
 

Optimal Transport

Basically follow the book Topics
in Optimal transportation

by C Villani

non Euclidean geometry

synthetic geometry

Lott Sturm Collani

non smooth gradient flow
metric analysis

Aubry Mather Bernard Fathi Gangbo

Fully nonlinear PDEs
Ma Trudinger Wang

Loeper
regularity theory of OT

Numerical Methods

Prefam of the 1st Edorion

Optimal Transport
born in France 1781

as a research Monge
topor

classical subject in probability theory
economics and

Optimization



1987 Brenner Polar decomposition

interplay between PDE
fluidmechanics geometry

Otto Calculus

Mean Field limit in Statistical Physics

importance of handling mass transport on

x dimensional space such as the Wiener spay

or the space of probability measures on some

phase space

Dobrushin et al

Basic ideas Kantor ouch duality

metric properties induced by optimal transport

Notation

Small set in IR means Hausdorff dom

E n 1

Given time cover Numerical Methods for

OT

Brenner Otto Tanaka's work on Boltzmann

E



X a set write Iya
th if EX

O otherwise

A the complement of the set A

Rn n 71 A1 n dum Lebesgue measure

if A is Lebesguemeasurable

XE IR W Fx
x y É XiYi

X an abstract measure space

PIX I MCD finite signed measure

MEMIX IMUTV MEX T M EX

M Me M Me M singular to

each other

EM X f measurable Ifl lady filler

PIX at Border algebra

no PIX pix equipped with the weak

topology



CAT it xe A

0 otherwise
diracmass

at X a measure

n measure on X pet LP X or E Xdm
or LP dm

ie LP space with reference
measure p

t t t t p the conjugate of p

T X Y NT X M CY Tye

Tam push forward meanie of a

TM EBI METI
t pre imageof B

S X T Xo I Tam e n all maps T that keep

u
in variant

Also use

Tat g where f g are two density functions

X topological space equippedwith B x
Bond G algebra



X Cb X Cold Calx

RX R

CbX equipped with a natural norm

11410 14144

A EX Int A inner part of A

I AUSA

supportof a measure M on X

smallest closed set FIX sit M EXIF 0

SuppM

M is concentrated on A EX ES MEXIA
0

X metric space XE X Blx r a ball with radius r
and center X

LopX all Lipschitz functions
on X

PpX ME PIX If deux dux
no

Boel X for some XOEX

X Banach space Xt topological dual

o a duality between X and X



Y X s IR lore convex

at its dual function Legendre Fenichel

24 subdifferential of y
identified with its graph

X smooth Riemannian manifold Fi Xt IR
continuous

orgeneral
Banach

DF differential map Dfa n 1st order variation of

F at point xtX alongthe
direction a

X Riemannianmanifold TxX C 7

Pix CTfunctions on X with compact support

D ly the space of distribution on X

The gradientoperator T on DIX by

TFM Nx REYES
map

A representation

TxXt

T o the divergence operator

the adjoint of T

Laplace operator OF T Of



If X Rn then

TF Ex Efx

T u OF EYE

D Hessian operator on X

The Euclidean case X R

Bea 35

Pac Rn MEPURY Inca Leb
subset L Irn

Pac z Rn Pac IRD s u I Said ex

finite 2 moment

The Aleksandrov Hessian of a convex function p on

IR will be denoted by Diy Fdefined are.int
e

This is not Dp 9 the distributional Hessian off

det BY Trace PIC DAY



Trace Pic 0,14

Cer k integer CHCR at 1

Malli
Mln matrices

tr M trace of M

In nan identity matrix M MT transpose

M symmetric if
M MT

M 20 M symmetric with nonnegative
eigenvalues

anti symmetric if
MT M

orthogonal MMT
MTM In

Sadr Symmetric
SECR symmetric e positive

AnR antisymmetries Once orthogonal

Weshakskima



LecturedIntroduction

1 Formulation of Optimal Transportation Problem

Sand

Mine

ThisV
Sy I d 1 both are

probability measures

At I measurable
MEA howmuch sand in A

B E Y veg howmuchsand can be piled

in B

moving cost function C Xx IR

Clay howmuch it costs to transport one
unit of

mass from location x to location y

Assume C is measurable and 20

In general C X Y T 1409707
some clay can take infinite values



Problem Realize the Isp at minimal cost

Transport map T x se

More general transference plan by prob meas a

on X X Y

dax y of mass transported from
x to ay

It is possible that some mass
located at X

may be
splitted into sever a party

M
So v If Sy

Admissable plan at PlXxy shall satisfy

fdÉy
dna all mass taken from x

con incode with dyes

Sydalx y
dry all mass transferred to

y conincode with V93

I Ax's MEAT K DEX
BE y

measurable

Xx B VEB



A for all Bad measurable functions fax 4 44

is Sy at 441 dat y Sy a dux tf 4 dry

Def We call that
the probability measure at pixxy

have marginals M
and N if a holds true

TI MN TEPAXY FLAX'S MCA

REXX13 B
AlBmeasurable

TIM Y 44
ex the tensor product MO V E TI M V

foreachxthe mass dux is distributed according
to V4

Kantoronchisfmulation

Min ICI Syceey dad y for a ETIM r

Nobel Prize in Economics Linear Programming

Economics M
a density of production units

I Ya



V of consumers

ICHI total transport
cost

Optimal transport
cost inf IE

FETCHNo

Talmy

Base questions
Existence and Uniqueness

further characterization of
the possible optimal transportplans

Probabierations

fouplyI
Min ICU V I IECCU.rs

an

E EI
Recall v.v U in X is a measurable map

with values on X U D IP X Egp
m



ALBIN MCA IPEUTLAD

µ 2,117 X U P
Ti Law U UIn

V Rip Y Wgp
joint law

U V a coupling between U V

I Law U V no u if U and U are

independent

Kantorovich's problem relaxed version of

Monge's formulation of Optimal transport

T X Y TIM V

measurable day y dy Sey Tas

or in the probabilistic notation

I Id XT Mriv V T U

t
Ty Id x T M satisfies

Syxyllay data 4 fax TX dyes
H 920 measurable an Xxy



total transport cost EM

J Csx Taxi dux

fogeiyjggfxccx.mn

Iamateatdamfeadme
T

TS 4 dry

S x at 4 Tx dmx

5 4 TX DMX Sy 447114

Sy
4141441145

v 7am r is the push forwardof u by T

or T transports M to r

Lawof riv U U IP



Ex Dirac mass v Ja film D Mosa

All the mass should transported to a

To IM Sal fyclx a duck

Ex I Discrete Cases

Suppose X Y Rd

µ I É Sri v taffy

now any measure
in Thur can be identified as

a bisochashcnxn matrix T a i j

means Tug 20 A Yj

I tis L Kj Jfk
i

the sum of ith row

j th column

Kantorovich problem now reads

inf t Tajcervix T bistochastic



Bn non bistochastic matric

But Maler Bn bounded convex

Choquet's minimization
theorem

A has solutions which are exam Bn

not a nontrivialconvex
combinationof two ports in Bn

Birkhoff's theorem those extremal points
in Bn

are permutation matrices
of 1,2 n

C Tj Sj rage
all permutations

Kronecker symbol
I

Ing Nj clxi y In Chi you TE Sn

Thus A reduces to Monge's formulation

inf taxi you
re Sn

Rk The reasoning fails
in continuous setting

If M V A C want Lebesgue I extreme points in

Ti mi which are not
concentrated on any graph



Thi are convex in PHX
2 That 2 Th E TI MY if 74,72ET MY

How to study this

Basic questions

Existence of minimizer of
Monge Kantoranch

problem How to characterize them

I
What information

on u u does the knowledge of

the optimal transport cost
Te Chi d bring

regularly of u and r
Emig

Assume for the moment X Y IR



Ctx y Ix YIP O C P C T X

M v compactly supported

p I c is strictly convex

If u u are A C merit Lebesgue then I 1

solution to the Kantorouch problem

M does not charge sets
with finite m Hans

dorff measure

Geometric characterization of optimalmaps T

P Z dim n 1 T 84 of convex

T monotone and
orientation preserving

If the source at porn
charge a small

set a set of Hausdorffdim E n n in IR a point in ID

a line segment on 2D etc

Optimal transportplans in
Kantarand

of f
problem have to split mass

Monte I Kantoronch

no solution even



pal M V AC Existenceof solutions to Monte Kantorowchi

but no uniqueness

M LEO I
2 122137

p p a n

o d 2 3

x y lx Y

pal ingeneral no solution of Monte Problem

except if M and V are concentrated on

disjoint sets

X d Polish space Clay day
P

pal

complete separable

IP inf Sy days decay
P

TETUM

is a metric on Pax

metres weak convergence of probability measures

Mac precisely



Mdg EP X and for some XoEX

dexxp dree is tight
then

men Telma M 0

Tightness of Pic of non negative measures
on X

U E 0 I compact set Ka
sr mph PEX Ike es

choose cost Cox y Ixey

Tolan UM Mtv total variation

ice inf lE X s sup MCF UCF F closed

Tc now metres the strong topology
on PIX

Explanation For cox y I y
if y

o if say

the optimal map is
obtained when all the mass

shared by M and
V does indeed stay in place

Then Mmmmm



Invader Y made
is
freedom

since
fandom

y o f da 4 0

Probability Optimal Transport distance has
been used

much eviler

History

Monge's original problem was extremely difficult

Monte's formulation is more today than

Kantorovich's

clay by degenerate from the convexity
pointof view

Sudakov To's Mistakes
painted by Alberti Kirchheim

and Preiss

L
Evans and Gangbo C lx yl

theory of p Laplace egs

WhyMongelsproblemisingeneraltricky



Assumeve pard A.C with

dux fix dx Assume that T Irdsired is A

duly g dy diffeomorphism and In V

then

f load rly Sad Olly d m ly

Mll
Spy TX fix DX

Sadly giddy 11 of arbitrary11

If Tx GITA detoTox dx I
Ifanglalldettty
Monge Ampere Els

highly nonlinear

Kantorovich's problem can be seen as a relaxed

version of Monge's problem

ie extends the class of objects on which

the infimum is taken



T xx

II E Lex PC'd
Ext STR

nonlinear constraint on T Linear constraint on

ICT

Young measures

Overwewofthetestbook

Chl Kantorovich duality Powerful tool

theoretically and numerically

Very Common Practice

Chai Fundamental theory of Optimal Transport

Existence Characterization for Kantorovich

Monge's problem Brewer Evans Gangbo Knott

Smith McCann Rocher Riischendof

Clay Ix yp
Ch Brener's Polar factorization theorem



Chu Monge Ampere Eq

Chs Displacement interpolation convexity

Chb Geometric inequalities

Chol Wasserstein distance

Chs Differential Dynamical formulation of OT

Benamon Brener Otto

Chf Logarithmic Sobolev inequalities

entropy entropy production
aqualung

transport type
inequality



 

Eiffel.si iYafmaeaanspaa
X M two probability spaces

Y Y
C Xx Y Re Ulex measurable

cost function Cox y dÉy

t.it
i imin

he
Tim y epoxy

I hasmarginals

n on X and V any

Equivalent characterizations of marginals

i n TRAXY MEAT
t ATX measurable

TIX XB VEB BEY

Of course TEXT MEX 1

I is a probability measure



Equivalently

The TICM N
E C1

I
12 TE MAXXY er

for all 4 ELCdn xLady

nonnegative Heat447 dat y
measures

Sy4dm e Sy 4dv

Rk Under some top assumptions of X M and Y Y

one can use a narrower class of test functions

We only consider

Borel prob measures

BIX Bad r algebra

PIX the set of Bad Bob
measures on X

When X and Y are Polish spaces complete

separable metric space
and M

and V are

Bord it is sufficient to impose
a for

4 4 E Cb lx bly only



Further X and Y are locally compact Irdga ex

each point admits a compact nbhdl it is ok

to impose 4 4 E Cox 64

check the exe H in

Duality

Linear minimization problem with convex constraints

like Kantorarch's formulation of 07

admits a dualformulation

07 s setting
Kantororich 1942

where he considered car y day
distance

But his duality theorem holds
in much more

general setting

Th m n Kantorovich duality

Let X and Y be Polish spaces



Let ME pix and v e PCY and

C Xx Y 1 IRV ex be L s c cost font

Whenever A GPCXx T and 6 4 E L'Ldn du

define

IED Jaycox A dad y

JK 4 Sy 4dm fy y du

Def Tilman as above the admirable transportplan

Ic 6 4 ELM x Lidl 90 49 E ca

for dy a e XE X
du a e Y E Y

then
inf IE supJLY 4
TETUM HE c

Moreover the infimum in LHS above is

attained Furthermore it does not change

the value of supremum in Rus if one restricts

the def of Ic to those 19 4 which are also

bounded and continuous



Recall
a function F on X is said to be lis C

metric space

if
U XE X Fine liminf Flyy

Re The shipper's problem
Clay using trucks

Caffarelli

x em pugging Y
unloading

a

Coals Factories

Total cost by yourself Jaycoxy daffy

Free market cost

Syedna
t fy y dry

Offer from the market

41 7 t 414 E Cox y



Kantorovich's duality if the shipper is clever

enough then he can arrange the prices
in such

a way that you
will pay him almost

as much

as you would have been ready to spend by
the

other method

A Preliminary Observation

1 5 Sup Tle 4 E sup Joe 4 E Inf IET

In Cb V Ent TAY

Pf The 1st inequ is trivial

For Cy 4 E L'Ldn X L du and Attica v

I 19,41 4 4dm Sy4 dr

Sxxylem
dax y

Since 404 E C
E f xx Cox y dat yl dax y one

Indeed let Nx Ny be measurable sets s t



MINX O V Ny 0

and put 44 E Cox y x y G NANI

I Xx Ny VE Ny Oiii
iii

in

E TC Nyx'D RE XXNy O

Consequently

Sxxylemt44DdatiylEf xxyccxxdaw IE23

taking inf
B

Rk
Once one shows

sup Joy 4 int IED
EchCb FETCH

E sup I 4,4 sup 714,4

Echl EcAG

Aformalproof ofthm1.3



Basic idea Rewrite the constrained infimumprob

as an inf sup problem

min max

exchange the two operations inf sup by
a sup ing

But notice in general one only
has

minmyth
fjÉK 4 9 20

8 9

i

Write

int IED inf Iea
o if Teta

TETILMID JEMIMA Tx else



Further

go
if retail sup feasts y du

x else H M X

f eat 441 delay

XL
if to then sup A

4
where the supremum runs over all 14 4 CCbc xx

Hence

inf IED int sup fye dat fyedm
e far

TIM TEMA4,4
W fay 4 de
I mini maxprinciple
but in generalnot true

sup int fye
dm tf ydu fogy

c day
4 4 FEM

sup Sydney ydu supSyfy c da
4,4
48

if I doyo sa six gg É g
then choosing a e tf

yo
and testing X t ta



then sup tx

KEMP

On the other hand if 404 EC

then the supremum is O takenwhen 2 0

Hence f8 Sup 714,41 okay
447
9044 A



 

Lecture It

Exercise17 Linear Programming

Study of the minimization
maximization of linear problems

subject to
inequalities defined by linear functions

constraint

Finite dimension case

For be IR Ce IR AE Mma IR

sup c x inf boy

Axeb 420Aty c

if one of these extrema
is achieved

Here AXEb y o hold component wisely

Computations EIR firm

Lefthand supf xtinf b A x y
x 470 To 20

if Axeb i.e b Ax so if b Ax y 0

420
otherwise I b A ico Inf b Ax YE 6

That is



LHS sup int C ATy x t b ay
Xt IR yeah

y 20

inflatesp E Ey x

y z o

inf b y

y 20

Aly c NOTRigorous

Rigorous Minimax
principle

Convex analysis

Def Legendre Fenchel Transform

Let E be normed vector space O a convex function on

E with values in IRU ex

C XZ A Zz E X Z H Zz

XETOD Z Zz G E

Legendre Fenchel Transform of is the function I
defined on the topological dual Ett of E by

Tz's sup Lt Z Glas
ZEE



Thm Fenichel Rockefeller duality

Let E be a normed vector space
Et its top dual space

and On I two convex functions on E with values

m IR U ex Let 0 et be the Legendre Fenichel transforms

of O Er respectively
Further assume I ZoGE s t 8170740 2,120 to

iscontinuous at Zo

Then

inflee E max 0 6 24 2,425
E LEGE

partof the theorem

Proof

1,429 inflict z 2,12157
Y

sum upZEE

QT z infk 24 Z 041 z

ZEEH
LHS sup info Onex t E y t cZtt x y 7

FEED XYEE É Out bias
Ras



1 LHS É sup Ou 2,10 at Eid
VX GET

so LHS E RNS

Only need to show I Z E Et s t t x y EE

At Egly 24 x y 2m inf E
Finite since zo 2,170 to

2 Let C x DE ENR I ON is convex

c CYM E ENR Mem Ely convex

Xi Oni hi y la ti
É

Xz Ok
tf float On É

Mi E M Ely
me m ay MI e m i Emerson em ELEY

Go Zo ti E Int C since is cont at Zo

an Zo X 0120 T1 X 01207

or Intl 4 E Into
This needs C convex

Ofcourse in general Intel40 E Into



eg
E in it but C is not convex

C nd 4 x non

X s m 2,1
M OH Enix

By Hahn Banachtheorem

I a nontrivial linearform le Ert

inf l a inf al c 2 sup c 2 c's

CEC CEInt de c

Or Int E Et E IR at 46,01 at

Cut x 2X 2 wt y t 21
where X OF us m 2,4 Necessate 270

200 not possible 2 0 cat X 2 cat y X

Dividing by 2 it WH we have

Zt X X Z C 29 y t m

in particular

H X T 04 2 C 24 y M Ry
ice V x y EE

At t t Zt x y m okay o



Recall Hahn Banach theorem See in Chl Brevis

Than16 in Brews Let A C E and B E E be two non

empty convex subsets sit A AB 0 Assume that one

of them is open Then I a closed hyperplane that

separates A and B

Exercises In the proof why E Intel

Proofof the Kantorovich duality
Some properties of Polishspace

A Borel probability me a M on Polish space X is

regular i e H Borel A

MEA sup MEK K ept K E A

inffuto O open ACO

Riesz theorem Radon Realand ComplexAnalysis

ME PIX X Polish thenm is concentrated on

a J compact set I S measurable

S Pkn kn Cpt s t MES 1



Also M is tight
ta o I ka Cpt s t MIKE E E

A family A of prob meas on top space X is

said to be tight if for any 9 0 I opt KEX
s t supMIKE E E

MEA
Prokhorov's theorem Let X be Polish Then

any tight familytin PIX is relatively sequentiallyopt
in PIX for any sequence Ma in A one can

extract a subsequence still denoted Me
and a Ma GPA St t YE Cb X Narrow

yS 9dMk Sy 9 day Convergence

Let CX d be a metric space

F 20 Lower semi continuous on X

then Fix Ling Fnla

i

Check



looking at the special y x OEFNE Fox

Fuk E Fae lx Fn T
Fn is n Lipschitz

V x y Fn lx E F ly t nd x y

Fox X H E 0 I Z s t

Flat e n da Z E E Fn on

Henk Fry e

FCzstndcy.FI
I d

i e Fn ly Fna e n day
Switching x andy heads to Fnb Fak E n day

A

If K is compact metric space then CK

separable

Proof of Them1.3 Kantorovich's duality
Three steps
Step I Showing ther minimax principle works



under the assumptions that

X and Y are compact
c is continuous

Step I and I relax these two assumptions

Step2 Assume X and Y compact
c continuous

Write E Cb X x Y boundedcontinuous equipped

with supremum norm 11alla

By Riesz theorem its top dual E Et M Xxx the

spaceof Radon measures normed by total variation
Recall the Riesz Representation Theorem

Thm214 in Rudin Let X be locally compact Hausdorffspace

and A be a positive linear functional on Cc X Then

I a r algebra M on X which contains all Borelsets

in X and 71 positive measure m on M which

represents A in the sense that

a Af Sx f dy t feed
and TF HT
b M K ca t apt K E X



c HE EM measurable

ME inf mu E e v v open

Inter regular
d The relation

MCE supMLK Ke E K Cpt

holds for everyopen set E and for every E EM

with M E ex

e If EGM At E andMCE 0 then AGM

At ft dm At ft dm
N A f f f dm m

Now we go back to the proof
Introduce

UE Cb Xx is
o if Uh 42 ca y

to else

E UE Cb Xx y to 44dm 449 if Ula Mta

Tell defined T X else

ija 411 91 441 V x y then co 44 501 461
U X y



Y E Y 4 S E 112 okay

The assumptions on Tha9 Fenichel Rockefeller hold

true G convex

By linear convey

choose to as constant
function 1

Then formula hg holds true

49 inf 8 8 111
0724 2,424

E

where Hat 11,1 2427 Oct

LHS infilfxednefydrt
NECAXA

q T 4 5
U2 oh y FT TE C

U 404 y X E Clay

inf fx 4dm tfy4dv I 44 4412 axis
sup fyedntIyyar 44 44114 3
sup e 4114,41 E Ed

Next we compute the Legendre Fenichel transform

of and E



É Cblxxy Et M Xx T Radon measures

a sup face y day acxy z clays
at Cbu

J

sup funy decay any E Cx y
UECblxx'd

If his notnonnegative measure then I a nonpositive

function VECb Xx T St Jude 0 Then

u tu t ex shows that the sup TX

If a non negative then the mp fed
Thus qty Scandray if REM 6 7

ta else

Similarly for REMIX Y

ETA sup ca us Zin
UECblXX

Noten is fixed while u is arbitrary
Foranya 4 404 a Jude Sxedmtfy4dr

admiring a decomposition co to
f Onlycase x 11 to



Ah xx

For u st at 404 Ela ta no contribution

To sum it up

Eta
o if 44 4 EGG xGC'dScent xx data fedmefydu

tx else

indicates TIE My Xx Y

It indicates that TE TIG V

And
max feat BilalREMIX

min Clay dax y TE MAXX
REMIXED TETUM Y

min IED
TETUM

finally 19gg
td

upa.Y2

Each

Step G T1 Relaxations



 

Chapter 1 of A user's guide to optimal transport

Give a quick mention of the many aspects of

optimal transport theory

Chl introduce to optimal transport problem

and its formulation in terms of transport maps

and transport plans

duality formula

c monotonicity
existence of optimal maps

in the

model case cost distance

Chz Wasserstein Wa Rex Wa

Eg X Polish

geodesics in PIX geodesy in X

time evolution of Kantorovich potentials

and Hopf lax semigroups

Me Riemannian manifold time dependent

optimal transport problem



geodesics

Benamon Brenner formula

Palm Wa Otto's work

Ch gradient flows

Classical theory for d convex functionals in

Hilbert spaces

Equivalent formulations that involve only
the

distance BE general meme space

EVI EDE

discrete version of Gradient flow given by

implicit Euler scheme

convergence of the scheme to continuous
solution

as I Crome discretization I 0

Some research by Carrillo Pisgah

Chy Applications to classical functional geometric

inequalities

Brunn Minkowski



isoperi metric inequality

Log Sobolev inequality

optimal effective versions

Cht Variants of optimal transport

Branched transportation

Modification in the action functional on

curves

with unequal mass



i
X d Polish PEX supply

Borel

T X Bad mop MEPCX

T X M C's Tam

TAM LE MCT LEI KEE Y
Bad

The push forward is characterized by

fy fly dTqMY fy fl Tx dmx
H f Y Rusev Burel

Bad cost function
C Xx Y S Rosen

Marge version



Prob 4 For ME PIX VE PLY

Min
xT man

I Tas dye

Sometimes all posed

Me fo
w tf tf

no admissible TT

Tap v is not weekly sequentially closed

tnx flax f Iron I periodic

fix
media

f
t on CYD

Milton We Sitti
IT a

f

1 Intro
In f o

J fam So V



Kantorourchisformulan

Min Jaycox y dray
JETTE

TIMY REPAY I HAND MAI HAGRID
VIXX B V B ABEBA

h
Tifton Tfr V

N f redux REPKA ay

multi valued transport maps

Masint distributed accady my
Timid to

Tl my convex

compact writ thenarrantopology
in PLXXY

a r f e dr cc 8 linear

a minima always exists under mild



assumptions on C

Tap V Id T M V E TAY

Notions concerning analysis
over Polish space

f EPIX narrowly converge
to y

if f e dun f e dy HYE GA

The topology of narrow convergence us

metrizable

A set RE PIX is called right

if 4970 I Cpt set Kee X s t

NEX Ha e a trek

Prokhora
X d Polish

KEPA relatively compact writ narrow topology

K is sight



K M I Ulam's theorem any Burelprobability

measure on a Polish space is concentrated
on a t

compact set

Claim That is tight given X Y Polish
µ EPIX VEPCT

Pt U r e Tim r 4 tight

r Xx'd kinky E MIX Ki t D XIU

Tai Th

Eigenmann

compactness

Thief Assume
C is l.sc and c is bounded

from below

Then I a minimizer for

info f Clay dray
JETILMY



PI Tiny is tight in Pax's

and hence relatively compact byProkhorov

Further for a sequence on E Tay

up to a subsequence one can assume that

In 8 narrowly

we claim JE Tinny

Take U E Cb X I Cb Xx y then

Sea dray

Ling f en dinky lingseadyx

fear dye
i e Tfr M

Smitary Tig v
86 Tichy

The functional yrs Sadr is lis c

wait narrow convergence



C l s c Cz b

E Cl x y e LingCn lx y Cn 9
Cn GE
Cn uniformly

continuing

By
monotone convergence theorem

f c dr impf en dy him fandr
n Mx

Since by construction

V ti f and r is narrowly
I
Cblxxy

Continuous

Say for rm s r narrowly as more

f c dr sup f en dr

sup
him f cud rm
mo e f ed rm

E limit f c drm
MIX

it J ts f car is l s c w n t



narrow convergence

Take a minimizing sequence rm and

assuming up to a subsequence Vm 78

narrowly then

f care timing farm inf fear
mix JEMMY

OPTCmY optimalplans
cost c is clear from the

context

PaselPageif all but optimal maps

Once we have the existence many questions

arise uniqueness
characterization of optimal plan

regularity theory maps



difference between Monge and

Kantorovich
when af Monge I inflkantoronch

I
Necessaryandsufficientconditiay

Motivation Examples

Take X Y Rd

Cox y E lx YP

M V E pard supported on finite sets

finny is optimal

I
e IEEE

for any N 1,2 3 o h yr E Mpp V

and any r E IN

Question why this has nothing to do



with the mass

Expanding the squares
we get

Yi Yi 7 Yi You
a supply is cyclically monotone

Recall

Rochafeller A set Peirdnord is

cyclically monotone iff I a convex and

L S C Y Ird
1 IRV ex at

P E graph 24
F
subdifferential of q

Equivalence between the following three

notions

a V G T Cmv optimal



supp 8 is cyclically monotone

I convex C s c 4 at

supper e graph 24

Hold in much more general setting

Tamanna
real valued costa

Def c cyclical monotonicity

We say that P E X XY is c cyclically monotone

if Xu yo G P MEN Nalin o implies

Tycho Yu E IncaTrevi
for any re Sw

Def c transform
Generalizations of Legendre transform



Let Y Y IRU IN be any function

Its Cy transform 44 XT IR 09 no

is defined as

y in influx y Ya
YEY

Similarly given X trust no its G

transform is the function y't X 1201 o

defined by

yay influx y ex

Xx

The c transform yo XT IRU ex of

a function Y on Y is given by

4th supf car y yes

Desifc
oncaninia.de

g



4 X IR Uf no is c concave

74.441120135
E4

Y Y 31204 no is c concave if

74 X 1 IRU X St 4 44

Symmetrically 9 XT IRU ex is c convex if

74 Y IRV ex Lt Y Y and

4 Y IRU ex is c convex if I 4 X Rolex

s t 4 45

Claim q Xt trot a is c concave

444 444 p

Pf Indeed for any function Y Y IR Uta

it holds 14444942
4 YT IRU IN

y't a iffy
ax Y 44 xxx



y influx a YEE
TEX

FEY

y m iffy
Iccx I 44445

int sup cosy Cee F tyke
JEY TEX

int sup int Clay CII F CCE y
JEY TEX YE'S

4M
Choosing X E

yet ca y int Clay yo 44
YEY

choosing yet

444 x I influx y Yy
yay

taking infimum over smaller
set

If y is c concave



then I Y s t 4 44
plea z 4444 44 4 Okay

Y'a guffaw xx

influx y 1 444
yay

you iffy
ext 1 414

Y m

ie fyt tM

4th 4
44

Y typecast etc

Def 1.10 c superdifferential and c subdofferentral



Let y X 1 IRV no be a c concave

function

The c superdifferential

y't ye xxy is defined as

ftp.e lx DEXxYI4Mt44ap can

The c super differential 2hpm at X

is
items xox 14,402493

One can also define yet y for a

c concave functions 444 7 IR 01 no

C sub differential 244 for a c convex

function X x is defined as

244 e NEXT I eat e'cy can



qty sup Cox y pix
XEX

The pair by at 4th oxy go
w

Yo t y y Cox y

Éhe classical case

Cox y x y X Yard
or clay ME
Now Y is c convex means that

I Y s t y y
or

ya sup xx yes
Yard

ice y is the Legendre transform

Y of
now 4 is convex and l S C

the superior envelop of those functions

y runs over ppd



4 Yt E t fix t Yules

III 4 Him Cupe x

the c.gg enrdof
the e convex

concave
function is the classical sub differential

C Super

C transform Legendre transform

WejustuseLonemes

L
U 44g cay
414 4 414,462

42

I
41 7 C lx Y Y Cy

er e ca y EH HZEX
I

can segue.fi mzex



the c superdiff of a c con cane function is

always a c cyclically monotone set

Indeed if X Y E 294

I Clu yo exist 44cm

f fault 498in
E I Chu You

for any permutation 6

More generally one has the following than

Thon Fundamental theorem of optimal
transport

Kind of characterization theorem

Assume that c Xx y IR is continuous

and bounded from below and let ME Pex

reply be s t Cox y E acx t by



for some a Ell Ldn
b t d Ldr

And Let 86 Timid Admissible

Then TFA E

i The plan 8 is optimal

ii The set supply is c cyclically monotone

iii I a c concave function 4 sit

pgmax199tlldrlandsupplyff
Observation t F E Think

I Cox y dT x y E f
a by dice y

f am dmx t f by dry C ex

E Y TE Timid max 903 is integrable

Since C is bounded from below

CE L'la



1 ii We argue by contradiction

Assume that supp r is not c cyclically monotone

Then we can find N GN Lxi y e supp 8

and some permutation T G Sw s t

If car Yi Is Car Yrs

By continuity we can find nbhds Xi Gui

Yi E V with

I ai Va clan ng c o

H ni Vi E Uit Vi Isi E N

Idea build a variation Fatty of y

in such a way that minimality of 8 is violated

To this end we need a signed measure

Y
with

A y 8 so that T G MCXx'd



B S n dx 0 Null
so that JETG.nl

S n dy oh
6 f c dy co so that V is not optimal

Let R II hit Vi
Let PERRI be defined as the product measure

lui xu where mu 8C Ur avi

Titi Wi natural projections of R to Cli

and Vi respectively and define

7 min I Either
EY TM P

Checking 7 satisfies A B and C

The key part is actually to understand that

I E.IM Tru R KYNY p



really means

HtGav Aar

IN p A VB

f clay dray IF Clay date p

xx's

LIMEY IP

ISaintandrian

PEPI R D Uva ur

L Xi Yi Xn Yal I Xi Gui

54 d Tene f of Tx omw
to a

f e den it t HIM
p

In xi you clean d Play ay
co



ii iii

We now prove that if PE
Xx Y is

C cyclically monotone then I a c concave

Fest 244717 and

Max FEEL dm

Fix g E P for perspective c concave

function y s t J y of we need impose

that H Xinyi E P 0 1.2 N

pix E Cox y pacy E Y E 249cm

Cox y Cai Yi the
E Cox y Cla YP T CCK Yz 9442

ex yi ccxi.fi cash Lil toy
E

E x y Clay la ya axe ya t

t t Gmt CLE F1 t EE



Define y as the infimum of the above expression

as xu yes vary among all N pans on P

and N 1,2 3 We are free to add a

constant to 4 so

define

pix inf xx clay Cla Ya da yo

t can F cat in

Choosing N 1 and x y 5,5
x I

we get yet E 0

Conversely from the c cyclical monotonicity

I Xi Xnof P I Yi Cla Yi Fy IF y
Xi Ya Cla H z o

CCXmYa CanY
Can Y cat Y

one has 1451702



Thus 415 0

clearly from the construction I is c concave

Taking N 1 Xi Yi F J

pix E C Lx F CE 5 acxtbly Ca

Since a call m max e 03 Elan

Thus we only need to show that

Joey J P

To do this take F 5 E P let

Gi Yi X Y by the
definition of y

one has

CN E C lx J CCFY

inf K Y car Yu

t e c can F CI 51
Cox T1 Cat Y t 95



C
qw WMzex CHM.VNy
I
Eff Characterization of JEFE

iii i Let GETCnn Admirable
We claim f cdr Ef adj

Since supper e 249 for any x y tsupplo

pix t y'tCy Cox y

41 7 t 444 E Clay Kxtx Yay

Hence

fax g dray f at 494 drain

f en dux f yay days

S Katey dray E f easy dray

Okay A



Rk

Consequence

YETI MY being optimal

depends only on supp8 and not on

how the mass is distributed

For example if 8 is optimal Jt Tichy er

supper e supply then

J is also optimal

Assume T Xt's is a map set

TX E 24go for some c concave of for all x

Then under proper assumptions
c e a b

at Ucant be ay the map IT is optimal

v Tam between M and Ta

Therefore it makes perfect sense to say that

T is an optimal map
without explicit mention

to the reference measures



Rf FT of O T tells us

t t t OPTG Y 7 a c concave 4

sit supper E 244
Even a stronger statement holds

if supply I 246 for some optimal 8

then supper e say for every reopen

Max e 03 Elldal

4G y influx y e x

XEX

44 Y E LCE y YA

E alt t by eat

ive madeof c Elda

Thus it holds

JedptSecedv f oxty9ysldrasyCYGTILm.r



Clay dingy fax y dray
should be A

Both being optimal
I

8 a e x y Kyle 249 ie supply 529

Éha É
Kantorovich's formulation

K inf S Cox y drix y

JEMMY Epmm

affine constraint CC 87 linear functional
convex

This kind optimization problem admits a natural

dual problem where we maximize a linear

functional with affine constraints

Kantorovich's problem has a dual problem



reads For ME PLA VEPLY

Dual
sup faddy fudai

Ya 44 EUXD
4tlldnltx.ly
4tuldy

Theorem Kantorovich duality

A inf Jax g dray supffeadax
JEMIMA 44 Sendra

904 EC
464M
YEEN

Proof can be deduced by Fundamental theoremof 0.7

infef chip dry f 41 4 1 dray

Jt Optimist choosing 6,44 as the

supply e 244 optimal pair

Heuristic argument first
based on the Min Max Principle



The constraint JET emir translates to

the functional to maximize in the dual

problem and the functional to minimize

Sadr car becomes the constraint in the

dual

Calculations

inf or inf car exes

RETIMM REMIXED

where
pipe

0 if retina

x otherwise

Claim Xia may be written as

Xu sup chest 4,27 1904,87
4
CIE As in Villani s short book

bx

Thus



inf fax y dray
ZETIAN

inf
remixes I Études

FLY 941
Since 2h Flt 4 4 is comex actually linear

and 4,41 it Flye 4 is concave actually linear

the min max principle holds and we have

inf sup Fer 4,4
rt My 6,4

sup int FLY 4,4
6,4 rt My

sup all mechs
kill

inflateJEM

o if exec
n otherwise



Hence we proved

inf facxildroxy sup feadmfydra
VETIMY 6,4

Question What is the min max principle

Is it a vague thumb of rule

Give some more examples

Let us give a rigorous proof

independent of min max principle

Thin Kantorovich duality

Let reply reply and c Xxy R a

continuous and bounded from below

Assume that Clay E Atx by tx ty for

some a cUlam be Lcdr



Then
inf f c dray sup fended fxxdays

TETCH 4,41

Further the supremum of the dual problem is

attained and the maximizing couple 14 4 is

of the form 4 44 for some c concave

function Y C Compare it to Theorema in

Villani

Pf Here we adopt the same assumptions as

in Fundamental Theorem of QT

For any YET MY 6 GULAM YEE car

and 40 Y E C point wide

we observe

fax a dray 25 Katya dray
Seaman 544 dry

i ie



inf ed r z sup car 4,07
retail K 4

Now it is much easier to prove the converse

inequality

Pick JEOPTLY then I a c concave function

I s t supp 8 E 244 with max go edgy
and max y't O E Elda

Then

fclxiyldrixiy f oxt44y7drcx.y
finiteTo fax dyes tf yay dryIR T K

4041dm que Lcdr
ie

yet is an admissible couple

potentials in the problem

B



Rk Under all the assumptions as above

for any c concave couple of function Lee yet

maximizing the dual problem

and any optimal plan V it holds

supply e 24g
Firstly we have already known I some

c concave I s t 464 dm 4 6 464
and

supp s e 244 EVE OPTGun

For other maximizing couple E4 for the dual

problem

constraint TIN tEYE Coxy

Yy s EY influxy YAY
TEX

E E is a maximizing couple as well

E ee can as well



Now for any 8 E OPT Girl

f tant f T du f Edm SEEdu

steeds p see
S Ey drys
Tdy Sadu

JENTEN d
supply e y'T

okay

Def A c concave function ft

4,4 is a maximizing pair for the

duptroblem is called a cconcaney

Kantorovich potential or simply Kantororich

potential for the couple n and s

A c convex function 4 is called c convex

Kantor ouch potential if p is a



c concave Kantororichpotential

I c concave Kantormich potential

y is used in

TE DPTG Y supply E 249

Cy 44 solves the dual problem



 

Lecture 3

Continuation of the Proof
Step2 Relax the assumption of compactness

Now CE Cb Xx's and uniformlycontinuous

Def Ktla
Syfy

Cx Y

Claim There exists an optimal transference plan Ta for
the Kantorouch problem ie

IIIa inf 2223
LETIMY

cell infimum is finite o e c e b

the existence of a compactness of Tica Y
we will prove it on step 3

choose 870 arbitrarily small
X Y Polish CComplete superable XXY Polish

Hence ha is tight
Since me PIX rt Pla M lay as a set is right

Hence I Xo E X Yo EY Cpt s t

NEX Xo E d VI YI Yo E S



Thus Chae TAY of course

THE XX Xoxo E T Xx Mo

the EXXON Y
E 28Ii

Def Tao ILIE as

Probability measure supported on Xoxo

Mo P1 Tao V0 Py Tao marginals
To Mo Vo To Plano I has marginalsMu no

respectively

Def Io To fxoxy.cay dodgy

Let to E TolMo ro be one optimal transferenceplan

slurry the restrictive Kantorouch'sproblem

int Io Cho
FoettolMord

it IoT inf Lotto
ToEToMoto

Cheling



Construct a Te Tiny
Cheagt

TT TALXOXYTE t 1 xoxo TA

Idea Y

Construct an approximation I ate

from a local optimizer

So to toy
IET C E

xxy
Ty Xoxo IoEto t Sagecay dat y

E Io ETI t 2144 8

It follows that

if I 2 e int I t 2411 8
Tetlmil

Now introduce the functional
To Yo Yo Sy YodMo tfyo Yo duo

defined on L duo x L dro

By the Prep 2



inf Io sup Jo

where the supremum runs over all admirable

couples yo Yo E Il duo x L dro at

Yo b t 414 E Cox y G e X y
in
mestee

In particular I 65,26 s t

Toto YT 2 sup Jo 8

Now construct a couple 4,4 from E Y
which would be verygood approximation of maximization

of JH 4

WLOG assume that

Fu t EY E CL x y for all x y
Just take 9TH X or Ey x

for those XE NE YENy

Firstly control to to from below at some point

in X XY W LOG assume f El Since Joe 07 0

we have sup To 20

hence Jolt 2 82 1

I fyoa.dk t4oMdTolxy 2 I



I Xo yo E Xoxo St

Tolxo t 25140 2 1

Note if we replace 145 Y by Ets E s for

some self we do not change the value of Joles E
and the resulting couple is V

Up to a constant s we can ensure

To Xo 2 Y Y Yo 2 42

Hence

for all X Y E Xo Yo

Yo k E Cox yo 45140 E Ctx yo Yz

Yo ly E Cleo y To Xo E CCxo y t Yz

Ruschendorf's trick for improving admirable pairs

Previously
q eluxinYI

Now define for XE X

fix influx y Yay
YEYo

Menu frets on X

it follows ICE 4 2718,4



Control for E for X E X

Kfa influx y Yay
X EX YEYO Cleo y Y

inf ay exo y Yu
YEYo

Foix E Ctx yo Fly E Cox Yod I
again EX TY

Now we define for y EY

454 inf car y Eos
REX

Agam Fox 454 E Clay

re E YT E Ic
And Jol to 4512 Jo E 4512 Jo E Y

okay 4245 onXo

Tix E Cox Y YI ly HYGY

i e Yly E Clay EX AYE Yo

tax
Yume infix tied



Moreover for ye Y

y z inf Clx y Uxyo Yz
EX

since I A E Cox yo t Ya
In particular

y z can Yu

E 2 1141x Ya
Once we have those bounds we are almost done

Indeed

I 145,45 f E dnt Sy to do

Sexy 1 4 454 da hey Ashy as

TAETICM D

TATXoxo Ex 4547 dato lx Y

Wage Eat toys datey

7 1 28 Saidno Sy to duo 2144 1 allXoxo

7 1 28 Jol8,45 2 21114 t 1 8



7 1 28 Joy Y 2121191 18
supJo f ing f

z inf 222 264 71 f
ZETILMY

71 28 inf 2 244 118 212144 1 8

Since S is arbitrarily small we conclude that

sup714.42inFy
okay

Rk Since c is uniform continuous

Foix É influx y Ely
YEYo

Toy E inf cay Ex
XEX

are uniformly continuing on the whole X

and Yrespectively
Good exercise

Therefore it does not matter whether the

supremum of J is taken over Icac
over Elon Cb

Step TI Approximating the cast fan c



Write c
sup

Cn

O ECA E G E

where on is non decreasing sequence of non negative
uniformly continuous functions

upon replacing on by min on n one

can assume each Cn is bounded

The following is the standard approximation

technique

Define Inca facade IET 6 v

From Step I

inf Ine sup Jie 4
FETCH 4,41401cm

We will conclude by showing that

A inf IET sup int Inc
RETINA N ZETA

Indeed for each n

sup JK 4 E SUP ICY 4
4EEen 14,41401



supp intInca
E sup 114,4

4 EM
28 D holds true then

int IE E MP ICY 4
7ETIM 4 EE

while the other direction is trivial
Hence we only need to show Eq A

Note In is a non decreasing sequence of
functionals Inez E Inez E E 2227

so inf In 1 and bounded above by inf 1

Thus we only have to prove that

11144211,1Gt
TILmy is tight
Since both m and v as a set is right

ta u I Kat X Le EY cpt s t

MEX IKE CEL WEYLLa CY



Then for any TG TCM Y

TikaX La E TIEKEN TIL XXL

MIKE t Eli EE

Prokhororistheorem Tenn is relatively apt
for the weak topology

That is if Tink
Ken

is a minimizing sequence

for the problem inf Inez
then up to extraction of a subsequence
Tnt converges weakly to Tin EP XX

ie for OECb Xx'd narrowly

f ok g darkox y 4 04,7 decay

XY
From this one obtains immediately

Tnt Tl Lml taking OH y 4144441

inf In a figfondant f en den
which shows the existence of a minimizing probability
measure Tn Tak to the proof in hep E

Similay those optimizers In for infIncz
2



admits a cluster point If by compactness of
Timid as well

Whenever nam one has

Incan 2 Im Tin Gta

By continuity of Im
Iom Incan a II Iman 2 Imca
mix t

one cluster
By monotone convergence theorem often

1m17s 1222 3 as men

Lim Intan Lig Inka LEG
nix

Z int 1223
26TH

Which then concludes

inf IE sup inf MEE
TETUM

N
TETIMY

Note that Ty above is actually one of the
minimizers



Steph Let us conform again that the

infimum is attained

Again this is a consequenceof the compactness
of TCM V

Taking a a minimizing sequence of ICI and

let It be any weak cluster of Tyo then

LEAF him In TI Monotone Convergence

hi hiIIn
E La

E limit ICTY int I minimizing sequence

B

RK c concave functions

when cell one can restrict the supremum in

Effy inf 2227 sup 714 4

IcThis
to those pairs 49 44 where y is bounded

and

ply influx y en
REX



Compared to Legendre transform

Tx influx y pacy

YEY

Checking that eco yo
The pain 4 a pair of conjugate c concave

functions
Note that y is measurable since it can

be written as Lim Yi where
x

Yy influx y end
KEY

and cu A bounded uniformly continuous

CLA Cox pointwise

More discussions on Kantorovich duality ooh

the study of c concave functions in Chapter

See also User's guide to QT

by Ambrosio and Gigli

Rk In the case when ee b Goo
it is useful to note that the supremum



can be further restricted

sup Tie 4 e 4 E Ec

Sup Ice 4 4 4 too 014 11410

1141 EYE 0 Y



 

Lectured
a Fundamental Theorem of O T

Follow Chi of Users guide to

Optimal Transport

by Ambrosioandfugh

Notions

ggtigtji.it1 to be cyclically monotone

if t Nt z 3 H yo ftp.i nn

a I xu n I É Hi You

Xo Yi y r e Sw any
permutation

A classical Result in Connex analysis

Rochafelter theorem

A set PE Rdaad is cyclically monotone

E I a convex and l S C Y Indy Rb



ex 9 to st

P E Graph EY
t

subdifferential
Def

24 I x y endand pix 4th x y Y
T

Legendre transform
Subdifferential

at x

2417 yeird 417 4 4 x y

Recall Ely sup yegg
YE Ird f

Rd
linear convex

4 Ic a supremum of a

familyof l s c functions

comes p fits
me

We have

HY VZ 412 t Hy G Y

Vix t y 4 X y YE 294



44 14 LZ y 412 V ZE Ird

4 14 x y 41 7

Then x y Y M z CZ y 4121 V Z

tz.ee 9
wpnsime

x

44 ye 2407 2 11

Comerfunction Y maim
YE CI

91212 Effigy



J c da ftix
ylldzcx.yl8yqhlpiliIIfkidyyyygidry

4fted_fcx.ydatey

Def C cyclical monotone

change the A above to

p E Xx Y for any N any car a rye P

we have

I Cixi yo E I Cha You
it qp iy

Are SnI
dxw.ir

x



Def ctransform
C Xxy La Tx D c continuous

sometimes can be 46

But don't need
such strong assumption

Y X IRU IN but proper exo EIR
I Xo

Ky inf easy en

XEX

Go back to classical one

c e I 1 41 for CI x y X Y Ird

y ly inf typ em

KEIRA

inf txt xytty pix

y sup Xy Extent
ie
EY yay EX ex ly



Somehow explain why c thx yl has better

properties

Def A function Y Kairos no is cooney

if 7 4 Y IRU Ix 9 4

Ing Cixi ay

Ce
es

ftp.qtisconnexbem
Hi 44 is convex

HII
EE

d

yippgguncaney

trivial since

4 69
44 44 444
C y convex

4
4 6



Pt Assume 4 Y IRU IN
a

4 ex inf ax y 46
YEY

4 X I

44 I I 4 X I

Y ex iffy
ax J 4 cyl

IUE Y YEE
TEX

inf sup ax J C III t Y'as
JEY TEX

4 info 9144
EI i

choose

O t
4 ex inf ax y 4413 44

DEY
choose yet

yay E inf fi Y'x



ice y Y B

Def c superdifferential

for a c concave function y

age
i'gave

yo
la'd

X y G Xx's Pix Yay Cox y
C lx yl

j y 2 Y Ix
11

yay I ix HE 24673

yay I aty4y chy

Y Y will be an admissable parr for

Idwal problem if we don't consider
the integrability

4,44 E E
ie 4 19 04 E c



Yay inf c ix y en
XEX

ire F X YY

Y ly E Cox y Yax

or DeFtelipecayth
Of 6 49 E E NEED Check

integrability

t.LI
yIei

characterization of X Y E 4
a ye Ceo

quiz
Yay E CL Z Y K ZE X

P or e

eat EEL Ccny

We c x y Ya E C Z y 412 VEX

A Uxy 241Cxy VEX



Observation

Y c concave fye Xxy

iscallymonotone
PS

Xu y jg E J y
KEEN 1.2 n

Yue Sea

I Car yo I fix t Y'cyn

I 911 9 6 Kresn
Z

s I Cla Yous
B

thy Fundamental theoremof 0.2

Assume C X x y tax c continuous

And M EPIX
VE PLY X Y Polish

Cle y E Atx by

a E U dm

b t U du



Then let re Tim Y TF A E

F Eg G

i The plan 8 is optimal

ii supp s is c cyclically monotone

iii I a c
concant function 4 at

Max 4,03 flap supp 8
I 84

Pf V F ET MN

fccxiyldJixyEf atbyDdFix.y

and dyes fy baldry020
y

CZ b somehow moment CA

assumption my
Of course c e Lcdr



iii i If supp 8 I 24 for some

86THMY Y c concave

then j t O.PT Mil

OnlyNEED

To show4987144TI.VTETG.PH
X y E Supply 4ix tYy clx A

But for all x y E X XY one has

antsy 4,4 I
check integrability

Hence far
fclxyldrixiyjEf ixiteEyDdrix.y

fax dux f 94 dry rttlm.nl

fixee4yjdFix.yAtFETICMivllkPfclx.y
dried

O E C C ELT V F E TIGA



Lectinef
Observations

THE e
ie E 44 s Cox y

is Tinct Itr
ae

Ext L dm Cy E Lcdr

then I a E IR St

y a Y't a t Ey etc can
4 4 YE 4194

and ye ex pointwise

It pointwise

checking
K Y E Ev

Ex Ex E Clay nor a e



Ily I cloy YI EX

THE inf oxy Tx Iggy
PEX

9,41 scary icy p

q x t fix E Clay v

q a tinea e clay

um It at IR

Exa Cyn

we need impose

Toy y a E CyD

a e GH Ey ty
Take a inf Cy 940 EB

DEY
C Need to

check
Now we have but we omit

it
so



inf cox y joys a Cfx

yay FCK t Cy x

inf Cyp Tx a 0

yay
Recall p c I m t c Yv7

C Y a m
t c f ta v7

C Y M t c 4 V7

E C Cx m t c Cy V7 EM CA

Of ex Y M t Cy 4 v7 C to

To To
Her

ex y e I can t Collar 464dm

Cy Y t l du t Cy El lay YEECAN

1441 91999971
1Gobacktoftofa



Thin FT of O T

X Y Polish MEPLA reply

C Xx's Co tx C is continuing

T
cost function

inf c 7 inf foraydaisy
7ETIM LETGY XY

C r IE TI G H Existence
is clear

Assume that Cox Y E 91 4 bit now

with a GI dnt

Iet be Ueda
Conclusion TF AE

is r E OPTAny

ii suppers is c cyclically monotone

Ni I a C concave function 4 so

Q c concave

Max 4 03 E I 1dm
and supp y egg

c superdiggin
of 4

suppose Gran re



PI iii it

If for VE TIGH supply E 24

then C F 2 C N

H FETILY
Checking supply e 84

Yeylesuppy g
417 t y ly Cle y

Dlsu VxtX
YtYiNt By

917 t y y E CA y

Now
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Lectured

We have proved the Fundamental theory of 0.7

Some remarks
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Brenier's Theorem

Taking X Y Rd M EPacIrd source
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Tim v that is induced by a map T and

the optimal map T Of E a convex

function

What does regular mean here

I Def c c hypersurface c c means convex

convex

A set E e Ird is called c c hypersurface if
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Distanceconfunction
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So there is equality everywhere and the

result follows
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As a consequence
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McCannisinterpolation

Particular important case Clay lx yp
in IR

Solutionof the time dependent minimization problem

coincides with McCannisinterpulation

or Displacement interpolation
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Two types interpolations
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displacement convex subset P Pack

with values in IRU 403 It is said to be
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dir More general interaction energies could also be
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5 Internal energy
6 Physical meaning of
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without affecting the functional W
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The functional W is in general not convex in the
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The plain convexity of N is extremely sensitive
to
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the interaction potential
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convexity is a much more
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Exercise Necessary condition for displacement

convexity of N

Assume that W is even and continuous on IR and
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that n 72

Show that the displacement
convexity of W on
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displacement

convexity

Let F be a functional with values in IRU
ex

define on some displacement
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Aleksandrov sense
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Motivation for displacement convexity

The gallery result is due to McCann



Thm51 Strict displacement convexity

implies uniqueness of minimizer

Consider the energy functional defined for

A C probability measures on IR
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1 Problem A

Given a domain D in Rn
and a function f : D ! R. We train a two-layer

neural network that approximates f with the form

fN (x, (ai, bi,!i)1iN ) =
1

N

NX

i=1

ai�(!i · x+ bi) =
1

N

NX

i=1

h(✓i, x),

where ✓i = (ai, bi,!i) 2 R⇥R⇥Rn
= Rd

are parameters to be optimized and

� is an activation function. The parameters (✓i) are updated by minimizing

the following generalization error

E(f, fN ) =
1

2

Z

D

���f(x)� fN
�
x, (✓i)1iN

����
2
dx.

i) Suppose that ✓1, ✓2, · · · , ✓N are independent and identically distributed

with a common distribution ⇢. Give some assumptions and show that as

N ! 1,

fN (x, µN ) ! f⇢(x) :=

Z

Rd
h(✓, x)⇢(✓) d✓,

and

E(f, fN ) ! E(f, f⇢) :=
1

2

Z

D
|f(x)� f⇢(x)|2 dx.

ii) Show that E(f, f⇢) can be expanded as

E(f, f⇢) =

Z

Rd⇥Rd
K(✓, ✓

0
)⇢( d✓)⇢( d✓

0
) +

Z

Rd
V (✓)⇢(✓) + Cf .

Give the exact formulas for the functions K,V and the constant Cf .

iii) Consider the minimization problem with the entropy regularization

min
⇢2P(Rd)\L1(Rd)

⇣
F�(⇢) := E(f, f⇢) + �

Z

Rd
⇢(x) log ⇢(x) dx

⌘
,

where P(Rd
) denotes the space of probabilities on Rd

and � > 0 is a small

parameter.

Show that the gradient flow in the probability space, that is

@t⇢t = div✓

⇣
⇢tr✓

�F�

�⇢t

⌘
,

has the form

@t⇢t = div✓

⇣
⇢t

⇣
r✓V +

Z

Rd
r✓K(✓, ✓

0
)⇢t( d✓

0
)

⌘⌘
+ ��✓⇢t. (1.1)
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iv) By taking V = 0, and r✓K(✓, ✓
0
) = F (✓ � ✓

0
) and � = 1 above, Eq.

(1.1) becomes

@t⇢t = div

⇣
⇢tF ⇤ ⇢t

⌘
+�⇢t.

Assume that F 2 C
1
(Rd

,Rd
) is anti-symmetric and Lipschitz, i.e. F (✓) =

�F (�✓) and krFkL1  L. Show that starting from two integrable initial

data ⇢
0
1 and ⇢

0
2 2 P2(Rd

), the corresponding two solutions ⇢1 = ⇢1(t, ✓) and

⇢2 = ⇢2(t, ✓) with (t, ✓) 2 R+ ⇥ Rd
satisfy that

W2(⇢1(t), ⇢2(t))  W2(⇢
0
1, ⇢

0
2) exp(2Lt).

Note: We write P2(Rd
) as the space of probability measures on Rd

with

finite 2�th moments. Then the Wasserstein-2 distance in P2(Rd
) is defined

as the following

W2(µ, ⌫) = inf
⇡2⇧(µ, ⌫)

✓Z

Rd⇥Rd
|x�y|2 d⇡(x, y)

◆1/2

= inf
X⇠µ,Y⇠⌫

✓
E[|X�Y |2]

◆1/2

,

where ⇧(µ, ⌫) is the set of joint probability measures on Rd ⇥ Rd
with

marginals µ and ⌫ respectively and (X,Y ) are all possible couplings of ran-

dom variables with µ and ⌫ as their marginal laws respectively.

Solutions of Problem A i) Using the empirical measure µN =
1
N

P
i �✓i ,

the leaning function fN reads

fN (x, µN ) := fN (x, (✓i)1iN ) =

Z

Rd
h(✓, x)µN ( d✓).

If h 2 Cb and ✓i are i.i.d. with the common law ⇢, then by Law of Large

Numbers,

fN (x, µN ) ! f⇢(x) :=

Z

Rd
h(✓, x)⇢(✓) d✓, as N ! 1.

Hence the generalization error converges to

E(f, f⇢) :=
1

2

Z

D
|f(x)� f⇢(x)|2 dx.

ii)By completing the square and then using Fubini

E(f, f⇢) =
1

2

Z

D
|f(x)|2 dx+

Z

Rd

⇣Z

D
�f(x)h(✓, x) dx

⌘
⇢( d✓)

+

Z

Rd⇥Rd

⇣
1

2

Z

D
h(✓, x)h(✓

0
, x) dx

⌘
⇢( d✓)⇢( d✓

0
)

.
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We thus obtain the formula

E(f, f⇢) =

Z

Rd⇥Rd
K(✓, ✓

0
)⇢( d✓)⇢( d✓

0
) +

Z

Rd
V (✓)⇢(✓) + Cf ,

with the definitions

K(✓, ✓
0
) =

1

2

Z

D
h(✓, x)h(✓

0
, x) dx, V (✓) =

Z

D
�f(x)h(✓, x) dx.

iii) Consider the minimization problem with the entropy regularization

min
⇢2P(Rd)\L1(Rd)

⇣
E(f, f⇢) + �

Z

Rd
⇢(x) log ⇢(x) dx

⌘
,

where P(Rd
) denotes the space of probabilities on Rd

and � > 0 is a small

parameter. Now the functional reads

F�(⇢) =

Z
K(✓, ✓

0
)⇢( d✓)⇢( d✓

0
) +

Z
V (✓)µ( d✓) + �

Z
⇢(✓) log ⇢(✓)( d✓).

Hence the 1st variation of F� reads

�F�

�⇢
(⇢) = 2

Z

Rd
K(✓, ✓

0
)⇢( d✓

0
) + V (✓) + � log ⇢(✓).

Hence the gradient flow PDE which given by

@t⇢t = div✓

⇣
⇢tr✓

�F�

�⇢t

⌘
,

now becomes

@t⇢t = div✓

⇣
⇢t

⇣
r✓V +

Z

Rd
r✓K(✓, ✓

0
)⇢t( d✓

0
)

⌘⌘
+ ��✓⇢t.

iv) By taking V = 0, and r✓K(✓, ✓
0
) = F (✓� ✓

0
) and � = 0, one arrives

a simple PDE

@t⇢t = div✓

⇣
⇢tF ⇤ ⇢t

⌘
+�⇢t.

We now proceed to show that

W2(⇢1(t), ⇢2(t))  W2(⇢
0
1, ⇢

0
2) exp(Lt).

We construct two stochastic processes Xt and Yt such that

dXt = �F ⇤ ⇢1t (Xt) +
p
2 dWt, X0 ⇠ ⇢1(0),

3
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and

dYt = �F ⇤ ⇢2t (Yt) +
p
2 dWt, Y0 ⇠ ⇢2(0),

where Xt and Yt are driven by the same standard Brownian motion and of

course Xt ⇠ ⇢1(t) and Yt ⇠ ⇢2(t). Let us choose a particular initial coupling

such that

E|X0 � Y0|2 =
⇣
W2(⇢

0
1, ⇢

0
2)

⌘2
.

We write that the law of coupling (Xt, Yt) as ⇡t 2 ⇧(⇢1(t), ⇢2(t)), hence by

definition

W2
2 (⇢1(t), ⇢2(t))  E|Xt � Yt|2.

By Ito’s formula,

d

⇣
1

2
|Xt � Yt|2

⌘
= (Xt � Yt) · ( dXt � dYt).

Note that

dXt � dYt =

Z

Rd⇥Rd

⇣
F (Xt � x

0
)� F (Yt � y

0
)

⌘
⇡t( dx

0
dy

0
).

Combining the above two formulas and taking expectations on both sides,

one arrives that

d

dt

1

2

Z

Rd⇥Rd
|x� y|2⇡t( dx dy)

=

Z

Rd⇥Rd

Z

Rd⇥Rd
(x� y) ·

⇣
F (x� x

0
)� F (y � y

0
)

⌘
⇡t( dx

0
dy

0
)⇡t( dx dy).

By the fact that F is anti-symmetric, it equals to

1

2

Z

Rd⇥Rd

Z

Rd⇥Rd
(x�y�x

0
+y

0
)·
⇣
F (x�x

0
)�F (y�y

0
)

⌘
⇡t( dx

0
dy

0
)⇡t( dx dy),

which can be bounded by

L

2

Z Z
|x� y � (x

0 � y
0
)|2⇡t( dx dy)⇡t( dx0 dy0)

 2L

Z
|x� y|2⇡t( dx dy)

by the Cauchy-Schwarz inequality. Now we can conclude the proof by Gron-

wall’s lemma.
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OF exit t É
Y o

w Tai xi
e

TFC XI p
Need to solve a linear Syren



This is Implicit Enter Scheme for
T fix

Compare to Explicit Eater scheme Ii
ke 1412

XIII o Fui

we know
XI YI EEEXx Of Ari

dy F Lxa A FIX a x'a

PF xx e o

This property builds for the Impherr Enter Scheme

as well

Recall

Xt e agron fix t
Fox

Fix'd
So

pyxie Hit a Fixe
k o I 2 I

28 Fro C ta and inf F x

then curry k from o ro l

we obtain

L



FIXE I É e Fix

or

fz FWdFytEgyÉ

a É x't
pquicontinant

I A snob's Lemme
IFFIE

pas to linn

Two interpolations of Xi
X'H XI

Prece win
constant

if tecke Kale

III Xie f ke Vigelineidinterpulawn

it II XÉI OF Xi
for Tel ke ktnT

Easy to check

E er uh

It Tontunurns piecewise affine
hern A C



X NOT continuous

v4 XÉi e of 1 Xia
to E kind Tyg
ie In G 8FLEMK for any t

Recall 1 1 1 Fixilty itsfixit
e fix feat Ecco

III MEET Exit

If later dr c c co

fiffletataracar
Then by Cauchy Schwanz

we have

WH I'm
15TH EY E 1,4 414 d r

E it 51

E 1st Ifl'm du It si



E f I t s
applying Ascot

to

fix initial

re ten Foot Fitt si
I Equr continua

J
Kinen

In ED HE XI e CE

talkie Ken

Prop Let TY x and v be constructed as

above using the minimizing movement scheme

Suppose Fixo c t x and inff X

Then up to a subsequence Lj 0 still

denoted as e both It x converge

uniformly to a same curve X E H
t

weakly converges in L totector field
I set X v and

i HF is X convex we have

VA G JF XKD a e t

ii if F is c ra TF Xa



Start of Lecture 20

Pf of the above proposition
i 5407 Xo is fixed Uniform bound

If it in Pdr E C C X

154 Fal E C Is 4
ie Ta

req
is Yo Holder

Then Applying Ascoli's lemma to F to get a

uniform converging subsequence re I X in Eko T

Also by

IE'd x'all e c e

on the same subsequence x X in Elon
where x Xk Eu T IR

Then it Y a e r e to T

and I got lay a dr E C c o

I gotMay'd r e c co

Hence up to an extra subsequence

I v weakly in 0,77

I cut p s s ey y for any of occco 7



I 1 1 71
By at x x in Cleats

a v u weakly on Cats

HIM
by the distributional hmm forty
Going back to prove it re if F is

Homexithenat namaet.IxD is a solution of Eat JF Xo

Fix any Y E IR since F is X convex

Fly 2 Feta rat Ly x'a Ily Yap
note Fafnir

Then multiply by a positive measurable function
a o T Tasty and integrate

a Ey Elgar
tv ly xta5oTEIxTYdt 20

We can now pass to limit att o

tayo fu 4 of 47 re

y fu Gn
Ilga SHE o

of y
T



For the term filters an do

we need the l s C of the function F
I Fa E

lunging Fan

T

Staal Fixes dt 2 flinging Fix'd aadt

É linear
feline fro

e
timing e f n e Farm

Hence in the limit 2 so one has

IT ar F 14 Fixx un ly xx

fly xop do so

I
For one t for fixed y
A Fly Fixers v4 ly xx t fly Xml

Using y in dense countable set in Fc to

where F is continuous

we get a e t VA E 2 Fca

ii of ext veers F a

3g I weakly in E



Flag
4

VA

Rk No rare here See AGS for convergence
rates usually in order of 2

Xiu
Xi Garg min Fix t IX É

Modification Xi V

XE e argmin ZF É t Éx my

TEPEE t Xi so

ie HII of text
convergence is of order E

Metricserringy

XI Iterated Minimizing Scheme

to define Generalized Minoring Movement

De Giorgi the humor of Gene
the dos were scheme



X d Metre Space d metric

PallRd Wr

F X IRO x L S C m t d topology

We can also define given Xo Xo meme

Xi t
argmin FIX daE Tx

x
cn

rsrpistoapossilelomr
when I 10

Use the piecewise constant interpolation

x'a Xi for every te kit ke

and then study the limit of x as 2 so

Def A curve X 0,7 1 X is called GMM

if 7 Tj 10 s t WH t XK
uniformly in O T

Agam

Flea t d4ÉE e Fixe

Summary up for k o I i L L Ch



If dixit Xi E 22 Fl Xo F Xiii

E Dc
T ne

F X F Xo Ctx

Again by Cauchy Schwarz

For to s t t ke Kale

S E LI 6 42

Il kl E Itsy x

d x'd x'as recall we use constant

interpolation

E I dixie x5
É dixie 54 Iii

ee TE ti

s It 51 t

negligence when 2 10

X d need more structure

X geodesic span of Xia
Xi

x Xa x'a long
X44



h
A omw wa i Lo D X
we cannot define win f
but we can define the speed Iw er

meme the modulus of the velowy

II La.dNn
W CO T TX

provided the limn exists

Ian we

Radmacher Theorem EL t s

if w is Lipschitz then the metric demarme

In'k exists for a e t Also we have

for to c ti

de wird wait effixtsity
Def Absolutely Continuous Curve on X

We call a came w Lo I X is A C

if I g e L
o D s t

dlutros wa e f Saldt

for all to c t



ALIX w o D XI w is AC

Length

For w co i T X define
Length w impf Éjd wad why n

Oz to ctic Ctu

43
For W E ALLA
then Length w E ft salt c x

Prop Given an A C curve w to i X
we have

Length E

f lw as dr

Def A geodesic is a length minimizing curve

i e a curve w Co D X is said to be

a gender between Xo EX and x c X if
W o Xu wa X

and
Lengths min Length wa x

WH 43



X d lengthspace
FFK x Y EX

day inf lengthen W EAUX

I
wa ex

n
Wh y 3

d

Xd Geodesvespacy

InnersyDissipatianEguahny

EVIi iit
first

X r TF CX a
O ES E te T F E C

F XX F XM

Sst Tfl xen x'in da
t purely F T C

x'LYTFlXIy
1 tinier tiling

I whentakeing



I iff x 14 Of xen trees D

Indeed Right Left I 1st oftenestx'out'dr

The condition is called

Energy Dissipation Equality EDE

Fixx Flats tf Ix'ers du

2Ser
I stiffly du

I
x'a A FCK ane

F X IRU to

p Fla lineup yt
t

ya

Ix a c Lindbergh

HecturezI

Another characterization of Gradient flows

Y



If F Ird s IR is convex then

Fly z Fix t P Ly X HYE Rd

characterization of P E 2 Fix

if F E C p 0 Fix

If F is X convex the inequality that characterize

the gradient is
Fly 7 Fix t P ly X fly xp

V Y E Rd
Hence we can pick a curve

X Xa

and a point y

compute
da tha yi Y Xo Ex's

x'd T Flea E JF Xa

Then
Fly Z F Xa X'd ly x t fly x

f Il xu yl s Fly Flea I ly x at
Tenn



EVI Evolution Variational Inequality
for more precisely Elly
All terms have metric setting counterpart

1 4 11 I d x t

Easy to show uniqueness and stability
Take two curves Xa yes E V2

It dim
Flyer Flea Id xd yes

It 1111,4417
E Flea Flyer Ed XH ya y

after e xoxo ya

unquenefie
Eat e yea IEEE

s
Ea e d 1 41,95



General theory in fmetricspace
Timms in metric settings
Speed of a curve metric derivative

A slope of a function
modulus of its gradient

fWEIRA geodesic convexity x

Xo F Xan

Merwe derivative I
not a vector

space
A curve wi to T X d

was Liz daggett
provided the humor exists

Slope and modulus of the gradient

Upper gradient of F is a fan arm

g Xy IR
s t K Lipschitz curve W

we have

Flaco Fl wall



E f g was late do

F X 1 Rosen

Rk If F E W

one can choose g 10 Flex i.e

17 FINE IT
IF

IF
Descending Slope

adapted to the minimization of a function
For a function F which is lis c

17 Fl in a lineup FG Ext
mm ye x dix y

at Ichimura point to

P Flix o o

Fk H

Y at X o p Flo 0

Arlo
10

41 1
y go



de in general p Flix PF a

A Geodesic convexity comey along a geodesic

Assume further IX d is a geodesic space

H XO xx I a geodesic x with constant

speed connecting Xo and xu s t

FIXED E C H FIXOD t t FIX a

X convex L 7 1 dixon
xx

Existence of Gradient Flows ERE

Fix any I 70 construct sequential minimization

along a discrete scheme along a discrete

scheme Fit as Ett
Given X d

F Xt IRU TO
t.ae

compacrox



Iterated Scheme gives

a FIX t
d4 W

eflx.gg
No optimality condition used

This estimate is not sufficient to

characterize the limit curve

We shall exploit how much Xia is better

than Xic

De Giorgi Variational interpolation
between Xi and XI
Fix Xp introduce Ot o D

Consider
min
FMI d

f
XO minimizer

40 the minimal value

As 040 xo Xi
410 FIXE



for 0 1 we recover the original problem
with minimizer Xi

Of course 46 d non increasing
hence one differentiable

ex gallon ride distill a

Write

glx o Fix t d ix Xi

eco ga 19

day dqgixcol.o1
2Ixdtfolxix

l_folx.x
we

4 191,73

hope



Recall I Pesundy shpe

AF I a limsu.pt I FDY ix
Chai m

y flxoedkg.fi
pf ConImiiMimizatiffanction

x is FA t d lx E
for fixed C 0 and I

ye xp
Consider a competitor y If X is optimal
then

Fox to die I E F ly t c d ly I

which implies
Fix Fly E c NY I d lx E

c Ldly E t d Ix Fl
d ly XT dy E

E cldly I da IA d ly x
Hen

CFYj.FI ec dcy.tltdlx.I1



Lim up Fx FM t
s z c d Ix I

YTX dix y
This gives

P F exo e diff
For the function 4

A 40 en z 1 godo
E O

L y due to possible singular part of
the derivative for monotone functions

a d
Eto Fixcop

Now

A above implies

FLYE Fix s t d act xD
21

I 110 Feast do

2



FIXE dixit xis
ZI

E Fait E N Fix N'do

Summing up for 2 0,1 2 Lte

ÉÉII
td

Fixes IE
As I o

in.m

i

we can prove for every Generalized

FTtgwidrttf.gg xdr
If I fixed
under some assumptions to check

at his c of F
r t.sc of P F



Recall EDE For set

FIXED FIXED

It OF exch x'as dr

I fix'entdr t If DFlan Pdr

EDE equivalent to z

We also write it as ja s s t

FIX If lx er dry t TAFeaster

This is ERE E FIXED
Energy Dissipatienguality

We have obtained

FIXED I tix'ers Fdr t Ift lo Flexin dr
Itt but 5 0 Fixes

This is indeed equality



Fixes FIX a E th Flea lx ladr

since II ftp.EY
tt

I

EE.EE 9itqp

IT Exists a ett
E M F Xa 1 44

Flea Flea

E I t Ix is dr t Ift lo fila do

Combvary with the inequality we obtain via

De Giorgi variational interpolation

FIXED tf lx la'd t t Iftp Fam dr

F x cos

Flan tiff e tf É



LEDET
FIND Fleas If Ally dr

If 10 Flexin dr

Rk The ERE condition is not in general

sufficient to guarantee uniqueness of
gradient flow
Eg X 112 with metric L

d x xy 141,42

max Ix til Mr 44

Take Fix xu X

consider xx Eg with xi

KHED
what EDE means now

For S E t

Fixed tf wind rt IO fixing dr
w stg w



I Fixed

In this example the 2nd dimension does not

matter

A While generally it is hard to prove
existence of Gradient flows in the sense

of E v2 but uniqueness stably is

almost trivial

tf
T.pt div potty o o p

a probably deny

a p t div Ptv Aw p I pop
To pm

Aggregation Connection Diffusion

Kinetic Equations



Vlasov Poisson Eg
Off v If t E Out 0

E oxy
0 4 Eff du

where f a fax ul E I r
Le Plair fftrix.ydxdv 1

IRxIR

Boltzmann Eg

aft v Tx ft E Tuf QI8T

fi fax 4 electrostatic collusum

force kernel

space homogeneous f fit r

af Qf f
T

I

fav stout fat fool
stir du du

Villano's book

Landau Eg

safe v If t E Tuf f f
f fit x y



space homogeons Landau

af C f f x where

el is

the Landen
collision kernel

Note where u ur G IR Ird

elf f in

Tu f Alr A toy ou firs
foul Tyflual dug

To f Alr a Guluffas Tighyflurs
foul firs dugWhere the Landon kernel

AG 1218 Id 7

7
3 3 matrix

g tf d I D
In 3D 8 3 is the Coulomb case

IRS Aca Id 7



In the easiest form
off Elf f
f fav rear 8 3

space homogeneous Landon in 3D with

Coulomb interactions

RE Landau eq as a continuity of
Cliff Ou S Alu.ua l7ulogfwl TtlogfwrD

IRS
Livasdug

off Clf f

Jtf t dig yw.nugfut0phyfayDfwndugy
far o

ar f t div fay Uffe
o

IT relay tree _f8ggThis is a continuity eq

Rosenbluth form

af C f f y diffusion drop
T Af Tf off



where

af fp
Alu Va Ourflux dug

At Jp Alr Va fora dust

and At DG at OH

OH f DG H

Writing Landau as Gradient Flow
in Wasserstein Space

04.81 21,414411748 44 414.3

If 4,4 f Alr g Julyf Tushyf f dug
T T

EH SEA TIE To

If log f Tf Tf
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 Gradient Flows in the Probability Space endowed with

Wasserstein metric

We here focus on the heat ef and TKO scheme

2 p Of Gx E to a R
e bounded

convex domain

4 Plt o Pox

Elon o

Implicit Euler Scheme Fix any t
0 Pot Po

given pit Pat is defined as

IQ Raf e argmin fplospdxtwilf.tt
paper

The following discussion also works for Fokker Planck
a general evolution PDEs

Assume Pok dx 2 Pok 21 Live Pot PA

I Sa Polospo dx C to

We define Pi according to J KO scheme

Goal Show that as I o the scheme will

converge to the solution of the hear eq



E i
live Pcr p f plus part Wilf Pi

has a minimizer

Pf Fix k 70

Choose Pm
men

E PCR as a minimizing

sequence i e

fpmlusenttwilem.pe inf

t M 1,2 3 TMI is bounded in

ECR thus by Banach Alagla theorem

it is weak A compact in E
I subsequence mo independent of M St

Pm AM Pm in Ecr

Also K 520 slogs t I 20 we have

Salem RAM dx

Igpm a
M M d

Stossel



Fm pm my
Pm lugPmdx

E Im Salemloser 1 dx e Fm

Ses Px sup Pm This is Pia

def Po

We have obtained

Pmo m t pm

Pm Pro Monotone
convergence

11Pm AM Pmally E Igm

Combining all three fours we have

Prem Pro in Lcr

Then the remaining is to show

Px E PCR no mass Loss

meantconvergence at the boundary 22

then the comtrgence is narrow convergence

I



idea

g0yNaNasIxerldrstlx.ar
ca

Nal E Ce

b Etsy

In Pm Swangemel

Pm lostSnaps
pm b lost

e bul t É Ey
Saw Pm Fett

Mtn

Sun Pre G D

Now pm p narrowly



Prokhorov's theorem Pm is tight

Further eat s loss convex we have

In Palos Pre E liminffnfmamhgpm.cm
Mtx

we use l s c of the entropy want

the narrow topology

Similarly

Wilf E eliminftwicemam Pi

Henn

inf limrnffilfmgm.tt yffmaahsfmn
Mt X

z Wl
larger

ice Pro is a minimizer

we can set put Px



fifteen

Lemma
t g e CCR Rd tangent to or

it holds that

fr Pk dirt's dx t koTa Ta x Pi dx

where Tacy R R is the optimal map

porE

g
É
Xt EY tole

Pf Consider the flow of 9
É Lf x 31 It xD

go x



Since 5 11 22 Ect R s r is a diffeormaph

Define
Pa Ila Pat E PCR

and we have

RT a palEle x der TOILE x

then call Pii

Paly logPs4 dy E f Pita logPaleo xi dx

freiin log giggly d
of execs

Then I des 0016 x It E dir 044

A In PalosPe f Pict logPie Ef Rafdir dx
o c E

Now take an optimal coupling JETCat pig
for Wi distance

define re Ice I Id 8



then Ti ra Pa 14 11 Rai

Mak pi
ILL A Xt E Bix t o E

then
Wiles Rt E franix yidr

I

frantic x y drix y

631 7 toes

rank Tdr taluka x y dr

Thicke pig toes

So

B Nice Pete Wilke Pil
ZE faxkid x y dr

T OLE

Hence

inf I pathos put dot Wilke Pig



I a PalusPa dx t twice Pi

s in f t frayed Xdr

E f Pat divg ax toes

E can be I

In pi drug de Efraim x p dr
no

Id pi

If yo Tah Ta A X dpix
13

Thy Given I 0

let p Cu x Pls
be the curve of probability densities given
by

Pat
Po for t o

Pi for t t bye K2

k 2 I



n

µg e in in

Conclusion I a curve of probabrtries
measures p e Loc o x x2 s t

up to a subsequence in 2

pi p weakly in Lf Cops
Further p satisfies the heat eg in D
with initial data Po and zero

Neumann boundary condition

Pf By the TKO scheme

wife't filose Spiloseidx

Taking sum over k 1 2 ko



dfÉY Ét
freiloseidx

E f PolesPo dx

Is impt.es Pitogpidecreatsonk
or

f p't x Luge'd x dX
E f Polus fo dy

For any 4021

mileage
21

E f Pulis Po free dx

E Intolose ti dx L X

Further I ptal dx 1

Tactic Pri



SI f fax dx do to t

t o E ti E ta

Hence up to a subsequence

phr x pax
weakly in Lido Mxr

Passing limit for CA z t o

spox
dx 1 are tofu T

Yextwererifythapsantrestheyhear of in D

Idea test the heat eg against a

test function of the form
4 ga

FACT take YE COCA

34 22
0 04.0 0



Taylor's expansion

414 44 20441 x y I
I o
54 txt thy

Xy xy dr

141 1 4141 28441,431

Twixt I
X x

Thus we can estimate y Tix

ht t

E I 11024110 attic is Xp PitCdo

10411 WIPE et

Applying previous lemma with 9 84
3112rem Yu

04



I pi dir I f Tic Tic x dPim

j if 04 Are
If 04 Pi dx t t 1,41Tic Yad Pi dx

e I 11024N WitPERIT
Or

t f 04Pit dx t tf 4 dei 1,4day

E I 1102411 Wi Pic Rail
T

Now take GE Ci Costa
Multiply by e Chile

I 1241x Elke x he dx

J 414 Plane x he dx



e f2041x ptl be x bye dx

E I 115416 11311 Wi Pike Peck iz

Taking summation
over k 1 2

yields

1 34,4min
II I244 Pt Kt x ky z dx

T

E feel be x g by dx

Eifel at
E C EWi packet Finzi E C 2

Term I f f r yo Pelt x A ex It
w

term I f f froyox flt x r dx dt



O Le
Be Ci Co Mxr

Hence

1 3011,414 Poly Ux

fit 4G PIM Jr dx ar

f f royal fax ga
dxdry

w a

Old o

Sona pl p in Li Con ar

we conclude

901 a
44 Pom dx

f f 41 1 Pax dryer dx do

If royal Pax ga dear
o



K 3 4 compactly support Co

This is the weak formulation of heat

equation with O Neumann boundary

condition

ytinhgg.jydet.ieyA Invitation to Optimal Transport

The end
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