (4), the KL divergence between the hypothesis solution ρft and the
ground truth solution ρ̄t is controlled by the self-consistency potential for any t ∈ [0, T ], i.e. for some constant C > 0,

sup
t∈[0,T ]

KL(ρft , ρt) ≤ CR(f). (8)

Our work generalizes the result in [Shen et al., 2022], where the authors consider the much simpler Fokker-Planck
equation, an specific instance of our work (simply take K ≡ 0). Consequently, as a by-product, we improve the
Wasserstein-type bound therein to the KL type bound, and remove the requirement of the complicated Sobolev norm
in the definition of self-consistency therein. Shen et al. [2022] further propose that the self-consistency of a PDE can be
used to test the quality of an existing solution and to guide the design of some objective functions for a neural network
parameterization of the PDE solution. Inspired by their work, we generalize their framework to the more complicated
MVE and provide algorithms that can solve the MVE with singular Coulomb interaction and the 2D Navier-Stokes
equation.
Contributions In summary, we propose a novel neural network (NN) based MVE solver by exploiting the stability
property of the corresponding system via entropy dissipation, which admits rigorous theoretical guarantees even in
the presence of singular interaction kernels. We elaborate the contributions of our work from theory, algorithm and
empirical perspectives as follows.
1. (Theory-wise) By studying the stability of the MVE with singular interaction kernels in the Coulomb case (3) and
the 2D Navier-Stokes equation (the Biot-Savart case (4)) via entropy dissipation, we establish the self-consistency of
the MVE. Specifically, we design a potential function R(f) of a hypothesis velocity f such that R(f) controls the KL
divergence between the hypothesis solution ρft (defined in equation 6) and the ground truth solution ρ̄t for any time
stamp within a given time interval [0, T ]. A direct consequence of this result is that ρft exactly recovers ρ̄t in the KL
sense given that R(f) = 0.
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2. (Algorithm-wise) When the hypothesis velocity field is parameterized by a neural network (NN), i.e. f = fθ with
θ being some finite-dimensional parameters, the self-consistency potential R(fθ) can be used as the loss function of
the neural network parameters θ. We discuss in details on how an estimator of the gradient ∇θR(fθ) can be computed,
so that gradient-based optimizers can be utilized to train the NN. In particular, for the 2D Navier-Stokes equation
(the Biot-Savart case (4)), we show that the singularity in the gradient computation can be removed by exploiting an
anti-derivative of the Biot-Savart kernel.

3. (Empirical-wise) We compare the proposed approach, derived from our novel theoretical guarantees, with SOTA
NN-based algorithms for solving MVE with the Coulomb interaction and the 2D Navier-Stokes equation (the Biot-
Savart interaction). We pick specific instances of the initial density ρ̄0, under which explicit solutions are known and
can be used as the ground truth to test the quality of the hypothesis ones. Using NNs with the same complexity (depth,
width, and structure), we observe that the proposed method significantly outperforms the included baselines.

2 Self-consistency of the McKean-Vlasov Equation

In this section, we present the generalized self-consistency potential for the MVE. To understand the intuition behind
our design, we first write the continuity equation 6 in a similar form as the MVE:

∂tρ
f
t + div

(
ρft

(
−∇V +K ∗ ρft − ν log ρft + δt

))
= 0, (9)

where f is the hypothesis velocity (recall that ft(·) = f(t, ·)) and

δt = ft − (−∇V +K ∗ ρft − ν log ρft ), (10)

can be regarded as a perturbation to the original MVE system. Taking this perturbation perspective, it is natural to
study the deviation of the hypothesis solution ρft from the true solution ρ̄t using an appropriate Lyapunov function
L(ρft , ρ̄t). Clearly this deviation will depend on the perturbation δt, and such a dependence is often termed as the
stability of the underlying dynamical system. Moreover, the aforementioned relation between the perturbation and the
deviation allows us to derive the self-consistency potential of the MVE.

Following this idea, the design of the self-consistency potential can be determined by the choice of the Lyapunov
function L used in the stability analysis. In the following, we describe the Lyapunov function used for the MVE
with the Coulomb interaction and the vorticity formulation of the 2D Navier-Stokes equation (MVE with Biot-Savart
interaction). The proof of the following results are the major theoretical contributions of this paper and will be
elaborated in the analysis section 3.

• For the MVE with the Coulomb interaction, we choose L to be the modulated free energy (defined in equa-
tion 26) which is originally proposed in [Bresch et al., 2019a] to establish the mean-field limit of a corre-
sponding interacting particle system. We have (setting L = E)

d

dt
E(ρft , ρ̄t) ≤

1

2

∫
X
ρft |δt|2dx+ CE(ρft , ρ̄t), (11)

where C is a universal constant depending on ν and (ρ̄t)t∈[0,T ].

• For the 2D Navier-Stokes equation (MVE with the Biot-Savart interaction), we choose L to be the KL diver-
gence. Our analysis is inspired by [Jabin and Wang, 2018] which for the first time establishes the quantitative
mean-field limit of the stochastic interacting particle systems where the interaction kernel can be in some
negative Sobolev space. We have

d

dt
KL(ρft , ρ̄t) ≤ −ν

2

∫
ρt|∇ log

ρt
ρ̄t
|2 + CKL(ρft , ρ̄t) +

1

ν

∫
ρft |δt|2, (12)

where again C is a universal constant depending on ν and (ρ̄t)t∈[0,T ].

From the above discussion, we can see that the self-consistency potential 7 is exactly the term derived by stabil-
ity analysis of the MVE system with an appropariate Lyapunov function, after applying the Grönwall’s inequality.
However, the potential function 7 remains elusive from a computational perspective. Moreover, when utilized as the
objective loss for training a parameterized hypothesis velocity field, we must be able to compute the gradient w.r.t. the
parameters, so that gradient-based optimizer can be utilized. This is elaborated in the next section.
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2.1 Stochastic Gradient Computation with Neural Network Parameterization

While the choice of self-consistency potential 7 is theoretically justified through the above stability study, in this
section we show that it admits an estimator which can be efficiently computed. Given an initial data point x0, define
the trajectory {x(t)}Tt=0 via the initial value problem dx(t)

dt = ft(x(t); θ), x(0) = x0 (suppose that ft is Lipschitz
continuous for all t ∈ [0, T ] so the trajectory exists and is unique). Define the map Xt such that x(t) = Xt(x0).
From the definition of the push-forward measure, one has ρft = Xt♯ρ̄0, where ρtt is defined in equation 6. Recall
the definitions of the potential R(f) in equation 7 and the perturbation δt in equation 10. Use the change of variable
formula of the push-forward measure in (a) and the Fubini’s theorem in (b). We have

R(f) =

∫ T

0

∥δt∥2ρft dt
(a)
=

∫ T

0

∥δt ◦Xt∥2ρ0dt
(b)
=

∫ ∫ T

0

∥δt ◦Xt(x0)∥2dtdρ̄0(x0). (13)

Consequently, by defining the trajectory-wise loss

R(f ;x0) =

∫ T

0

∥δt ◦Xt(x0)∥2dt, (14)

we can write the potential function 7 as an expectation R(f) = Ex0∼ρ̄0 [R(f ;x0)]. Suppose that the hypothesis
velocity field is parameterized by a neural network f = fθ. Using the above expectation formulation, we obtain
an unbiased estimation of ∇θR(fθ) via the Monte-Carlo integration w.r.t. x0 ∼ ρ̄0, given that we can compute
∇θR(fθ;x0).

We show ∇θR(fθ;x0) can be computed, at least up to a high accuracy, via the adjoint method (for completeness see
the derivation of the adjoint method in appendix B). As a recap, suppose that we can write R(fθ;x0) in a standard
ODE-constrained form

R(fθ;x0) = ℓ(θ) =

∫ T

0

g(t, s(t), θ)dt, (15)

where {s(t)}t∈[0,T ] is the solution to the initial value problem d
dts(t) = ψ(t, s(t); θ) with s(0) = s0, and ψ is a

known transition function. The adjoint method states that the gradient d
dθ ℓ(θ) can be computed as2

dℓ

dθ
= Et∼Uniform[0,T ]

[
a(t)⊤

∂ψ

∂θ
(t, s(t); θ) +

∂g

∂θ
(t, s(t); θ)

]
. (16)

where a(t) is solution to the final value problems d
dta(t)

⊤ + a(t)⊤ ∂ψ
∂s (t, s(t); θ) +

∂g
∂s (t, s(t); θ) = 0, a(T ) = 0. In

the following, we focus on how R(fθ;x0) can be written in the above ODE-constrained form.

Write R(fθ;x0) in ODE-constrained Form Expanding the definition of δt in equation 10 gives

δt ◦Xt(x0) = δt(x(t)) = ft(x(t))−
(
−∇V (x(t)) +K ∗ ρft (x(t))− ν∇ log ρft (x(t))

)
. (17)

Note that in the above quantity, f and V are known functions. Moreover, it is known that ∇ log ρft (x(t)) admits a
closed form dynamics (e.g. see Proposition 2 in [Shen et al., 2022])

d

dt
∇ log ρft (x(t)) = −∇ (∇ · ft(x(t); θ))− (Jft(x(t); θ))

⊤ ∇ log ρft (x(t)), (18)

which allows it to be explicitly computed by starting from ∇ log ρ̄0(x0) and integrating over time (recall that ρ̄0
is known). Here Jft denotes the Jacobian matrix of ft. Consequently, all we need to handle is the convolution
term K ∗ ρft (x(t)), which in general cannot be exactly computed since it depends on the global configuration of the
hypothesis distribution ρft .

A common choice to avoid the difficulty of the convolution operation is via empirical approximation: Let {yi(t)}Ni=1

be a batch of i.i.d. samples distributed according to ρft and denote an empirical approximation of ρft by µ
ρft
N =

1
N

∑N
i=1 δyi(t), where δyi(t) denotes the Dirac measure at yi(t). We approximate the convolution term in equation 17

in different ways for the Coulomb and the Biot-Savart interactions:
2This implies that we can obtain an unbiased estimator of dℓ

dθ
by first sample t ∼ Uniform[0, T ] and simply compute T ∗(

a(t)⊤ ∂ψ
∂θ

(t, s(t); θ) + ∂g
∂θ

(t, s(t); θ)
)
. In practice, we sample multiple t uniformly from [0, T ] to reduce the variance. Note that

to obtain s(t) and a(t) for all sampled time stamp t, we still need to solve the ODEs involved in the definition of x(t) and a(t)
once, however their dimensions are now independent of the size of the neural network.
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1. For the Coulomb interaction, we directly approximate the convolution term in equation 17 by K ∗ µρ
f
t

N (x(t)) =
1
N

∑N
i=1K(x(t) − yi(t)). In practice, we choose N sufficiently large so that the above empirical approximation is

accurate. Indeed, at least for the whole space case, i.e. the underlying space X is Rd, one has that∫
Rd

|K ∗ µρ
f

N (x)−K ∗ ρf (x)|2dx =

∫
x ̸=y

g(x− y)d(µρ
f

N − ρf )⊗2(x, y) = F (µρ
f

N , ρ
f ),

where F (µρ
f

N , ρ
f ) is the modulated (interaction) energy defined as in Serfaty [2020]. We expect F (µρ

f

N , ρ
f ) → 0

almost surely as N → ∞.
2. For Biot-Savart interaction (2D Navier-Stokes equation), there are more structure to exploit and we can completely
avoid the singularity: As noted by Jabin and Wang [2018], the convolution kernel K can be written in a divergence
form:

K = ∇ · U, with U(x) =
1

2π

[
− arctan(x1

x2
), 0

0, arctan(x2

x1
)

]
, (19)

where the divergence of a matrix function is applied row-wisely, i.e. [K(x)]i = div Ui(x). Using integration by
parts, one has (assuming that the boundary integration vanishes, e.g. when the underlying space is a torus)

K ∗ ρft (x) =
∫
K(y)ρft (x− y)dy =

∫
∇ · U(y)ρft (x− y)dy =

∫
U(y)∇ρft (x− y)dy

=

∫
U(x− y)ρft (y)∇ log ρft (y)dy = Ey∼ρft (y)

[U(x− y)∇ log ρft (y)].

If the score function ∇ log ρft is bounded, then the integrand in the expectation is also bounded. Therefore, we can
avoid integrating singular functions and the Monte Carlo-type estimation 1

N

∑N
i=1 U(x − yi(t))∇ log ρft (yi(t)) is

accurate for a sufficiently large value of N.
With the above discussion, we are now ready to write R(fθ;x0) in an ODE-constrained form. Define the state s(t),
the initial condition s0 and the transition function ψ as follows: Let

s(t) =
[
x(t), ξ(t), {yi(t)}Ni=1, {ζi(t)}Ni=1

]
, (20)

with ξ(t) = ∇ log ρft (x(t)) and ζi(t) = ∇ log ρft (yi(t)). Take the initial condition

s0 =
[
x0, ξ0, {yi(0)}Ni=1, {ζi(0)}Ni=1

]
(21)

with ξ0 = ∇ log ρ̄0(x0), ζi(0) = ∇ log ρ̄0(yi(0)), and yi(0)
iid∼ ρ̄0; and define the function

ψ(t, s(t); θ) = [ft(x(t); θ), ht(x(t), ξ(t); θ), {ft(yi(t); θ)}Ni=1, {ht(yi(t), ζi(t); θ)}Ni=1], (22)

where h(a, b; θ) = −∇ (∇ · ft(a; θ))− J⊤
ft
(a; θ)b (derived from equation 18). Finally, define

g(t, s(t); θ) = ∥f(t,x(t); θ)− (−∇V (x(t)) + E(t, s(t))− νξ(t)) ∥2, (23)

where the estimator E(t, s) of the convolution term is defined as

E(t, s(t)) =

{
1
N

∑N
i=1K(x(t)− yi(t)) the Coulomb case,

1
N

∑N
i=1 U(x− yi(t))ζi(t) the Biot-Savart case.

(24)

We recall the definition of U in equation 19.

3 Analysis

We start by defining the KL divergence / relative entropy, modulated (interaction) energy, and modulated free energy
for two probability densities ρ, ρ̄. Again X denotes the underlying space which can be the whole space Rd or the
torus Πd which can be identified with [−L,L]d with the periodic boundary condition and L > 0. Firstly, the KL
divergence is defined as KL(ρ, ρ̄) =

∫
X ρ(x) log

ρ(x)
ρ̄(x)dx if ρ is absolutely continuous with respect to ρ̄, otherwise we

set KL(ρ, ρ̄) = +∞. By Jensen’s inequality, KL(ρ, ρ̄) ≥ 0 for any ρ, ρ̄. Given the McKean-Vlasov equation 2, if K
is bounded, it is sufficiently to choose the Lyapunov functional L(ρft , ρ̄t) as the KL divergence (please see Theorem
5 in the appendix). But for more singular kernels, we need also to consider the Coulomb type energy or modulated
energy as in [Serfaty, 2020]

F (ρ, ρ̄) =
1

2

∫
X 2

g(x− y)d(ρ− ρ̄)(x)d(ρ− ρ̄)(y), (25)
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where g is the fundamental solution to the Laplacian equation in Rd, i.e. −∆g = δ0, and the Coulomb interaction
readsK = −∇g (see its closed form expression in equation 3). If we are only interested in the deterministic dynamics
with Coulomb interactions, i.e. ν = 0 in equation 2, it suffices to choose L(ρft , ρ̄) as F (ρft , ρ̄t) (please see Theorem
3). But if we consider the system with Coulomb interactions and diffusions, i.e. ν > 0, we shall combine the KL
divergence and the modulated energy to form the modulated free energy as in Bresch et al. [2019b], which reads

E(ρ, ρ̄) = νKL(ρ, ρ̄) + F (ρ, ρ̄). (26)

This definition agrees with the physical meaning that “Free Energy = Temperature × Entropy + Energy”, and we note
that the temperature is proportional to the diffusion coefficient ν. We remark also for two probability densities ρ and ρ̄,
F (ρ, ρ̄) ≥ 0 since by looking in Fourier domain F (ρ, ρ̄) =

∫
ĝ(ξ)|ρ̂− ρ̄(ξ)|2dξ ≥ 0 as ĝ(ξ) ≥ 0. Moreover, F (ρ, ρ̄)

can be regarded as a negative Sobolev norm for ρ− ρ̄, which is a metric.

To obtain our main stability estimate in the flavor of entropy dissipation, we first obtain the time evolution of the KL
divergence as follows.
Lemma 1 (Time Evolution of the KL divergence). Given the hypothesis velocity field f = f(t, x) ∈ C1

t,x. Assume
that (ρft )t∈[0,T ] and (ρ̄t)t∈[0,T ] are classical solutions to equation 6 and equation 5 respectively. It holds that (recall
the definition of δt in equation 10)

d

dt

∫
X
ρft log

ρft
ρ̄t

= −ν
∫
X
ρft |∇ log

ρft
ρ̄t

|2 +
∫
X
ρftK ∗ (ρft − ρ̄t) · ∇ log

ρft
ρ̄t

+

∫
X
ρft δt · ∇ log

ρft
ρ̄t
,

where X denotes either Rd or the tours Πd.

We refer the proof of this lemma and all other lemmas and theorems in this section to the appendix C. We remark that
to have the existence of classical solution (ρ̄t)t∈[0,T ], we definitely need the regularity assumptions on −∇V and on
K. But the linear term −∇V will not contribute to the evolution of the relative entropy. See [Jabin and Wang, 2018]
for detailed discussions.

Similarly, we have the time evolution of the modulated energy as follows.
Lemma 2 (Time evolution of the modulated energy). Under the same assumptions as in Lemma 1, given the diffusion
coefficient ν ≥ 0, it holds that (recall the definition of δt in equation 10)

d

dt
F (ρft , ρ̄t) = −

∫
X
ρft |K ∗ (ρft − ρ̄)|2 −

∫
X
ρft δt ·K ∗ (ρft − ρ̄t)

− 1

2

∫
X 2

K(x− y) ·
(
A[ρ̄t](x)−A[ρ̄t](y)

)
d(ρft − ρ̄t)

⊗2(x, y)

+ ν

∫
X
ρft K ∗ (ρft − ρ̄t) · ∇ log

ρft
ρ̄t
,

where we recall that A[ρ̄t](x) = −∇V (x) +K ∗ ρ̄t − ν∇ log ρ̄t is defined below equation 5.

By Lemma 1 and careful analysis, in particular by rewriting the Biot-Savart law in the divergence of a bounded
matrix-valued function as in equation 19, we obtain the following estimate for the 2D Navier-Stokes case.
Theorem 2 (Stability Estimate of the 2D Navier-Stokes Equation). Consider the 2D Navier-Stokes equation in the
vorticity formulation, i.e. equation 2 with V = 0. Notice that when K is the Biot-Savart kernel, divK = 0. Assume
that the initial data ρ̄0 ∈ C∞(Πd) and there exists c > 1 such that 1

c ≤ ρ̄0 ≤ c. Assume further the hypothesis
velocity field f(t, x) ∈ C1

t,x. Then it holds that

sup
t∈[0,T ]

∫
Πd

ρft log
ρft
ρ̄t

dx ≤ 1

ν
exp(MT )R(f),

where M = supt∈[0,T ]M(t; ν, U, ρ̄) and M(t; ν, U, ρ̄t) =
2
ν ∥U∥2L∞∥∇ log ρ̄t∥2L∞ + 4∥U∥L∞

∥∥∥∇2ρ̄t
ρ̄t

∥∥∥
L∞

.

We give the complete proof and discussions for possible extension to long time estimate and to improve the dependence
on T in the appendix C. This theorem tells us that as long as R(f) is small, the KL divergence between ρft and ρ̄t is
small and the control is uniform in time t ∈ [0, T ]. We state this theorem on torus for simplicity and one may expect
similar result on Rd. Also the C∞ condition can be relaxed for instance to C2.

To treat the McKean-Vlasov equation 2 with Coulomb interactions, we exploit the time evolution of the modulated
free energy E(ρft , ρ̄t). Indeed, combining Lemma 1 and Lemma 2, we arrive at the following estimate.
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Lemma 3 (Time evolution of the modulated free energy). Under the same assumptions as in Lemma 1, one has (recall
the definition of δt in equation 10)

d

dt
E(ρft , ρ̄t) = −

∫
X
ρft

∣∣∣K ∗ (ρft − ρ̄t)− ν∇ log
ρft
ρ̄t

∣∣∣2 − ∫
X
ρft δt ·

(
K ∗ (ρft − ρ̄t)− ν∇ log

ρft
ρ̄t

)
− 1

2

∫
X 2

K(x− y) ·
(
A[ρ̄t](x)−A[ρ̄t](y)

)
d(ρft − ρ̄t)

⊗2(x, y),

where A[ρ̄t](x) = −∇V (x) +K ∗ ρ̄t(x)− ν∇ log ρ̄t(x).

Inspired by the mean-field convergence results as in Serfaty [2020] and Bresch et al. [2019b], we finally can control
the growth of E(ρft , ρ̄t) in the case when ν > 0, and F (ρft , ρ̄t) in the case when ν = 0. Note also that E(ρft , ρ̄t) can
also control the KL divergence when ν > 0.
Theorem 3 (Stability Estimate of McKean-Vlasov Eq. (2) with Coulomb interactions). Assume that for t ∈ [0, T ],
the self-consistent velocity field A[ρ̄t](x) is Lipschitz in x and

sup
t∈[0,T ]

∥∇A[ρ̄t](·)∥L∞ = C1 <∞.

Then there exists C > 0 such that
sup
t∈[0,T ]

νKL(ρft , ρ̄t) ≤ sup
t∈[0,T ]

E(ρft , ρ̄t) ≤ exp(CC1T )R(f).

In the deterministic case when ν = 0, under the same assumptions, it holds that
sup
t∈[0,T ]

F (ρft , ρ̄t) ≤ exp(CC1T )R(f).

See the proof and the discussion on the Lipschitz assumptions on A[ρ̄t](·) in the appendix C.

4 Related Works

Solving partial differential equations (PDEs) is a key aspect of scientific research, with a wealth of literature in the
field [Evans, 2022]. There are general purpose PDE solvers as well as algorithms specifically designed for MVEs. For
the interest of this paper, for general purpose PDE solver, we will only consider the instance that can be used to solve
the MVE under consideration.

Categorize PDE solvers via solution representation. To better understand the benefits of neural network (NN)
based PDE solvers and to compare our approach with others, we categorize the literature based on the representation
of the solution to the PDE. These representations can be roughly grouped into four categories:
1. Discretization-based representation: The solution to the PDE is represented as discrete function values at grid
points, finite-size cells, or finite-element meshes.
2. Representation as a combination of basis functions: The solution to the PDE is approximated as a sum of basis
functions, e.g. Fourier series, Legendre polynomials, or Chebyshev polynomials.
3. Representation using a collection of particles: The solution to the PDE is represented as a collection of particles,
each described by its weight, position, and other relevant information.
4. NN-based representation: NNs offer many strategies for representing the solution to the PDE, such as using
the NN directly to represent the solution, using normalizing flow or GAN-based parameterization to ensure the non-
negativity and conservation of mass of the solution, or using the NN to parameterize the underlying dynamics of the
PDE, such as the time-varying velocity field that drives the evolution of the system.

The drawback of the first three strategies is that a sparse representation3 leads to reduced solution accuracy, while a
dense representation results in increased computational and memory cost. NNs, as powerful function approximation
tools, are expected to surpass these strategies by being able to handle higher-dimensional, less regular, and more
complicated systems [Weinan et al., 2021].

Given a representation strategy of the solution, an effective solver must exploit the underlying properties of the system
to find the best candidate solution. Four notable properties that are utilized to design solvers are: (A) the PDE defi-
nition or weak formulation of the system, (B) the SDE interpretation of the system, (C) the variational interpretation,
particularly the Wasserstein gradient flow interpretation, and (D) the stability property of the system. These properties
are combined with the solution representations mentioned earlier to form different methods. For example, the Finite

3For example, sparser grid, cell or mesh with less granularity, less basis functions, less particles.
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Difference method [Smith et al., 1985], Finite Volume method [Moukalled et al., 2016], and Finite Element method
[Johnson, 2012] represent the solution of partial differential equations (PDEs) by discretizing the solution and utilize
property (A), at least in their original form. On the other hand, a recent work by Carrillo et al. [2022] solves PDEs
admitting a Wasserstein gradient flow structure using the classic JKO scheme [Jordan et al., 1998], which is based
on property (C), and the solution is also represented via discretization. The Spectral method [Shen et al., 2011] is
a class of methods that exploits property (A) by representing the solution as a combination of basis functions. The
Random Vortex Method [Long, 1988] is a highly successful method for solving the vorticity formulation of the 2D
Navier-Stokes equation by exploiting property (C) and representing the solution with particles. The Blob method from
Carrillo et al. [2019] is another particle-based method for solving PDEs that describe diffusion processes, which also
exploits property (C). In the following, we will focus on the methods that uses NN for solution representation.

Comparison with NN-based solvers The Physics-Informed Neural Network (PINN) is a widely used neural
network-based solver that leverages property (A) [Raissi et al., 2019, Yang and Perdikaris, 2019]. By expressing a
PDE as A(g) = 0 and its time and space boundary conditions as B(g) = 0, where g is a candidate solution and A
and B are operators acting on g, PINN parameterizes g using a neural network gθ and optimizes its parameters θ by
minimizing the functional L2 norms L(θ) = ∥A(gθ)∥2L2 +λ∥B(gθ)∥2L2 . The hyperparameter λ balances the residuals
of A and B and must be adjusted for optimal performance. PINN is versatile and can be applied to a wide range
of PDEs, but its performance may not be as good as other neural network-based solvers specifically designed for a
particular class of PDEs, as it does not take into account other in-depth properties of the system [Krishnapriyan et al.,
2021, Wang et al., 2022]. In general, there is no theoretical guarantee on how the loss L(θ) controls the discrepancy
between the candidate solution gθ and the ground truth.

A recent work from Zhang et al. [2022] exploits the property (B) to design the Random Deep Vortex Network (RDVN)
method for solving the 2D Navier-Stokes equation and achieves SOTA performance for this task. Let uθt be an
estimation of the interaction term K ∗ ρt in the SDE 1 and use ρθt to denote the law of the particle driven by the
SDE dXt = V (Xt)dt+ uθt (Xt)dt+

√
2νdBt. The idea of RDVN is to minimize the time average of the L2 norms

L(θ) =
∫ T
0
∥uθt −K ∗ ρθt ∥2L2dt. Note that in order to simulate the SDE, one needs to discretize the time variable in

loss function L. After training θ, ρθt is output as the estimated solution of the 2D Navier-Stokes equation. However, no
convergence guarantee is given for the relationship between L and the discrepancy between ρθt and the ground truth
ρt. In our experiment section, we will extend RDVN to solve the MVE with Coulomb interaction as a baseline.

In another line of research, Fan et al. [2022] exploits property (C) to propose the Primal-dual Gradient Flow (PDGF)
method for the Fokker-Planck equation. The solution to the Fokker-Planck equation coincides with the Wasserstein
gradient flow of the free energy functional. PDGF iteratively creates a sequence of transport maps by approximately
solving the minimizing movement scheme, also referred to as the JKO scheme [Jordan et al., 1998]. These learned
maps can be used to reconstructed the solution to the Fokker-Planck equation. Unlike its previous work [Mokrov
et al., 2021], PDGF uses the variational formulation of the f -divergence, allowing the gradient flow to be directly
constructed from empirical distributions. However, the variational formulation that PDGF is based on involves an
extra dual variable, making each iteration of PDGF a non-convex non-concave minimization-maximization problem,
which can be difficult to solve. While the MVE with Coulomb interaction also has a Wasserstein gradient flow
interpretation, unlike the 2D Navier-Stokes equation, it is unclear how PDGF can be generalized to solve this problem.
As a result, we did not compare with PDGF in our experiments.

Shen et al. [2022] propose the concept of self-consistency for the Fokker-Planck equation (a specific instance of MVE
without the interaction term K ≡ 0), which most related to our research (as mentioned in the introduction). Unlike
our work where the self-consistency potential is derived via the principle of stability analysis, this previous work
constructs the self-consistency potential R(f) for the hypothesis velocity field f by observing that the underlying
velocity field f∗ is the fixed point of some velocity-consistent transformation A and they construct R(f) to be a more
complicated Sobolev norm of the residual f − A(f). In their result, they bound the Wasserstein distance between
ρf and ρ by R(f), which is weaker than our KL type control. The improved KL type control for the Fokker-Planck
equation has also been discussed in [Boffi and Vanden-Eijnden, 2022]. A very recent work [Li et al., 2023] extends
the self-consistency approach to compute the general Wasserstein gradient flow numerically, without providing further
theoretical justification.

5 Experiments

We name the method of minimizing the self-consistency potential 7 as Entropy-dissipation Informed Neural Network
(EINN). To show the efficacy and efficiency of the proposed approach, we conduct numerical studies on example
problems that admit explicit solutions and compare the results with SOTA NN-based PDE solvers. The included
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Figure 1: The first row contains results for the 2D Navier-Stokes equation and the second row contains the results for
the 3D McKean-Vlasov equation with Coulomb interaction. The first column reports the objective losses, while the
second and third columns report the average and last-time-stamp relative ℓ2 error.

baselines are the Physics-Informed Neural Network (PINN) [Raissi et al., 2019] and the Deep Random Vortex Network
(DRVN) [Zhang et al., 2022]. Note that these baselines only considered the 2D Navier-Stokes equation, which we
followed in our implementation. We extend them to solve the MVE with the Coulomb interaction for the purpose of
comparison, and the detailed implementation are discussed in Appendix A.1.

Equations with an Explicit Solution We consider the following two instances that admit explicit solutions. The
first one is for the 2D Navier-Stokes equation while the second one is for the MVE with the Coulomb interaction. We
verify these solutions in Appendix A.2.
Lamb-Oseen Vortex (2D Navier-Stokes equation) [Oseen, 1912]: Consider the whole domain case where X = R2 and
the Biot-Savart interaction kernel defined in equation 4. Let N (µ,Σ) be the Gaussian distribution with mean µ and
covariance Σ. If ρ0 = N (0,

√
2νt0I2) for some t0 ≥ 0, then we have ρt(x) = N (0,

√
2ν(t+ t0)I2).

Barenblatt solutions (McKean-Vlasov equation) [Serfaty and Vázquez, 2014]: Consider the 3D MVE with the
Coulomb interaction kernel 3 with the diffusion coefficient set to zero, i.e. d = 3 and ν = 0. Let Uniform[A]
be the uniform distribution over a set A. Consider the whole domain case where X = R3. If ρ0 = Uniform[∥x∥ ≤
( 3
4π t0)

1/3] for some t0 ≥ 0, then we have ρt = Uniform[∥x∥ ≤ ( 3
4π (t+ t0))

1/3].

Numerical Results We present the results of our experiments in Figure 1, where the first row contains the result for
the Lamb-Oseen vortex (2D Navier-Stokes equation) and the second row contains the result for the Barenblatt model
(3D McKean-Vlasov equation). The explicit solutions of these models allow us to assess the quality of the output of
the included methods. Specifically, given a hypothesis solution ρft , the ground truth ρ and the interaction kernel K,

define the relative ℓ2 error at time stamp t as Q(t) =
∫
Ω

∥K∗(ρft −ρt)(x)∥
∥K∗ρt(x)∥ dx, where Ω is some domain where ρt has

non-zero density. We are particularly interested in the quality of the convolution term K ∗ ρft since it has physical
meanings. In the Biot-Savart kernel case, it is the velocity of the fluid, while in the Coulomb case it is the Coulomb
field. We set Ω to be [−2, 2]2 for the Lamb-Oseen vortex and to [−0.1, 0.1]3 for the Barenblatt model. For both
models, we take ν = 0.1, t0 = 0.1, and T = 1. The neural network that we use is an MLP with 7 hidden layers, each
of which has 20 neurons.

From the first column of Figure 1, we see that the objective loss of all methods have substantially reduced over a
training period of 10000 iterations. This excludes the possibility that a baseline has worse performance because the
neural network is not well-trained and now the quality of the solution now solely depends on the efficacy of the method.
From the second and third columns, we see that the proposed EINN method significantly outperforms the other two
methods in terms of the time-average relative ℓ2 error, i.e. 1

T

∫ T
0
Q(t)dt and the relative ℓ2 error at the last time stamp

Q(T ). This shows the advantage of our method.
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Conclusion By employing entropy dissipation of the McKean-Vlasov system, we design a self-consistency potential
function for a hypothesis velocity field such that it controls the KL divergence between the corresponding hypothesis
solution and the ground truth, for any time stamp within the period of interest. Built on this self-consistency potential,
we proposed a neural network based MVE solver and derived the detailed computation method of the stochastic
gradient, using the classic adjoint method. Through empirical studies on examples of the 2D Navier-Stokes equation
and the 3D McKean-Vlasov equation with Coulomb interactions, we show the significant advantage of the proposed
method, when compared with two SOTA NN based PDE solvers.
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A More Details on the Experiments

A.1 Implementations of Baselines

Objectives of PINN

• For the vorticity equation of the 2D Navier-Stokes equation, let u : [0, T ] × R2 → R2 be the velocity field
(this should not be confused with the velocity field of the continuity equation) such that ∇ · u = 0, i.e. u is
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divergence-free, and let ω = ∇× u ∈ R be the vorticity. We have

∂ω

∂t
+∇ · (ωu) = ν∆ω, (27)

ω =∇× u. (28)

We use this form to construct the objective for the PINN method∫ T

0

∥∂ω
∂t

+∇ · (ωu)− ν∆ω∥2L(Ω)2 + ∥ω −∇× u∥LL(Ω)2dt, (29)

where L2(Ω) denotes the functional L2 norm on the domain Ω = [−2, 2]2.
• For the MVE with Coulomb interaction, let g be the Coulomb potential defined in equation 3. We have that
ψ = g ∗ ρ is the solution to the Poisson equation ∆ψ = −ρ and K ∗ ρ = −∇ψ. We have

∂ρ

∂t
+∇ · (ρ · (−∇ψ)) = ν∆ρ (30)

∆ψ = − ρ. (31)

Expand the the divergence to obtain

∂ρ

∂t
+∇ρ · (−∇ψ) + ρ · (−∆ψ) = ν∆ρ (32)

∆ψ = − ρ. (33)

Now plug in the ∆ψ = −ρ to arrive at the following equivalent form

∂ρ

∂t
+∇ρ · −∇ψ + ρ2 = ν∆ρ (34)

∆ψ = − ρ. (35)

We use this form to construct the objective for the PINN method.∫ T

0

∥∂ρ
∂t

+∇ρ · −∇ψ + ρ2 − ν∆ρ∥2L2(Ω) + ∥∆ψ + ρ∥2L2 , (36)

where L2(Ω) denotes the functional L2 norm on the domain Ω = [−1, 1]2.

DRVN In the original paper [Zhang et al., 2022], only the Biot-Savart kernel is concerned. We can easily extend the
DRVN method to the Coulomb case by setting K to be the kernel defined in equation 3.

A.2 Examples with an Explicit Solution

In this section, we verify the explicit solutions discussed in the experiment section.

Lamb-Oseen Vortex on the whole domain R2. Recall that we consider the 2D Navier-Stokes equation (the MVE
with the Biot-Savart interaction kernel (4)). The Lamb-Oseen Vortex model states that, if ρ0 = N (0,

√
2νt0I2) for

some t0 ≥ 0, then we have ρt(x) = N (0,
√

2ν(t+ t0)I2).

To verify this, define ut(x) =
1√

ν(t+t0)
v( x√

ν(t+t0)
), where

v(x) =
1

2π

x⊥

∥x∥2

(
1− exp(−1

4
∥x∥2)

)
. (37)

One can easily check that ∇ ·ut ≡ 0 and hence there exists a function ψt such that ∇⊥ψt = −ut, where ∇⊥ denotes
the perpendicular gradient, defined as ∇⊥ = (−∂x2

, ∂x2
), and ψt is called the stream function in the literature of fluid

dynamics. Moreover, one can verify that ∇ × ut = ρt where ∇× denotes the curl of a 2D velocity field, defined as
∇× u(x) = ∂u2/∂x1 − ∂u1/∂x2. Together we have

∆ψt = −ρt, (38)

i.e., the stream function ψt is the solution to the 2D Poisson equation with a source term ρt.
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Under the boundary condition that ψt(x) → 0 for ∥x∥ → ∞, we can express ψt via the unique Green function
G(x) = 1

2π ln ∥x∥ as

ψt(x) = G ∗ ρt =
1

2π

∫
ln ∥x− y∥ρt(y)dy. (39)

Consequently, by taking the perpendicular gradient, we obtain

ut = ∇⊥ψt =
1

2π

∫
(x− y)⊥

∥x− y∥2
ρt(y)dy = K ∗ ρt. (40)

Finally, by plugging the expressions of ρt and ut = K ∗ ρt in the MVE (2), we verified the Lamb-Oseen vortex.

Barenblatt solutions for the MVE with Coulomb Interaction. Recall that we consider the MVE with the Coulomb
interaction kernel (3) for d = 3 and set the diffusion coefficient ν = 0, i.e.

∂ρt
∂t

+∇ · (ρt · −∇ψt) = 0 (41)

where ψt is the solution to the Poisson equation ∆ψt = −ρt. The Barenblatt solution of the above MVE is stated as
follows: If ρ0 = Uniform[∥x∥ ≤ ( 3

4π t0)
1/3] for some t0 ≥ 0, then we have

ρt = Uniform[∥x∥ ≤ (
3

4π
(t+ t0))

1/3] (42)

We now verify this solution.

Recall that the volume of a three dimensional Euclidean ball with radius R is 4π
3 R

3. Hence we can write the density
function as ρt(x) = 1

t+t0
χ∥x∥≤( 3

4π (t+t0))1/3 , where χX is a function that takes value 1 for x ∈ X and takes value 0 for
x /∈ X. Take

ψt(x) =

{
2( 3

4π (t+t0))
2/3−∥x∥2

6(t+t0)
, ∥x∥ ≤ ( 3

4π (t+ t0))
1/3,

1
8π∥x∥ , ∥x∥ > ( 3

4π (t+ t0))
1/3.

(43)

It can be verified that the Poisson equation ∆ψt = −ρt holds (note that ∆∥x∥−1 = 0, i.e. ∥x∥−1 is a harmonic
function for d = 3). Consequently, for a fixed time stamp t and any ∥x∥ ≤ ( 3

4π (t+ t0))
1/3 we have

∂ρt
∂t

(x) +∇ · (ρt(x) · −∇ϕt(x)) = − 1

(t+ t0)2
+

1

(t+ t0)2
= 0, (44)

which verifies this solution.

B Adjoint Method

Consider the ODE system

ṡ(t) = ψ(s(t), t, θ)

s(0) = s0,

and the objective loss

ℓ(θ) =

∫ T

0

g(s(t), t, θ)dt. (45)

The following proposition computes the gradient of ℓw.r.t. θ. We omit the parameters of the functions for succinctness.
We note that all the functions in the integrands should be evaluated at the corresponding time stamp t, e.g. b⊤ ∂h

∂θ dt

abbreviates for b(t)⊤ ∂
∂θh(ξ(t), x(t), t, θ)dt.

Proposition 1.
dℓ

dθ
=

∫ T

0

a⊤
∂ψ

∂θ
+
∂g

∂θ
dt. (46)

where a(t) is solution to the following final value problems

ȧ⊤ + a⊤
∂ψ

∂s
+
∂g

∂s
= 0, a(T ) = 0, (47)
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Proof. Let us define the Lagrange multiplier function (or the adjoint state) a(t) dual to s(t). Moreover, let L be an
augmented loss function of the form

L = ℓ−
∫ T

0

a⊤(ṡ− ψ)dt. (48)

Since we have ṡ(t) = ψ(s(t), t, θ) by construction, the integral term in L is always null and a can be freely assigned
while maintaining dL/dθ = dℓ/dθ. Using integral by part, we have∫ T

0

a⊤ṡ dt = a(t)⊤s(t)|T0 −
∫ T

0

s⊤ȧ dt. (49)

We obtain

L = −a(t)⊤s(t)|T0 +

∫ T

0

ȧ⊤s+ a⊤ψ + g dt. (50)

Now we compute the gradient of L w.r.t. θ as

dℓ

dθ
=

dL

dθ
= −a(T )⊤ dx(T )

dθ
+

∫ T

0

ȧ⊤
ds

dθ
+ a⊤

(
∂ψ

∂θ
+
∂ψ

∂s

ds

dθ

)
dt+

∫ T

0

∂g

∂s

ds

dθ
+
∂g

∂θ
dt,

which by rearranging terms yields to

dℓ

dθ
=

dL

dθ
= −a(T )⊤ dx(T )

dθ
+

∫ T

0

a⊤
∂ψ

∂θ
+
∂g

∂θ
dt+

∫ T

0

(
ȧ⊤ + a⊤

∂ψ

∂s
+
∂g

∂s

)
ds

dθ
dt.

Now by taking a satisfying the final value problems

ȧ⊤ + a⊤
∂ψ

∂s
+
∂g

∂s
= 0, a(T ) = 0, (51)

we derive the result
dℓ

dθ
=

∫ T

0

a⊤
∂ψ

∂θ
+
∂g

∂θ
dt. (52)

C Detailed Proofs

Proof of Lemma 1. Recall the McKean-Vlasov equation 5 and the continuity equation 9. For simplicity we write that
ρt = ρft and omit the integration domain X . Then

d

dt

∫
ρt log

ρt
ρ̄t

=

∫
∂tρt log

ρt
ρ̄t

+

∫
ρt∂t log ρt −

∫
ρt∂t log ρ̄t

= −
∫

div
(
ρt

([
−∇V (x) +K ∗ ρt − ν∇ log ρt

]
+ δt

))
log

ρt
ρ̄t

+

∫
ρt
ρ̄t

div
(
ρ̄t

(
−∇V (x) +K ∗ ρ̄t − ν∇ log ρ̄t

))
,

where we note that
∫
ρt∂t log ρt =

∫
∂tρt = 0 since the total mass is preserved over time. By integration by parts,

one has

d

dt

∫
ρt log

ρt
ρ̄t

= I1 + I2 + I3 +

∫
ρtδt · ∇ log

ρt
ρ̄t
,

where I1, I2, I3denote the linear part, nonlinear interaction part and the diffusion part separately. More precisely, by
integration by parts,

I1 =

∫
div(ρt∇V (x)) log

ρt
ρ̄t

−
∫
ρt
ρ̄t

div(ρ̄t∇V (x))

= −
∫
ρt∇V (x) · ∇ log

ρt
ρ̄t

+

∫
ρ̄t∇

ρt
ρ̄t

· ∇V (x) = 0.
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And

I2 = −
∫

div(ρtK ∗ ρt) log
ρt
ρ̄t

+

∫
ρt
ρ̄t

div(ρ̄tK ∗ ρ̄t)

=

∫
ρtK ∗ ρt∇ log

ρt
ρ̄t

−
∫
ρ̄tK ∗ ρ̄t · ∇

ρt
ρ̄t

=

∫
ρt∇ log

ρt
ρ̄t

·K ∗ (ρt − ρ̄t).

Given that the kernel K is divergence free, that is divK = 0, one further has

I2 = −
∫
ρt∇ log ρ̄t ·K ∗ (ρt − ρ̄t) +

∫
∇ρt ·K ∗ (ρt − ρ̄t)

= −
∫
ρt∇ log ρ̄t ·K ∗ (ρt − ρ̄t).

(53)

Note that this modification will be used in the proof in the 2D Navier-Stokes case. Finally all diffusion terms sum up
to I3 which can be further simplified as

I3 = ν

∫
div(ρt∇ log ρt) log

ρt
ρ̄t

− ν

∫
ρt
ρ̄t

div(ρ̄t∇ log ρ̄t)

= −ν
∫
ρt∇ log ρt · ∇ log

ρt
ρ̄t

+ ν

∫
ρ̄t∇ log ρ̄t · ∇

ρt
ρ̄t

= −ν
∫
ρt|∇ log

ρt
ρ̄t
|2.

We thus complete the proof of Lemma 1.

Proof of Lemma 2. Recall that K = −∇g. For simplicity we write that ρt = ρft . Then
d

dt
F (ρt, ρ̄t) =

d

dt

1

2

∫
X 2

g(x− y)d(ρt − ρ̄t)
⊗2(x, y)

=

∫
X
g ∗ (ρt − ρ̄t)(x)

(
∂tρt(x)− ∂tρ̄t(x)

)
dx

=

∫
g ∗ (ρt − ρ̄t)(x) div

{
ρt

(
[∇V (x)−K ∗ ρt + ν∇ log ρt]− δt

)
− ρ̄t

(
∇V (x)−K ∗ ρ̄t + ν log ρ̄t

)}
= J1 + J2 + J3 + J4,

where J1, J2, J3, J4 denote the perturbation term, the linear difference term, the nonlinear difference term, and the
diffusion term respectively. The perturbation term J1 reads

J1 = −
∫
X
g ∗ (ρt − ρ̄t) div(ρtδt) = −

∫
X
ρtK ∗ (ρt − ρ̄t) · δt.

By integration by parts, the linear difference term can be written as

J2 =

∫
X
g ∗ (ρt − ρ̄t) div

(
(ρt − ρ̄t)∇V

)
=

∫
X
K ∗ (ρt − ρ̄t)(ρt − ρ̄t)∇V

=
1

2

∫
X 2

K(x− y)(∇V (x)− V (y))d(ρt − ρ̄t)
⊗2(x, y),

where the last equality is true since K = −∇g is an odd function and we do the symmetrization trick, i.e. exchanging
the role of x and y to another term and then taking the average.

The nonlinear difference term reads

J3 = −
∫
X
g ∗ (ρt − ρ̄t) div

(
ρtK ∗ ρt − ρ̄tK ∗ ρ̄t

)
= −

∫
X
K ∗ (ρt − ρ̄t)(ρtK ∗ (ρt − ρ̄t)−

∫
X
K ∗ (ρt − ρ̄t)(ρt − ρ̄t)K ∗ ρ̄t

= −
∫
X
ρt|K ∗ (ρt − ρ̄t)|2 −

1

2

∫
K(x− y)(K ∗ ρ̄t(x)−K ∗ ρ̄t(y))d(ρt − ρ̄t)

⊗2(x, y),
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where again in the last term we do the symmetrization.

The diffusion term reads

J4 = ν

∫
g ∗ (ρt − ρ̄t) div

(
ρt∇ log ρt − ρ̄t∇ log ρ̄t

)
= ν

∫
K ∗ (ρt − ρ̄t)ρt∇ log

ρt
ρ̄t

+ ν

∫
K ∗ (ρt − ρ̄t)(ρt − ρ̄t)∇ log ρ̄t

= ν

∫
X
ρtK ∗ (ρt − ρ̄t) · ∇ log

ρt
ρ̄t

+
ν

2

∫
X 2

K(x− y)(∇ log ρ̄t(x)−∇ log ρ̄t(y))d(ρt − ρ̄t)
⊗2.

To sum it up, we prove the thesis.

C.1 Proof of the 2D Navier-Stokes case

Now we proceed to control the growth of the KL divergence KL(ρft |ρ̄t) for the 2D Navier-Stokes case. Since the
Biot-Savart law is divergence free, by equation 53 in the proof of Lemma 1, one has

d

dt

∫
Πd

ρt log
ρt
ρ̄t

= −ν
∫
Πd

ρt|∇ log
ρt
ρ̄t
|2 −

∫
Πd

ρtK ∗ (ρt − ρ̄t) · ∇ log ρ̄t +

∫
Πd

ρtδt · ∇ log
ρt
ρ̄t
. (54)

Recall that we write the kernel K = (K1, · · · ,Kd) and its component Ki =
∑d
j=1 ∂xj

Uij(x), where U =

(Uij)1≤i,j≤d is a matrix-valued potential function for instance can be defined as in equation 19. Consequently

−
∫
ρtK ∗ (ρt − ρ̄t) · ∇ log ρ̄t = −

d∑
i,j=1

∫
ρt∂xjUij ∗ (ρt − ρ̄t)∂xi log ρ̄t,

which equals to
d∑

i,j=1

∫
Uij ∗ (ρt − ρ̄t)∂xj

(ρt
ρ̄t
∂xi

ρ̄t
)
= A+B

by integration by parts, where further

A =

d∑
i,j=1

∫
Vij ∗ (ρt − ρ̄t) ∂xi

ρ̄t ∂xj

ρt
ρ̄t

=

∫
U ∗ (ρt − ρ̄t) : ∇ρ̄t ⊗∇ρt

ρ̄t
,

and

B =

d∑
i,j=1

∫
ρtUij ∗ (ρt − ρ̄t)

∂2xixj
ρ̄t

ρ̄t
=

∫
ρtU ∗ (ρt − ρ̄t) :

∇2ρ̄t
ρ̄t

.

Noticing that ∇ρt
ρ̄t

= ρt
ρ̄t
∇ log ρt

ρ̄t
, one estimates A as follows

A =

∫
ρtU ∗ (ρt − ρ̄t) : ∇ log ρ̄t ⊗∇ log

ρt
ρ̄t

≤ ν

4

∫
ρt|∇ log

ρt
ρ̄t
|2 + 1

ν

∫
ρt|(∇ log ρ̄t)

⊤ U ∗ (ρ− ρ̄)|2

≤ ν

4

∫
ρt|∇ log

ρt
ρ̄t
|2 + 1

ν
∥U∥2L∞∥∇ log ρ̄t∥2L∞∥ρt − ρ̄t∥2L1 ,

and again by Csiszár–Kullback–Pinsker inequality, one has that

A ≤ ν

4

∫
ρt|∇ log

ρt
ρ̄t
|2 + 2

ν
∥U∥2L∞∥∇ log ρ̄t∥2L∞

∫
ρt log

ρt
ρ̄t
.

Now it only remains to control B. Recall the following famous Gibbs inequality
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Lemma 4 (Gibbs inequality). For any parameter η > 0, and probability measures ρ, ρ̄ ∈ P(X ) ∩ L1(X ), and ϕ a
real-valued function defined on X , one has the following change of reference measure inequality∫

X
ρ(x)ϕ(x)dx ≤ 1

η

(∫
X
ρ(x) log

ρ(x)

ρ̄(x)
dx+ log

∫
X
ρ̄(x) exp(ηϕ(x))dx

)
.

The proof of this inequality can be found in section 13.1 in [Erdős and Yau, 2017].

To control B, we write that ϕ = U ∗ (ρt − ρ̄t) :
∇2ρ̄t
ρ̄t

and thus B =
∫
ρtϕ. We choose a positive parameter η > 0

such that
1

η
= 2∥U∥L∞

∥∥∥∇2ρ̄t
ρ̄t

∥∥∥
L∞

.

Now we apply Lemma 4 to obtain that

B =

∫
ρtϕ ≤ 1

η

(∫
ρt log

ρt
ρ̄t

+ log

∫
ρ̄t exp(ηϕ)

)
.

Note that η > 0 is chosen so small such that

η∥ϕ∥L∞ ≤ 1

2∥U∥L∞

∥∥∥∇2ρ̄t
ρ̄t

∥∥∥
L∞

∥U∥L∞∥ρt − ρ̄t∥L1

∥∥∥∇2ρ̄t
ρ̄t

∥∥∥
L∞

≤ 1

2
∥ρt − ρ̄t∥L1 ≤ 1,

since for two probability densities it always holds ∥ρt − ρ̄t∥L1 ≤ 2. Consequently, applying the inequality exp(x) ≤
1 + x+ e

2x
2 for |x| ≤ 1, we have∫
ρ̄t exp(ηϕ) ≤

∫
ρ̄t

(
1 + ηϕ+

e

2
η2ϕ2

)
≤ 1 + 0 +

e

2

(1
2
∥ρt − ρ̄t∥L1

)2

≤ 1 +
e

4
KL(ρt|ρ̄t),

where ∫
ρ̄tϕ =

∫
U ∗ (ρt − ρ̄t) : ∇2ρ̄t =

∫ d∑
i,j=1

∂xixj
U ∗ (ρt − ρ̄t)ρ̄t =

∫
divK ∗ (ρt − ρ̄t)ρ̄t = 0,

since divK = 0.

To sum it up, in particular since log(1 + x) ≤ x for x > 0, one has

B ≤ 1

η

(
1 +

e

4

)
KL(ρt|ρ̄t) ≤ 4∥U∥L∞

∥∥∥∇2ρ̄t
ρ̄t

∥∥∥
L∞

KL(ρt|ρ̄t).

Combining equation 54, the estimates for A and B, one has

d

dt

∫
ρt log

ρt
ρ̄t

≤ −3ν

4

∫
ρt|∇ log

ρt
ρ̄t
|2 +M(t)

∫
ρt log

ρt
ρ̄t

+

∫
ρtδt · ∇ log

ρt
ρ̄t

≤ −ν
2

∫
ρt|∇ log

ρt
ρ̄t
|2 +M(t)

∫
ρt log

ρt
ρ̄t

+
1

ν

∫
ρt|δt|2

(55)

where

M(t) =
2

ν
∥U∥2L∞∥∇ log ρ̄t∥2L∞ + 4∥U∥L∞

∥∥∥∇2ρ̄t
ρ̄t

∥∥∥
L∞

=M(t; ν, U, ρ̄t).

Since the matrix-valued potential function U is bounded, and under suitable assumptions for the initial data ρ̄0(for
instance ρ̄0 ∈ C3 and there exists c > 1 s.t. 1

c ≤ ρ̄ ≤ c), one can obtain supt∈[0,T ]M(t) ≤ M < ∞. We recall
Theorem 2 in [Guillin et al., 2021] as below for completeness.
Theorem 4. Given the initial data ρ̄0 ∈ C∞(Πd), such that there exists c > 1, 1

c ≤ ρ̄0 ≤ c. Then the vorticity
formulation of the 2D Navier-Stokes equation

∂tρ̄t + div(ρ̄tK ∗ ρ̄t) = ν∆ρ̄t, ρ̄(0, x) = ρ̄0(x),

has a unique bounded solution ρ̄(t, x) ∈ C∞([0,∞) × Πd), and for any t > 0, for any x ∈ Πd, it holds that
1
c ≤ ρ̄(t, x) ≤ c.
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Finally, we simplify Eq. equation 55 to obtain that

d

dt

∫
ρt log

ρt
ρ̄t

≤M

∫
ρt log

ρt
ρ̄t

+
1

ν

∫
ρt|δt|2,

where M = supt∈[0,T ]M(t; ν, U, ρ̄t) <∞. By Gronwall inequality, one finally obtains that

sup
t∈[0,T ]

∫
Πd

ρt log
ρt
ρ̄t
dx ≤ 1

ν
exp(MT )R(θ).

This completes the proof of Theorem 2

Remark 1. As noted in [Guillin et al., 2021], one can improve the above time-dependent estimate (exp(MT )) to
uniform-in-time estimate by using Logarithmic Sobolev inequality. Since now we are only care about computing
solutions in a fixed time interval [0, T ], we do not seek to optimize the factor exp(MT ). We leave the long time
asymptotic analysis as a separate work.

The McKean-Vlasov PDEs, i.e. equation 2, with bounded interactionsK ∈ L∞ As mentioned in the main body
of this article, it is much easier to obtain the stability estimate for the McKean-Vlasov PDE with bounded interactions.

Theorem 5 (Stability Estimate for McKean-Vlasov PDE withK ∈ L∞). Assume thatK ∈ L∞. One has the estimate
that

sup
t∈[0,T ]

KL(ρft |ρ̄t) ≤
1

ν
exp

(2∥K∥2L∞

ν
T
)
R(f),

where we recall the self-consitency potential/loss function R(θ) reads

R(f) =

∫ T

0

∫
X
|f(t, x) +∇V (x)−K ∗ ρft + ν∇ log ρθt |2dρ

f
t (x)dt.

Proof. Here we give the control of the growth of the KL divergence for systems with bounded kernels. Applying
Cauchy-Schwarz inequality twice for the entropy dissipation terms in Lemma 1 to obtain∫

Πd

ρtK ∗ (ρt − ρ̄t) · ∇ log
ρt
ρ̄t

≤ ν

4

∫
ρt|∇ log

ρt
ρ̄t
|2 + 1

ν

∫
ρt|K ∗ (ρt − ρ̄t)|2,

and ∫
Πd

ρtδt · ∇ log
ρt
ρ̄t

≤ ν

4

∫
ρt|∇ log

ρt
ρ̄t
|2 + 1

ν

∫
ρt|δt|2.

Furthermore, ∫
ρt|K ∗ (ρt − ρ̄t)|2 ≤ ∥K∥2L∞∥ρt − ρ̄t∥2L1 ≤ 2∥K∥2L∞

∫
ρt log

ρt
ρ̄t
,

where the last inequality is simply the Csiszár–Kullback–Pinsker inequality [Villani et al., 2009]. Combining the
above estimates, we obtain that given that K ∈ L∞,

d

dt

∫
Πd

ρt log
ρt
ρ̄t

= −ν
2

∫
Πd

ρt|∇ log
ρt
ρ̄t
|2 + 2∥K∥2L∞

ν

∫
ρt log

ρt
ρ̄t

+
1

ν

∫
ρt|δt|2.

Currently, we are not interested in the long time behavior, so we first ignore the negative term above to obtain that

d

dt

∫
Πd

ρt log
ρt
ρ̄t

≤ 2∥K∥2L∞

ν

∫
ρt log

ρt
ρ̄t

+
1

ν

∫
ρt|δt|2.

By Gronwall inequality, we obtain that∫
Πd

ρt log
ρt
ρ̄t

≤ 1

ν
exp

(2∥K∥2L∞

ν
t
)∫ t

0

∫
ρs|δs|2dxds.
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C.2 The McKean-Vlasov equation with Coulomb interactions

Proof of Theorem 3. We first prove the case when ν > 0. Applying Cauchy-Schwarz inequality to the right-hand side
of d

dtE(ρft , ρ̄t) in Lemma 3, one has

d

dt
E(ρft , ρ̄t) ≤

1

2

∫
X
ρft |δt|2dx

− 1

2

∫
X 2

K(x− y) ·
(
A[ρ̄t](x)−A[ρ̄t](y)

)
d(ρft − ρ̄t)

⊗2(x, y).

By Lemma 5.2 in Bresch et al. [2019b], as long as the ground truth “velocity field” A[ρ̄t] is Lipschitz, i.e. A[ρ̄] ∈
W 1,∞, or equivalently ∇2V ∈ W 1,∞,∇2 log ρ̄t ∈ L∞,K ∗ ρ̄t ∈ W 1,∞, using the particular structure introduced by
the Coulomb interactions (note that −∆g = δ0 and K = −∇g), we have the estimate

− 1

2

∫
X 2

K(x− y) ·
(
A[ρ̄t](x)−A[ρ̄t](y)

)
d(ρθt − ρ̄t)

⊗2(x, y)

≤ C∥∇A[ρ̄t]∥L∞F (ρ̄ft , ρ̄t).

This estimate can be obtained either by Fourier method [Bresch et al., 2019b] or by the stress-energy tensor approach
as in [Serfaty, 2020]. We emphasize that those assumptions made on (ρ̄t)t∈[0,T ] can be obtained by propagating similar
conditions on the initial data ρ̄0. This estimate actually holds for more general choices of g or K. See more examples
including Riesz kernels in [Bresch et al., 2019b]. Moreover, the Lipschitz regularity of A[ρ̄t] can also be relaxed a bit.
See for instance in [Rosenzweig, 2022].

Combining previous two estimates, one has

d

dt
E(ρft , ρ̄t) ≤

1

2

∫
X
ρft |δt|2dx+ CC1F (ρ

f
t , ρ̄t) ≤

1

2

∫
X
ρft |δt|2dx+ CC1E(ρft , ρ̄t).

Then applying Gronwall inequality concludes the proof of the case when ν > 0.

Now we prove the deterministic case when ν = 0. Now the relative entropy or KL divergence does not play a role
since there is no Laplacian term in equation 2. Lemma 2 now reads

d

dt
F (ρft , ρ̄t) = −

∫
X
ρft |K ∗ (ρft − ρ̄)|2 −

∫
X
ρft δt ·K ∗ (ρft − ρ̄t)

− 1

2

∫
X 2

K(x− y) ·
(
A[ρ̄t](x)−A[ρ̄t](y)

)
d(ρft − ρ̄t)

⊗2(x, y).

Applying Cauchy-Schwarz to the 2nd term in the right-hand side above, we obtain that

d

dt
F (ρft , ρ̄t) ≤

1

2

∫
X
ρft |δt|2 −

1

2

∫
X 2

K(x− y) ·
(
A[ρ̄t](x)−A[ρ̄t](y)

)
d(ρft − ρ̄t)

⊗2(x, y).

Again assuming that the “velocity field” A[ρ̄t](·) is Lipschitz will give us

d

dt
F (ρft , ρ̄t) ≤

1

2

∫
X
ρft |δt|2 + CC1F (ρ

f
t , ρ̄t).

Applying Gronwall inequality again conclude all the proof.
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